首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
During spring migration, herbivorous waterfowl breeding in the Arctic depend on peaks in the supply of nitrogen‐rich forage plants, following a “green wave” of grass growth along their flyway to fuel migration and reproduction. The effects of climate warming on forage plant growth are expected to be larger at the Arctic breeding grounds than in temperate wintering grounds, potentially disrupting this green wave and causing waterfowl to mistime their arrival on the breeding grounds. We studied the potential effect of climate warming on timing of food peaks along the migratory flyway of the Russian population of barnacle geese using a warming experiment with open‐top chambers. We measured the effect of 1.0–1.7°C experimental warming on forage plant biomass and nitrogen concentration at three sites along the migratory flyway (temperate wintering site, temperate spring stopover site, and Arctic breeding site) during 2 months for two consecutive years. We found that experimental warming increased biomass accumulation and sped up the decline in nitrogen concentration of forage plants at the Arctic breeding site but not at temperate wintering and stop‐over sites. Increasing spring temperatures in the Arctic will thus shorten the food peak of nitrogen‐rich forage at the breeding grounds. Our results further suggest an advance of the local food peak in the Arctic under 1–2°C climate warming, which will likely cause migrating geese to mistime their arrival at the breeding grounds, particularly considering the Arctic warms faster than the temperate regions. The combination of a shorter food peak and mistimed arrival is likely to decrease goose reproductive success under climate warming by reducing growth and survival of goslings after hatching.  相似文献   

2.
Many herbivore species prefer to forage on patches of intermediate biomass. Plant quality and forage efficiency are predicted to decrease with increasing plant standing crop which explains the lower preference of the herbivore. However, often is ignored that on the long-term, plant species composition is predicted to change with increasing plant standing crop. The amount of low-quality, unpreferred food plants increases with increasing plant standing crop. In the present study the effects of unpreferred plants on patch choice and distribution of European brown hare in a salt-marsh system were studied. In one experiment, unpreferred plants were removed from plots. In the second experiment, plots were planted with different densities of an unpreferred artificial plant. Removal of unpreferred plants increased hare-grazing pressure more than fivefold compared to unmanipulated plots. Planting of unpreferred plants reduced hare-grazing pressure, with a significant reduction of grazing already occurring at low unpreferred plant density. Spatial distribution of hares within this salt-marsh system was related to spatial arrangement of unpreferred plants. Hare-grazing intensity decreased strongly with increasing abundance of unpreferred plants despite a high abundance of principal food plants. The results of this study indicate that plant species replacement is an important factor determining patch choice and spatial distribution of hares next to changing plant quality. Increasing abundance of unpreferred plant species can strengthen the decreasing patch quality with increasing standing crop and can decrease grazing intensity when preferred food plants are still abundantly present.  相似文献   

3.
4.
Herbivores may increase the productivity of forage plants; however, this depends on the return of nutrients from faeces to the forage plants. The aim of this study was to test if nitrogen (N) from faeces is available to forage plants and whether the return of nutrients differs between plant species using 15N natural abundance in faeces and plant tissue. To investigate the effect of grazing on N transfer, we carried out a grazing experiment in wet and mesic tundra on high Arctic Spitsbergen using barnacle geese (Branta leucopsis) as the model herbivore. N inputs (from faeces) increased with grazing pressure at both the wet and mesic sites, with the greatest N input from faeces at the wet site. The δ15N ratio in plant tissue from grazed plots was enriched in mosses and the dwarf shrub species, reflecting the δ15N signature of faeces-derived N, but no such pattern was observed in the dominant grasses. This study demonstrates that the δ15N signature of faeces and forage species is a useful tool to explore how grazing impacts on N acquisition. Our findings suggest that plant species which acquire their N close to the soil surface (e.g. mosses) access more of the N from faeces than species with deeper root systems (e.g. grasses) suggesting a transfer of N from the preferred forage species to the mosses and dwarf shrubs, which are less preferred by the geese. In conclusion, the moss layer appears to disrupt the nitrogen return from herbivores to their forage species.  相似文献   

5.
Question: What is the impact of grazing regime on plant species abundance, plant growth form, plant productivity and plant nutrient concentrations in a forest steppe? Location: Hustai National Park in the forest steppe region of Mongolia. Methods: On the Stipa steppe we applied three different grazing regimes by using; (1) one type of exclosure which excluded grazing by large mammalian herbivores, mainly takh (Przewalski horse), (2) another type of exclosure that excluded both large and small (Siberian marmots) mammalian herbivores, and (3) control plots which were freely grazed. We measured species frequencies, tiller densities, plant biomass and nitrogen concentrations of the vegetation. Results: Exclusion from grazing by takh and marmots significantly increased plant standing crop, but marmot grazing and full grazing did not show significant differences. Protection from grazing decreased forage quality, shown by a lower N-concentration of the standing crop. However, this was solely the result of the lower live-dead ratio of the vegetation. The frequency of the rhizomatous Leymus chinensis decreased under reduced grazing, as did the frequency of the total of rhizomatous species. The frequency of Stipa krylovii increased under reduced grazing, as did its basal areas, tiller density and tussock height. Conclusion: Reduced grazing leads to a lower abundance of rhizomatous species and an increase in tussock species.  相似文献   

6.
Plant community diversity and ecosystem function are conditioned by competition among co-occurring species for multiple resources. Previous studies suggest that removal of standing biomass by grazing decreases competition for light, but coincident grazing effects on competition for soil nutrients remain largely unknown in Tibetan rangelands where grazing tends to deplete soil phosphorus availability. We measured five functional traits indicative of plant productivity and stoichiometry leaf carbon concentration (LCC), leaf nitrogen concentration (LNC), leaf phosphorus concentration (LPC), specific leaf area (SLA), leaf dry matter content (LDMC) for component species of plant communities in grazed and ungrazed plots in five Tibetan alpine meadows. We examined the diversity of traits singly Rao index of functional diversity (FDrao) and in aggregate functional richness (FRic), functional divergence (FDiv), and functional evenness (FEve) in response to grazing. We tested whether foliar trait diversity increases with nutrient competition but decreases with light competition when competitive exclusion is reduced by grazing. The FDrao of LPC significantly increased under grazing, but FDrao for LCC, LNC and SLA tended to decrease. The FDrao of LDMC increased at the drier site but decreased at the wettest site. There was a strong negative association between increase in FDrao of LPC and decrease in soil nutrients, especially soil phosphorus availability. The FRic for all five traits together increased with species diversity following grazing, but neither FDiv nor FEve differed significantly between grazed and ungrazed plots at most sites. Grazing in Tibetan alpine meadows tends to increase competition for soil phosphorus while decreasing competition for light, resulting in an increase in the functional richness in grazed plant communities without any significant changes in the overall functional diversity of foliar traits. Our study highlights the potential importance of grazing mediated competition for multiple resources in alpine meadow ecosystems.  相似文献   

7.
Changes in grazing management are believed to be responsible for declines in populations of birds breeding in grassland over the last decades. The relationships between grazing management regimes, vegetation structure and composition and the availability of invertebrate food resources to passerine birds remain poorly understood. In this study, we investigated the foraging site selection of meadow pipits (Anthus pratensis L.) breeding in high intensity sheep-grazed plots or low intensity mixed (i.e. sheep and cattle)-grazed plots. We sampled above-ground invertebrates, measured vegetation height and density and conducted a vegetation survey in areas where meadow pipits were observed to forage and areas that were randomly selected. Birds foraged in areas with a lower vegetation height and density and in areas containing a lower proportion of the dominant, tussock-forming grass species Molinia caerulea. They did not forage in areas with a total higher invertebrate biomass but at areas with preferred vegetation characteristics invertebrate biomass tended to be higher in foraging sites than random sites. The foraging distance of meadow pipits was higher in the intensively grazed plots. Our findings support the hypothesis that resource-independent factors such as food accessibility and forager mobility may determine patch selection and are of more importance as selection criteria than food abundance per se. Food accessibility seems to become an even more important selection criterion under high grazing intensity, where prey abundance and size decrease. In our upland grazing system, a low intensity, mixed grazing regime seems to provide a more suitable combination of sward height, plant diversity, structural heterogeneity and food supply for meadow pipit foraging activity compared to a more intensive grazing regime dominated by sheep.  相似文献   

8.
Within three decades, the barnacle goose population wintering on the European mainland has dramatically increased in numbers and extended its breeding range. The expansion has occurred both within the Arctic as well as by the colonization of temperate areas. Studies of performance of individuals in expanding populations provide information on how well species can adapt to novel environments and global warming. We, therefore, studied the availability of high quality food as well as timing of reproduction, wing moult, fledgling production and postfledging survival of individually marked geese in three recently established populations: one Arctic (Barents Sea) and two temperate (Baltic, North Sea). In the Barents Sea population, timing of hatching was synchronized with the peak in food availability and there was strong stabilizing selection. Although birds in the Baltic and North Sea populations bred 6–7 weeks earlier than Arctic birds, timing of hatching was late in relation to the peak in food availability, and there was moderate to strong directional selection for early breeding. In the Baltic, absolute timing of egg laying advanced considerably over the 20‐year study period, but advanced little relative to spring phenology, and directional selection on lay date increased over time. Wing moult of adults started only 2–4 weeks earlier in the temperate populations than in the Arctic. Synchronization between fledging of young and end of wing moult decreased in the temperate populations. Arctic‐breeding geese may gradually accumulate body stores from the food they encounter during spring migration, which allows them to breed relatively early and their young to use the peak of the Arctic food resources. By contrast, temperate‐breeding birds are not able to acquire adequate body stores from local resources early enough, that is before the quality of food for their young starts to decrease. When global temperatures continue to rise, Arctic‐breeding barnacle geese might encounter similar problems.  相似文献   

9.
Nitrogen dynamics in an Alaskan salt marsh following spring use by geese   总被引:1,自引:0,他引:1  
Lesser snow geese (Anser caerulescens caerulescens) and Canada geese (Branta canadensis) use several salt marshes in Cook Inlet, Alaska, as stopover areas for brief periods during spring migration. We investigated the effects of geese on nitrogen cycling processes in Susitna Flats, one of the marshes. We compared net nitrogen mineralization, organic nitrogen pools and production in buried bags, nitrogen fixation by cyanobacteria, and soil and litter characteristics on grazed plots versus paired plots that had been exclosed from grazing for 3 years. Grazed areas had higher rates of net nitrogen mineralization in the spring and there was no effect of grazing on organic nitrogen availability. The increased mineralization rates in grazed plots could not be accounted for by alteration of litter quality, litter quantity, microclimate, or root biomass, which were not different between grazed and exclosed plots. In addition, fecal input was very slight in the year that we studied nitrogen cycling. We propose that trampling had two effects that could account for greater nitrogen availability in grazed areas: litter incorporation into soil, resulting in increased rates of decomposition and mineralization of litter material, and greater rates of nitrogen fixation by cyanobacteria on bare, trampled soils. A path analysis indicated that litter incorporation by trampling played a primary role in the nitrogen dynamics of the system, with nitrogen fixation secondary, and that fecal input was of little importance.  相似文献   

10.
Inner Mongolia steppe grasslands are widely used for livestock farming and the regrowth ability of grassland species is therefore strongly influenced not only by water and nutrient availability but also quite heavily by grazing. However, little is known on how grazing, water and nitrogen interactively affect the dominant C3 species (Leymus chinensis, Stipa grandis, Agropyron cristatum) and the C4 species (Cleistogenes squarrosa). Therefore in the 2007 and 2008 growing seasons, a field experiment was carried out to test the hypothesis that under different grazing intensities the dominant species show different short-term regrowth response to simultaneous variation in the availability of water and nitrogen. Single factor and interaction effects of the addition of water (rainfed vs. simulated wet-year) and nitrogen (0 or 25 kg N ha?1) were analysed along a gradient of four grazing intensities (ungrazed, lightly, moderately and heavily grazed) after one month of grazing exclusion. Water and nitrogen addition affected short-term regrowth of all species in a similar way whereas species responded differently to grazing. Simulated wet-year water availability consistently resulted in higher standing biomass, relative growth rate and cellulase digestible organic matter yield. Supplementary nitrogen promoted standing biomass and crude protein concentration. The nutritive value of all species’ standing biomass showed a similar increase with more intensive grazing. However, heavy grazing led to a clear shift in the relative biomass of the species, i.e. mainly a promotion of the C4 grass, C. squarrosa. In contrast to our hypothesis, there were no differences among species in their response to water or nitrogen addition, whereas, heavy grazing induced the expected species-specific response. Our results suggest that heavy grazing rather than nitrogen or water determine short-term shifts in species composition of the investigated steppe ecosystem. Furthermore, differences in the species-specific growth response to grazing may increase the proportion of the C4 grass C. squarrosa in steppe communities, whereas higher availability of nitrogen and water may lead to higher forage biomass and nutritive value of all investigated species but in short-term cannot compensate for the grazing induced changes in species composition.  相似文献   

11.
We studied the effects of grazing by Black Brant (Branta bernicla nigricans) geese (hereafter Brant) on plant community zonation and gosling growth between 1987 and 2000 at a nesting colony in southwestern Alaska. The preferred forage of Brant, Carex subspathacea, is only found as a grazing lawn. An alternate forage species, C. ramenskii, exists primarily as meadow but also forms grazing lawns when heavily grazed. We mowed plots of ungrazed C. ramenskii meadows to create swards that Brant could select and maintain as grazing lawns. Fecal counts were higher on mowed plots than on control plots in the year after plots were mowed. Both nutritional quality and aboveground biomass of C. ramenskii in mowed plots were similar to that of C. subspathacea grazing lawns. The areal extent of grazing lawns depends in part on the population size of Brant. High Brant populations can increase the areal extent of grazing lawns, which favors the growth of goslings. Grazing lawns increased from 3% to 8% of surface area as the areal extent of C. ramenskii meadows declined between 1991 and 1999. Gosling mass was lower early in this time period due to density dependent effects. As the goose population stabilized, and area of grazing lawns increased, gosling mass increased between 1993 and 1999. Because larger goslings have increased survival, higher probability of breeding, and higher fecundity, herbivore-mediated changes in the distribution grazing lawn extent may result in a numerical increase of the population within the next two decades.  相似文献   

12.
The capacity of epifauna to control algal proliferation following nutrient input depends on responses of both grazers and upper trophic level consumers to enrichment. We examined the responses of Thalassia testudinum (turtle grass) epifaunal assemblages to nutrient enrichment at two sites in Florida Bay with varying levels of phosphorus limitation. We compared epifaunal density, biomass, and species diversity in 2 m2 plots that had either ambient nutrient concentrations or had been enriched with nitrogen and phosphorus for 6 months. At the severely P-limited site, total epifaunal density and biomass were two times higher in enriched than in unenriched plots. Caridean shrimp, grazing isopods, and gammarid amphipods accounted for much of the increase in density; brachyuran crabs, primary predatory fish, and detritivorous sea cucumbers accounted for most of the increase in biomass. At the less P-limited site, total epifaunal density and biomass were not affected by nutrient addition, although there were more caridean shrimp and higher brachyuran crab and pink shrimp biomass in enriched plots. At both sites, some variation in epifaunal density and biomass was explained by features of the macrophyte canopy, such as T. testudinum and Halodule wrightii percent cover, suggesting that enrichment may change the refuge value of the macrophyte canopy for epifauna. Additional variation in epifaunal density and biomass was explained by epiphyte pigment concentrations, suggesting that enrichment may change the microalgal food resources that support grazing epifauna. Increased epifaunal density in enriched plots suggests that grazers may be able to control epiphytic algal proliferation following moderate nutrient input to Florida Bay. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

13.
Forage nitrogen concentrations, nitrogen yields, and in vitro digestibilities were assessed in shortgrass steppe that had been ungrazed, lightly, or heavily grazed for 50 years. Caged plots were defoliated in amounts based upon removals observed in naturallygrazed reference plots or not defoliated. This was done in a year of average precipitation and with a supplemental water treatment to simulate a wet year. In general, current-year defoliation had positive effects, and longterm grazing and supplemental water had negative effects, on forage nitrogen concentrations and digestibilities. However, defoliation interacted with long-term grazing in determning forage nitrogen concentrations, and with grazing and with watering in determining digestibilities. Nitrogen concentration and digestibility increased with defoliation in lightly, but not in heavily, grazed treatments. The dilution effect of supplemental water an digestibilities through increased plant growth was offset by defoliation. The negative effects of long-term grazing on forage quality were small, equally or more than compensated for by defoliation in a year of average precipitation, but more pronounced in the simulated wet year. Nitrogen yields and digestible forage production were usually increased by defoliation, but this depended upon grazing and watering treatments. Increased nitrogen and digestible forage yields and concentrations in response to defoliation were greater than the biomass response in lightly grazed grassland. For both nitrogen and digestibility, yields were greater in grazed than ungrazed treatments in the year of average precipitation, but less in the simulated wet year. Optimizing quantity and year-to-year stability of nitrogen and digestible forage yield may best be achieved with light grazing rather than no or heavy grazing. Clipping was conducted in a manner closely resembling the natural pattern and intensity of defoliation by the cattle, and confirms the potential for a positive feedback of increased forage quality with defoliation observed in pot experiments. Long-term heavy grazing can diminish this response. Quantily (aboveground primary production, ANPP), quantity of quality (digestible and N yields), and quality (concentrations) do not necessarily respond similarly in interactions between current-year defoliation, long-term grazing history, and level of water resource.  相似文献   

14.
Recent findings suggest that herbivores select feeding sites of intermediate biomass in order to maximise their digestible nutrient intake as the result of the trade-off between forage quality and quantity ('forage maturation hypothesis'). We propose a reformulation of this hypothesis which recognises this trade-off, but also underlines that constraints due to body mass (i.e. metabolism and digestive constraints, size of the feeding apparatus) can lead to variations in grazing patterns. We tested this latter hypothesis experimentally in three species of herbivorous Anatidae of different body mass: the wigeon Anas penelope (in our study c. 620 g), the barnacle goose Branta leucopsis (c. 2000 g), and the greylag goose Anser anser (c. 3500 g). Each species was tested separately from 0600 to 0930 hours, in an enclosure with a mosaic of patches of grass of three different heights: short, medium and tall. The behaviour, and the location (i.e. patch) of each individual were recorded every 5 minutes. Our results show important interspecific differences in intake rates resulting in different feeding site selection: wigeon and barnacle goose fed fastest on the shortest swards, and selected short grass which was also of higher quality. Tall grass provided the highest dry matter intake rate and digestible protein intake for greylag geese, and they preferred these swards. These choices allowed the birds to maximise their digestible nitrogen intake rate rather than dry matter intake rate and our results thus underline the importance of nitrogen as a major currency for foraging decisions in herbivorous Anatidae. Since the birds selected the two extreme sward heights (instead of the medium one), the results give support to our hypothesis and underline the role of body size as an important cause of variations in patch selection in herbivorous Anatidae.  相似文献   

15.
Lesser snow geese Anser caerulescens caeruteseens from the western Canadian Arctic feed on underground parts of tall cotton–grass Eriophorum angustifolium during autumn staging on the coastal plain of the Beaufort Sea in Canada and Alaska. We studied revegetation of sites where cotton–grass had been removed either by human–imprinted snow geese or by hand to simulate snow goose feeding. Aerial cover of cotton–grass at sites (n = 4) exploited by human–imprinted snow geese averaged 60 and 39 Mi lower than in undisturbed control plots during the first and second year after feeding, respectively. Underground biomass of cotton–grass stembases and rhizomes in hand–treated plots was 80 and 62% less than in control plots 2 and 4 yr after removal, respectively (n = 10 yr-1). Aerial cover and biomass of common non-forage species such as Carex aquatilis did not increase on treated areas. Removal of cotton-grass by geese likely reduces forage availability at exploited sites for at least 2–4 yr after feeding but probably does not affect long-term community composition. Temporal heterogeneity in forage abundance likely contributes to the large spatial requirement of snow geese during staging.  相似文献   

16.
The effects of grazing by captive goslings of the Lesser Snow Goose on coastal vegetation at La Pérouse By. Manitoba were investigated. Swards of Carex subspathacea, Festuca rubra and Calamagrostis deschampsioides were grazed once for different periods (0–180 min) and regrowth of vegetation determined, based on measurements of standing crop, net above-ground primary production (NAPP) and forage quality (leaf nitrogen content). The amounts of foliage removed from swards of Carex subspathacea increased with the length of the grazing period, but after 44 days of regrowth there were no significant differences in above-ground biomass between control and grazed plots. While the amount of foliage removed by goslings from swards of Festuca rubra increased with the length of the grazing period (except after 150 min of grazing), the increase in biomass following defoliation was similar among treatments. Goslings removed little biomass from swards of Calamagrostis deschampsioides, even when the opportunity for grazing was 180 min. No significant differences in standing-crop or NAPP between grazed and ungrazed plots were detected by the end of summer. Grazing had no significant effect on amounts of nitrogen in leaf tissue of all species, suggesting that faecal nitrogen was not rapidly incorporated into plant biomass within the growing season. Patterns of regrowth of these species are compared to that of Puccinellia phryganodes. An increase in goose numbers in recent years has led to birds foraging on less preferred species, such as Calamagrostis deschampsiodes and Festuca rubra. Their poor nutritional quality and a lack of a rapid growth response following defoliation may explain, in part, the decline in the weight of wild goslings recorded over the last decade.  相似文献   

17.
Below-ground biomass and nitrogen content were determined at two genetically homogeneous Phragmites stands differing in morphology, in productivity, and in nutrient supply. Comparable ratios between above-ground standing crop and rhizome biomass were found at both sites, whereas the root biomass/above standing crop ratio was significantly higher at the nutrient poor site. Investigations on the dynamics of nitrogen content revealed distinct differences in nitrogen translocation to the rhizomes between the investigated clones indicating two ecophysiological strategies in storage behaviour. These two strategies could be attached to the “assimilation type” and to the “translocation type”, respectively. A modified definition of both types is presented.  相似文献   

18.
该研究于2020年5月、7月和9月在天山北坡中段试验区的禁牧区(5a)和放牧区分别进行调查采样,测定分析不同月份禁牧区和放牧区伊犁绢蒿种群数量特征(高度、盖度、密度和生物量)及构件(茎、叶、根)生物量,以揭示植物种群特征和构件生物量对禁牧的响应规律,为退化草地的修复治理以及合理利用提供依据。结果表明:(1)与放牧区相比,5月、7月、9月禁牧区的伊犁绢蒿种群的高度、盖度和生物量均显著增加(P<0.05),其中高度增幅为69.90%~95.53%,盖度增幅为186.53%~297.82%,生物量增幅为86.24%~631.83%。(2)随着月份的推移,禁牧区与放牧区伊犁绢蒿单株生物量、茎生物量和叶生物量均呈先降后增的变化趋势,而根生物量呈增加的趋势;禁牧改变了植株构件比例,与放牧区相比,禁牧区茎、叶的生物量所占单株生物量的比例在7月、9月均显著增加,而根生物量所占比例显著降低。研究认为,禁牧有利于地上植被的恢复,使其构件结构改变,是恢复退化荒漠草地植物的有效措施。  相似文献   

19.
Abstract. Reduced weights in reindeer that graze in pastures with high reindeer densities have raised the question if coastal summer pastures are modified by grazing. To evaluate this, the impact of reindeer grazing on standing crop was measured by the plant intercept method inside and outside grazing exclosures in the understorey of a coastal mountain birch forest in northern Norway. The understories of coastal birch forests are dominated by vascular plants and are important summer pastures to reindeer. Based on the literature, we made a priori categorization of the vascular plant species into functional groups of preferred forage, less preferred forage and forage of unknown value to reindeer. Intercept frequency was measured within the same plots on three occasions in the summer of 1996. At the end of the grazing season, total standing crop was 33% lower in open plots compared to plots protected by exclosures. However, the reduction varied between the functional groups, with only preferred forage plants being significantly reduced in standing crop (by 49%). Results suggest that reindeer have a strong annual impact on most of the preferred forage species. However, some of the preferred graminoids are tolerant of grazing and dominate the understorey despite decades of high grazing pressure. We suggest that current grazing pressure is favouring the establishment of a few grazing tolerant graminoids, and that this reduces the forage plant variability. The results are discussed in relation to the grazing optimization hypothesis and the potential importance of plant variability for pasture quality.  相似文献   

20.
Gao YZ  Chen Q  Lin S  Giese M  Brueck H 《Oecologia》2011,165(4):855-864
Productivity of semiarid grasslands is affected by soil water and nutrient availability, with water controlling net primary production under dry conditions and soil nutrients constraining biomass production under wet conditions. In order to investigate limitations on plants by the response of root–shoot biomass allocation to water and nitrogen (N) availability, a field experiment, on restoration plots with rainfed, unfertilized control plots, fertilized plots receiving N (25 kg urea-N ha−1) and water (irrigation simulating a wet season), was conducted at two sites with different grazing histories: moderate (MG) and heavy (HG) grazing. Irrigation and N addition had no effect on belowground biomass. Irrigation increased aboveground (ANPP) and belowground net primary production (BNPP) and rain-use efficiency based on ANPP (RUEANPP), whereas N addition on rainfed plots had no effect on any of the measured parameters. N fertilizer application on irrigated plots increased ANPP and RUEANPP and reduced the root fraction (RF: root dry matter/total dry matter), resulting in smaller N effects on total net primary production (NPP) and rain-use efficiency based on NPP. This suggests that BNPP should be included in evaluating ecosystem responses to resource availability from the whole-plant perspective. N effects on all measured parameters were similar on both sites. However, site HG responded to irrigation with higher ANPP and a lower RF when compared to site MG, indicating that species composition had a pronounced effect on carbon allocation pattern due to below- and aboveground niche complementarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号