首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tryparedoxins (TXNs) catalyse the reduction of peroxiredoxin-type peroxidases by the bis-glutathionyl derivative of spermidine, trypanothione, and are relevant to hydroperoxide detoxification and virulence of trypanosomes. The 3D-structures of the following tryparedoxins are presented: authentic tryparedoxin1 of Crithidia fasciculata, CfTXN1; the his-tagged recombinant protein, CfTXN1H6; reduced and oxidised CfTXN2, and an alternative substrate derivative of the mutein CfTXN2H6-Cys44Ser. Cys41 (Cys40 in TXN1) of the active site motif 40-WCPPCR-45 proved to be the only solvent-exposed redox active residue in CfTXN2. In reduced TXNs, its nucleophilicity is increased by a network of hydrogen bonds. In oxidised TXNs it can be attacked by the thiol of the 1N-glutathionyl residue of trypanothione, as evidenced by the structure of 1N-glutathionylspermidine-derivatised CfTXN2H6-Cys44Ser. Modelling suggests Arg45 (44), Glu73 (72), the Ile110 (109) cis-Pro111 (110)-bond and Arg129 (128) to be involved in the binding of trypanothione to CfTXN2 (CfTXN1). The model of TXN-substrate interaction is consistent with functional characteristics of known and newly designed muteins (CfTXN2H6-Arg129Asp and Glu73Arg) and the 1N-glutathionyl-spermidine binding in the CfTXN2H6-Cys44Ser structure.  相似文献   

2.
Hydroperoxide metabolism in Crithidia fasciculata has recently been shown to be catalyzed by a cascade of three oxidoreductases comprising trypanothione reductase (TR), tryparedoxin (TXN1), and tryparedoxin peroxidase (TXNPx) (Nogoceke et al., Biol. Chem. 378, 827-836, 1997). The existence of this metabolic system in the human pathogen Trypanosoma cruzi is supported here by immunohistochemistry. Epimastigotes of T. cruzi display strong immunoreactivity with antibodies raised against TXN1 and TXNPx of C. fasciculata. In addition, a full-length open reading frame presumed to encode a peroxiredoxin-type protein in T. cruzi (Acc. Nr. AJ 012101) was heterologously expressed in Escherichia coli and shown to exhibit tryparedoxin peroxidase activity. With TXN, TXNPx, trypanothione and TR, T. cruzi possesses all components constituting the crithidial peroxidase system. It is concluded that the antioxidant defense of T. cruzi also depends on the NADPH-fuelled, trypanothione-mediated enzymatic hydroperoxide metabolism.  相似文献   

3.
Trypanosoma brucei, the causative agent of African sleeping sickness, has three nearly identical genes encoding cysteine homologues of classical selenocysteine-containing glutathione peroxidases. The proteins are expressed in the mammalian and insect stages of the parasite. One of the genes, which contains a mitochondrial as well as a glycosomal targeting signal has been overexpressed. The recombinant T. brucei peroxidase has a high preference for the trypanothione/tryparedoxin couple as electron donor for the reduction of different hydroperoxides but accepts also T. brucei thioredoxin. The apparent rate constants k(2)' for the regeneration of the reduced enzyme are 2 x 10(5) m(-1) s(-1) with tryparedoxin and 5 x 10(3) m(-1) s(-1) with thioredoxin. No saturation kinetics was observed and the rate-limiting step of the overall reaction is reduction of the hydroperoxide. With glutathione, the peroxidase has marginal activity and reduction of the enzymes becomes limiting with a k(2)' value of 3 m (-1) s(-1). The T. brucei peroxidase, in contrast to the related Trypanosoma cruzi enzyme, also accepts hydrogen peroxide as substrate. The catalytic efficiency of the peroxidase studied here is comparable with that of the peroxiredoxin-like tryparedoxin peroxidases, which shows that trypanosomes possess two distinct peroxidase systems both dependent on the unique dithiol trypanothione.  相似文献   

4.
Trypanosoma cruzi glutathione-dependent peroxidase I (TcGPXI) can reduce fatty acid, phospholipid, and short chain organic hydroperoxides utilizing a novel redox cycle in which enzyme activity is linked to the reduction of trypanothione, a parasite-specific thiol, by glutathione. Here we show that TcGPXI activity can also be linked to trypanothione reduction by an alternative pathway involving the thioredoxin-like protein tryparedoxin. The presence of this new pathway was first detected using dialyzed soluble fractions of parasite extract. Tryparedoxin was identified as the intermediate molecule following purification, sequence analysis, antibody studies, and reconstitution of the redox cycle in vitro. The system can be readily saturated by trypanothione, the rate-limiting step being the interaction of trypanothione with the tryparedoxin. Both tryparedoxin and TcGPXI operate by a ping-pong mechanism. Overexpression of TcGPXI in transfected parasites confers increased resistance to exogenous hydroperoxides. TcGPXI contains a carboxyl-terminal tripeptide (ARI) that could act as a targeting signal for the glycosome, a kinetoplastid-specific organelle. Using immunofluorescence, tagged fluorescent proteins, and biochemical fractionation, we have demonstrated that TcGPXI is localized to both the glycosome and the cytosol. The ability of TcGPXI to use alternative electron donors may reflect their availability at the corresponding subcellular sites.  相似文献   

5.
Trypanosoma brucei, the causative agent of African sleeping sickness, encodes three nearly identical cysteine homologues of the classical selenocysteine-containing glutathione peroxidases. Although one of the sequences, peroxidase III, carries both putative mitochondrial and glycosomal targeting signals, the proteins are detectable only in the cytosol and mitochondrion of mammalian bloodstream and insect procyclic T. brucei. The enzyme is a trypanothione/tryparedoxin peroxidase as are the 2 Cys-peroxiredoxins of the parasite. Hydrogen peroxide, thymine hydroperoxide, and linoleic acid hydroperoxide are reduced with second order rate constants of 8.7 x 10(4), 7.6 x 10(4), and 4 x 10(4) m(-1) s(-1), respectively, and represent probable physiological substrates. Phosphatidylcholine hydroperoxide is a very weak substrate and, in the absence of Triton X-100, even an inhibitor of the enzyme. The substrate preference clearly contrasts with that of the closely related T. cruzi enzyme, which reduces phosphatidylcholine hydroperoxides but not H(2)O(2). RNA interference causes severe growth defects in bloodstream and procyclic cells in accordance with the peroxidases being essential in both developmental stages. Thus, the cellular functions of the glutathione peroxidase-type enzymes cannot be taken over by the 2 Cys-peroxiredoxins that also occur in the cytosol and mitochondrion of the parasite.  相似文献   

6.
In Kinetoplastida 2-Cys peroxiredoxins are the ultimate members of unique enzymatic cascades for detoxification of peroxides, which are dependent on trypanothione, a small thiol specific to these organisms. Here we report on two distinct Leishmania infantum peroxiredoxins, LicTXNPx and LimTXNPx, that may be involved in such a pathway. LicTXNPx, found in the cytoplasm, is a typical 2-Cys peroxiredoxin encoded by LicTXNPx, a member of a multicopy gene family. LimTXNPx, encoded by a single copy gene, LimTXNPx, is confined to the mitochondrion and is unusual in possessing an Ile-Pro-Cys motif in the distal redox center, replacing the common peroxiredoxin Val-Cys-Pro sequence, apart from an N-terminal mitochondrial leader sequence. Based on sequence and subcellular localization, the peroxiredoxins of Kinetoplastida can be separated in two distinct subfamilies. As an approach to investigate the function of both peroxiredoxins in the cell, L. infantum promastigotes overexpressing LicTXNPx and LimTXNPx were assayed for their resistance to H(2)O(2) and tert-butyl hydroperoxide. The results show evidence that both enzymes are active as peroxidases in vivo and that they have complementary roles in parasite protection against oxidative stress.  相似文献   

7.
Trypanosoma brucei, the causative agent of African sleeping sickness, synthesizes deoxyribonucleotides via a classical eukaryotic class I ribonucleotide reductase. The unique thiol metabolism of trypanosomatids in which the nearly ubiquitous glutathione reductase is replaced by a trypanothione reductase prompted us to study the nature of thiols providing reducing equivalents for the parasite synthesis of DNA precursors. Here we show that the dithiol trypanothione (bis(glutathionyl)spermidine), in contrast to glutathione, is a direct reductant of T. brucei ribonucleotide reductase with a K(m) value of 2 mm. This is the first example of a natural low molecular mass thiol directly delivering reducing equivalents for ribonucleotide reduction. At submillimolar concentrations, the reaction is strongly accelerated by tryparedoxin, a 16-kDa parasite protein with a WCPPC active site motif. The K(m) value of T. brucei ribonucleotide reductase for T. brucei tryparedoxin is about 4 micrometer. The disulfide form of trypanothione is a powerful inhibitor of the tryparedoxin-mediated reaction that may represent a physiological regulation of deoxyribonucleotide synthesis by the redox state of the cell. The trypanothione/tryparedoxin system is a new system providing electrons for a class I ribonucleotide reductase, in addition to the well known thioredoxin and glutaredoxin systems described in other organisms.  相似文献   

8.
Trypanosomatids, the causative agents of several tropical diseases, lack glutathione reductase and thioredoxin reductase but have a trypanothione reductase instead. The main low molecular weight thiols are trypanothione (N(1),N(8)-bis-(glutathionyl)spermidine) and glutathionyl-spermidine, but the parasites also contain free glutathione. To elucidate whether trypanosomes employ S-thiolation for regulatory or protection purposes, six recombinant parasite thiol redox proteins were studied by ESI-MS and MALDI-TOF-MS for their ability to form mixed disulfides with glutathione or glutathionylspermidine. Trypanosoma brucei mono-Cys-glutaredoxin 1 is specifically thiolated at Cys(181). Thiolation of this residue induced formation of an intramolecular disulfide bridge with the putative active site Cys(104). This contrasts with mono-Cys-glutaredoxins from other sources that have been reported to be glutathionylated at the active site cysteine. Both disulfide forms of the T. brucei protein were reduced by tryparedoxin and trypanothione, whereas glutathione cleaved only the protein disulfide. In the glutathione peroxidase-type tryparedoxin peroxidase III of T. brucei, either Cys(47) or Cys(95) became glutathionylated but not both residues in the same protein molecule. T. brucei thioredoxin contains a third cysteine (Cys(68)) in addition to the redox active dithiol/disulfide. Treatment of the reduced protein with GSSG caused glutathionylation of Cys(68), which did not affect its capacity to catalyze reduction of insulin disulfide. Reduced T. brucei tryparedoxin possesses only the redox active Cys(32)-Cys(35) couple, which upon reaction with GSSG formed a disulfide. Also glyoxalase II and Trypanosoma cruzi trypanothione reductase were not sensitive to thiolation at physiological GSSG concentrations.  相似文献   

9.
From Trypanosoma cruzi, the causative agent of Chagas' disease, a lipoamide dehydrogenase was isolated. The enzyme, an FAD-cystine oxidoreductase, shares many physical and chemical properties with T. cruzi trypanothione reductase, the key enzyme of the parasite's thiol metabolism. 1. From 60 g epimastigotic T. cruzi cells, 2.7 mg lipoamide dehydrogenase was extracted. The flavoenzyme was purified 3000-fold to homogeneity with an overall yield of 26%. 2. The enzyme is a dimer with a subunit Mr of 55,000. With 1 mM lipoamide (Km approximately 5 mM) and 100 microM NADH (Km = 23 microM), the specific activity at pH 7.0 is 297 U/mg. 3. With excess NADH, the enzyme is reduced to the EH2.NADH complex and, by addition of lipoamide, it is reoxidized, indicating that it can cycle between the oxidized state E and the two-electron-reduced state, EH2. 4. As shown by N-terminal sequencing of the enzyme, 21 out of 30 positions are identical with those of pig heart and human liver lipoamide dehydrogenase. The sequenced section comprises the GGGPGG stretch, which represents the binding site for the pyrophosphate moiety of FAD. 5. After reduction of Eox to the two-electron-reduced state, the enzyme is specifically inhibited by the nitrosourea drug 1,3-bis(2-chloroethyl)-1-nitrosourea (Carmustine), presumably by carbamoylation at one of the nascent active-site thiols. 6. Polyclonal rabbit antibodies raised against T. cruzi lipoamide dehydrogenase and trypanothione reductase are specific for the respective enzyme, as shown by immunoblots of the pure proteins and of cell extracts.  相似文献   

10.
Trypanosoma cruzi tryparedoxin 1 (TcTXN1) is an oxidoreductase belonging to the thioredoxin superfamily, which mediates electron transfer between trypanothione and peroxiredoxins. In trypanosomes TXNs, and not thioredoxins, constitute the oxido-reductases of peroxiredoxins. Since, to date, there is no information concerning TcTXN1 substrates in T. cruzi, the aim of this work was to characterize TcTXN1 in two aspects: expression throughout T. cruzi life cycle and subcellular localization; and the study of TcTXN1 interacting-proteins. We demonstrate that TcTXN1 is a cytosolic and constitutively expressed protein in T. cruzi. In order to start to unravel the redox interactome of T. cruzi we designed an active site mutant protein lacking the resolving cysteine, and validated the complex formation in vitro between the mutated TcTXN1 and a known partner, the cytosolic peroxiredoxin. Through the expression of this mutant protein in parasites with an additional 6xHis-tag, heterodisulfide complexes were isolated by affinity chromatography and identified by 2-DE/MS. This allowed us to identify fifteen TcTXN1 proteins which are involved in two main processes: oxidative metabolism and protein synthesis and degradation. Our approach led us to the discovery of several putatively TcTXN1-interacting proteins thereby contributing to our understanding of the redox interactome of T. cruzi.  相似文献   

11.
Protozoa of the order Kinetoplastida differ from other organisms in their ability to conjugate glutathione (l-gamma-glutamyl-cysteinyl-glycine) and spermidine to form trypanothione [N(1),N(8)-bis(glutathionyl)spermidine], a metabolite involved in defense against chemical and oxidant stress and other biosynthetic functions. In Crithidia fasciculata, trypanothione is synthesized from GSH and spermidine via the intermediate glutathionylspermidine in two distinct ATP-dependent reactions catalyzed by glutathionylspermidine synthetase (GspS; EC ) and trypanothione synthetase (TryS; EC ), respectively. Here we have cloned a single copy gene (TcTryS) from Trypanosoma cruzi encoding a protein with 61% sequence identity with CfTryS but only 31% with CfGspS. Saccharomyces cerevisiae transformed with TcTryS were able to synthesize glutathionylspermidine and trypanothione, suggesting that this enzyme is able to catalyze both biosynthetic steps, unlike CfTryS. When cultures were supplemented with aminopropylcadaverine, yeast transformants contained glutathionylaminopropylcadaverine and homotrypanothione [N(1),N(9)-bis(glutathionyl)aminopropylcadaverine], metabolites that have been previously identified in T. cruzi, but not in C. fasciculata. Kinetic studies on recombinant TcTryS purified from Escherichia coli revealed that the enzyme displays high-substrate inhibition with glutathione (K(m) and K(i) of 0.57 and 1.2 mm, respectively, and k(cat) of 3.4 s(-1)), but obeys Michaelis-Menten kinetics with spermidine, aminopropylcadaverine, glutathionylspermidine, and MgATP as variable substrate. The recombinant enzyme possesses weak amidase activity and can hydrolyze trypanothione, homotrypanothione, or glutathionylspermidine to glutathione and the corresponding polyamine.  相似文献   

12.
Thiol-dependent hydroperoxide metabolism in parasites is reviewed in respect to potential therapeutic strategies. The hydroperoxide metabolism of Crithidia fasciculata has been characterized to comprise a cascade of three enzymes, trypanothione reductase, tryparedoxin, and tryparedoxin peroxidase, plus two supportive enzymes to synthesize the redox mediator trypanothione from glutathione and spermidine. The essentiality of the system in respect to parasite vitality and virulence has been verified by genetic approaches. The system appears to be common to all genera of the Kinetoplastida. The terminal peroxidase of the system belongs to the protein family of peroxiredoxins which is also represented in Entamoeba and a variety of metazoan parasites. Plasmodial hydroperoxide metabolism displays similarities to the mammalian system in comprising glutathione biosynthesis, glutathione reductase, and at least one glutathione peroxidase homolog having the active site selenocysteine replaced by cysteine. Nothing precise is known about the antioxidant defence systems of Giardia, Toxoplasma, and Trichomonas species. Also, the role of ovothiols and mycothiols reportedly present in several parasites remains to be established. Scrutinizing known enzymes of parasitic antioxidant defence for suitability as drug targets leaves only those of the trypanosomatid system as directly or indirectly validated. By generally accepted criteria of target selection and feasibility considerations tryparedoxin and tryparedoxin peroxidase can at present be rated as the most appealing target structures for the development of antiparasitic drugs.  相似文献   

13.
In trypanosomes, the thioredoxin-type protein TXN (tryparedoxin) is a multi-purpose oxidoreductase that is involved in the detoxification of hydroperoxides, the synthesis of DNA precursors and the replication of the kinetoplastid DNA. African trypanosomes possess two isoforms that are localized in the cytosol and in the mitochondrion of the parasites respectively. Here we report on the biological significance of the cTXN (cytosolic TXN) of Trypanosoma brucei for hydroperoxide detoxification. Depending on the growth phase, the concentration of the protein is 3-7-fold higher in the parasite form infecting mammals (50-100 microM) than in the form hosted by the tsetse fly (7-34 microM). Depletion of the mRNA in bloodstream trypanosomes by RNA interference revealed the indispensability of the protein. Proliferation and viability of cultured trypanosomes were impaired when TXN was lowered to 1 muM for more than 48 h. Although the levels of glutathione, glutathionylspermidine and trypanothione were increased 2-3.5-fold, the sensitivity against exogenously generated H2O2 was significantly enhanced. The results prove the essential role of the cTXN and its pivotal function in the parasite defence against oxidative stress.  相似文献   

14.
The glyoxalase system, comprizing glyoxalase I and glyoxalase II, is a ubiquitous pathway that detoxifies highly reactive aldehydes, such as methylglyoxal, using glutathione as a cofactor. Recent studies of Leishmania major glyoxalase I and Trypanosoma brucei glyoxalase II have revealed a unique dependence upon the trypanosomatid thiol trypanothione as a cofactor. This difference suggests that the trypanothione-dependent glyoxalase system may be an attractive target for rational drug design against the trypanosomatid parasites. Here we describe the cloning, expression and kinetic characterization of glyoxalase I from Trypanosoma cruzi. Like L. major glyoxalase I, recombinant T. cruzi glyoxalase I showed a preference for nickel as its metal cofactor. In contrast with the L. major enzyme, T. cruzi glyoxalase I was far less fast-idious in its choice of metal cofactor efficiently utilizing cobalt, manganese and zinc. T. cruzi glyoxalase I isomerized hemithio-acetal adducts of trypanothione more than 2400 times more efficiently than glutathione adducts, with the methylglyoxal adducts 2-3-fold better substrates than the equivalent phenylglyoxal adducts. However, glutathionylspermidine hemithioacetal adducts were most efficiently isomerized and the glutathionylspermidine-based inhibitor S-4-bromobenzylglutathionylspermidine was found to be a potent linear competitive inhibitor of the T. cruzi enzyme with a K(i) of 5.4+/-0.6 microM. Prediction algorithms, combined with subcellular fractionation, suggest that T. cruzi glyoxalase I localizes not only to the cytosol but also the mitochondria of T. cruzi epimastigotes. The contrasting substrate specificities of human and trypanosomatid glyoxalase enzymes, confirmed in the present study, suggest that the glyoxalase system may be an attractive target for anti-trypanosomal chemotherapy.  相似文献   

15.
In the Trypanosomatidae, trypanothione has subsumed many of the roles of glutathione in defense against chemical and oxidant stress. Crithidia fasciculata lacks glutathione S-transferase, but contains an unusual trypanothione S-transferase activity that is associated with eukaryotic translation elongation factor 1B (eEF1B). Here we describe the cloning, expression, and reconstitution of the purified alpha, beta, and gamma subunits of eEF1B from Leishmania major. Individual subunits lacked trypanothione S-transferase activity. Only eEF1B, formed by reconstitution or co-expression of the three subunits, was able to conjugate a variety of electrophilic substrates to trypanothione or glutathionylspermidine, but not glutathione. In contrast to the C. fasciculata eEF1B, the L. major enzyme also displayed peroxidase activity against a variety of organic hydroperoxides. The enzyme showed no activity with hydrogen peroxide and greatest activity with linoleic acid hydroperoxide (1 unit mg(-1)). Kinetic studies suggest a ternary complex mechanism, with Km values of 140 mum for trypanothione and 7.4 mm for cumene hydroperoxide and kcat=25 s(-1). Immunofluorescence studies indicate that the enzyme may be localized to the surface of the endoplasmic reticulum. These results suggest that, in addition to its role in protein synthesis, the Leishmania eEF1B may help protect the parasite from lipid peroxidation.  相似文献   

16.
Trypanosomatids differ from other cells in their ability to conjugate glutathione with the polyamine spermidine to form the antioxidant metabolite trypanothione (N1,N8-bis(glutathionyl)spermidine). In Trypanosoma cruzi, trypanothione is synthesized by an unusual trypanothione synthetase/amidase (TcTryS) that forms both glutathionylspermidine and trypanothione. Because T. cruzi is unable to synthesize putrescine and is dependent on uptake of exogenous polyamines by high affinity transporters, synthesis of trypanothione may be circumstantially limited by lack of spermidine. Here, we show that the parasite is able to circumvent the potential shortage of spermidine by conjugating glutathione with other physiological polyamine substrates from exogenous sources (spermine, N8-acetylspermidine, and N-acetylspermine). Novel thiols were purified from epimastigotes, and structures were determined by matrix-assisted laser desorption ionization time-of-flight analysis to be N1,N12-bis(glutathionyl)spermine, N1-glutathionyl-N8-acetylspermidine, and N1-glutathionyl-N12-acetylspermine, respectively. Structures were confirmed by enzymatic synthesis with recombinant TcTryS, which catalyzes formation of these compounds with kinetic parameters equivalent to or better than those of spermidine. Despite containing similar amounts of spermine and spermidine, the epimastigotes, trypomastigotes, and amastigotes of T. cruzi preferentially synthesized trypanothione. Bis(glutathionyl)spermine disulfide is a physiological substrate of recombinant trypanothione reductase, comparable to trypanothione and homotrypanothione disulfides. The broad substrate specificity of TcTryS could be exploited in the design of polyamine-based inhibitors of trypanothione metabolism.  相似文献   

17.
Macrophage activation is one of the hallmarks observed in trypanosomiasis, and the parasites must cope with the resulting oxidative burden, which includes the production of peroxynitrite, an unusual peroxo-acid that acts as a strong oxidant and trypanocidal molecule. Cytosolic tryparedoxin peroxidase (cTXNPx) has been recently identified as essential for oxidative defense in trypanosomatids. This peroxiredoxin decomposes peroxides using tryparedoxin (TXN) as electron donor, which in turn is reduced by dihydrotrypanothione. In this work, we studied the kinetics of the reaction of peroxynitrite with the different thiol-containing components of the cytosolic tryparedoxin peroxidase system in T. brucei (Tb) and T. cruzi (Tc), namely trypanothione, TXN, and cTXNPx. We found that whereas peroxynitrite reacted with dihydrotrypanothione and TbTXN at moderate rates (7200 and 3500 m(-1) s(-1), respectively, at pH 7.4 and 37 degrees C) and within the range of typical thiols, the second order rate constants for the reaction of peroxynitrite with reduced TbcTXNPx and TccTXNPx were 9 x 10(5) and 7.2 x 10(5) m(-1) s(-1) at pH 7.4 and 37 degrees C, respectively. This reactivity was dependent on a highly reactive cTXNPx thiol group identified as cysteine 52. Competition experiments showed that TbcTXNPx inhibited other fast peroxynitrite-mediated processes, such as the oxidation of Mn(3+)-porphyrins. Moreover, steady-state kinetic studies indicate that peroxynitrite-dependent TbcTXNPx and TccTXNPx oxidation is readily reverted by TXN, supporting that these peroxiredoxins would be not only a preferential target for peroxynitrite reactivity but also be able to act catalytically in peroxynitrite decomposition in vivo.  相似文献   

18.
Glutathionylspermidine is an intermediate formed in the biosynthesis of trypanothione, an essential metabolite in defence against chemical and oxidative stress in the Kinetoplastida. The kinetic mechanism for glutathionylspermidine synthetase (EC 6.3.1.8) from Crithidia fasciculata (CfGspS) obeys a rapid equilibrium random ter-ter model with kinetic constants K(GSH) = 609 microM, K(Spd) = 157 microM and K(ATP) = 215 microM. Phosphonate and phosphinate analogues of glutathionylspermidine, previously shown to be potent inhibitors of GspS from Escherichia coli, are equally potent against CfGspS. The tetrahedral phosphonate acts as a simple ground state analogue of glutathione (GSH) (K(i) approximately 156 microM), whereas the phosphinate behaves as a stable mimic of the postulated unstable tetrahedral intermediate. Kinetic studies showed that the phosphinate behaves as a slow-binding bisubstrate inhibitor [competitive with respect to GSH and spermidine (Spd)] with rate constants k(3) (on rate) = 6.98 x 10(4) M(-1) x s(-1) and k(4) (off rate) = 1.3 x 10(-3) s(-1), providing a dissociation constant K(i) = 18.6 nM. The phosphinate analogue also inhibited recombinant trypanothione synthetase (EC 6.3.1.9) from C. fasciculata, Leishmania major, Trypanosoma cruzi and Trypanosoma brucei with K(i)(app) values 20-40-fold greater than that of CfGspS. This phosphinate analogue remains the most potent enzyme inhibitor identified to date, and represents a good starting point for drug discovery for trypanosomiasis and leishmaniasis.  相似文献   

19.
Trypanothione reductase of Trypanosoma cruzi is a key enzyme in the antioxidant metabolism of the parasite. Here we report on the enzymic and pharmacological properties of trypanothione reductase using glutathionylspermidine disulfide as a substrate. 1. Both pH optimum (7.5) and the ionic strength optimum (at 30 mM) are unusually narrow for this enzyme. 40 mM Hepes, 1 mM EDTA, pH 7.5 was chosen as a standard assay buffer because in this system the kcat/Km ratio had the highest values for both natural substrates, glutathionylspermidine disulfide (2.65 x 10(6) M-1 s-1) and trypanothione disulfide (4.63 x 10(6) M-1 s-1). 2. Using the standardized assay, trypanothione reductase and the phylogenetically related host enzyme, human glutathione reductase, were studied as targets of inhibitors. Both enzymes, in their NADPH-reduced forms, were irreversibly modified by the cytostatic agent, 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). Nifurtimox, the drug used in the treatment of Chagas' disease, is a stronger inhibitor of glutathione reductase (Ki = 40 microM) than of trypanothione reductase (IC50 = 200 microM). 3. Of the newly synthesized trypanocidal compounds [Henderson, G. B., Ulrich, P., Fairlamb, A. H., Rosenberg, I., Pereira, M., Sela, M. & Cerami, A. (1988) Proc. Natl Acad. Sci., 85, 5374-5378] a nitrofuran derivative, 2-(5-nitro-2-furanylmethylidene)-N,N'-[1,4-piperazinediylbis (1,3-propanediyl)]bishydrazinecarboximidamide tetrahydrobromide, was found to be a better inhibitor for trypanothione reductase (Ki = 0.5 microM) than for glutathione reductase (IC50 = 10 microM). A naphthoquinone derivative, 2,3-bis[3-(2-amidinohydrazono)-butyl]-1,4-naphthoquinone dihydrochloride, turned out to be both an inhibitor (IC50 = 1 microM) and an NADPH-oxidation-inducing substrate (Km = 14 microM). This effect was not observed with human glutathione reductase. Such compounds which lead to oxidative stress by more than one mechanism in the parasite are promising starting points for drug design based on the three-dimensional structures of glutathione and trypanothione reductases.  相似文献   

20.
The aim of this work was to investigate the response of the antioxidant defense system to two oxidative stressors, hydrogen peroxide and tert-butyl hydroperoxide, in HepG2 cells in culture. The parameters evaluated included enzyme activity and gene expression of superoxide dismutase, catalase, glutathione peroxidase, and activity of glutathione reductase. Besides, markers of the cell damage and oxidative stress evoked by the stressors such as cell viability, intracellular reactive oxygen species generation, malondialdehyde levels, and reduced glutathione concentration were evaluated. Both stressors, hydrogen peroxide and tert-butyl hydroperoxide, enhanced cell damage and reactive oxygen species generation at doses above 50 microM. The concentration of reduced glutathione decreased, and levels of malondialdehyde and activity of the antioxidant enzymes consistently increased only when HepG2 cells were treated with tert-butyl hydroperoxide but not when hydrogen peroxide was used. A slight increase in the gene expression of Cu/Zn superoxide dismutase and catalase with 500 microM tert-butyl hydroperoxide and of catalase with 200 microM hydrogen peroxide was observed. The response of the components of the antioxidant defense system evaluated in this study indicates that tert-butyl hydroperoxide evokes a consistent cellular stress in HepG2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号