首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There have been constant changes in the biology and behavior of the vector and parasite involved in the transmission of malaria. There is limited interest in developing new technologies and procedures for controlling the underlying factors of this threat, which poses an enormous challenge to health systems. To understand the various vector species and their interrelations is of prime importance in understanding the transmission mechanisms of malaria in order to react efficiently. To attain this objective, we have used an ontological approach to produce a database that we consider to be our own contribution in helping to control malarial vectors if eradication has been unsuccessful in the previous control campaign.  相似文献   

2.
Plasmodium development within its mosquito vector is an essential step in malaria transmission, as illustrated in world regions where malaria was successfully eradicated via vector control. The innate immune system of most mosquitoes is able to completely clear a Plasmodium infection, preventing parasite transmission to humans. Understanding the biological basis of this phenomenon is expected to inspire new strategies to curb malaria incidence in countries where vector control via insecticides is unpractical, or inefficient because insecticide resistance genes have spread across mosquito populations. Several aspects of mosquito biology that condition the success of the parasite in colonizing its vector begin to be understood at the molecular level, and a wealth of recently published data highlights the multifaceted nature of the mosquito response against parasite invasion. In this brief review, we attempt to provide an integrated view of the challenges faced by the parasite to successfully invade its mosquito host, and discuss the possible intervention strategies that could exploit this knowledge for the fight against human malaria.  相似文献   

3.
Malaria is an important global public health challenge, and is transmitted by anopheline mosquitoes during blood feeding. Mosquito vector control is one of the most effective methods to control malaria, and population replacement with genetically engineered mosquitoes to block its transmission is expected to become a new vector control strategy. The salivary glands are an effective target tissue for the expression of molecules that kill or inactivate malaria parasites. Moreover, salivary gland cells express a large number of molecules that facilitate blood feeding and parasite transmission to hosts. In the present study, we adapted a functional deficiency system in specific tissues by inducing cell death using the mouse Bcl-2-associated X protein (Bax) to the Asian malaria vector mosquito, Anopheles stephensi. We applied this technique to salivary gland cells, and produced a transgenic strain containing extremely low amounts of saliva. Although probing times for feeding on mice were longer in transgenic mosquitoes than in wild-type mosquitoes, transgenic mosquitoes still successfully ingested blood. Transgenic mosquitoes also exhibited a significant reduction in oocyst formation in the midgut in a rodent malaria model. These results indicate that mosquito saliva plays an important role in malaria infection in the midgut of anopheline mosquitoes. The dysfunction in the salivary glands enabled the inhibition of malaria transmission from hosts to mosquito midguts. Therefore, salivary components have potential in the development of new drugs or genetically engineered mosquitoes for malaria control.  相似文献   

4.
Malaria creates serious health and economic problems which call for integrated management strategies to disrupt interactions among mosquitoes, the parasite and humans. In order to reduce the intensity of malaria transmission, malaria vector control may be implemented to protect individuals against infective mosquito bites. As a sustainable larval control method, the use of larvivorous fish is promoted in some circumstances. To evaluate the potential impacts of this biological control measure on malaria transmission, we propose and investigate a mathematical model describing the linked dynamics between the host–vector interaction and the predator–prey interaction. The model, which consists of five ordinary differential equations, is rigorously analysed via theories and methods of dynamical systems. We derive four biologically plausible and insightful quantities (reproduction numbers) that completely determine the community composition. Our results suggest that the introduction of larvivorous fish can, in principle, have important consequences for malaria dynamics, but also indicate that this would require strong predators on larval mosquitoes. Integrated strategies of malaria control are analysed to demonstrate the biological application of our developed theory.  相似文献   

5.
A simple, visual representation of spatial aspects of malaria transmission in successive snap-shots in time, is presented. The spatial components of the simulation involve (i) the identification of mosquito vector breeding sites of defined shape and area, (ii) the identification of a zone of malaria transmission determined by the shapes and areas of the vector breeding sites and the distance from these sites that the mosquitoes disperse, (iii) a human population dispersed in relation to the malaria transmission zone, (iv) perimeters around each individual human within which his or her infection can be transmitted by the local vector mosquitoes. The intensity of transmission within a malaria transmission zone is given by a number which is the number of new cases of malaria that each existing case will distribute through the human population within the duration of an infection. The simulation has been used here to examine the effects of vaccination against malaria transmission. Different levels of vaccine coverage are represented under endemic and epidemic malaria. The consequences of full or partial coverage of a zone of malaria transmission are also examined. The results are numerically compatible with the predictions of previous simple mathematical simulations of malaria transmission and interventions. The present simulation allows the nature of malaria transmission and the effects of interventions to be communicated easily and directly to an audience. It could have practical value in discussions of malaria control strategies with health planners.  相似文献   

6.
Where malaria is transmitted by zoophilic vectors, two types of malaria control strategies have been proposed based on animals: using livestock to divert vector biting from people (zooprophylaxis) or as baits to attract vectors to insecticide sources (insecticide-treated livestock). Opposing findings have been obtained on malaria zooprophylaxis, and despite the success of an insecticide-treated livestock trial in Pakistan, where malaria vectors are highly zoophilic, its effectiveness is yet to be formally tested in Africa where vectors are more anthropophilic. This study aims to clarify the different effects of livestock on malaria and to understand under what circumstances livestock-based interventions could play a role in malaria control programmes. This was explored by developing a mathematical model and combining it with data from Pakistan and Ethiopia. Consistent with previous work, a zooprophylactic effect of untreated livestock is predicted in two situations: if vector population density does not increase with livestock introduction, or if livestock numbers and availability to vectors are sufficiently high such that the increase in vector density is counteracted by the diversion of bites from humans to animals. Although, as expected, insecticide-treatment of livestock is predicted to be more beneficial in settings with highly zoophilic vectors, like South Asia, we find that the intervention could also considerably decrease malaria transmission in regions with more anthropophilic vectors, like Anopheles arabiensis in Africa, under specific circumstances: high treatment coverage of the livestock population, using a product with stronger or longer lasting insecticidal effect than in the Pakistan trial, and with small (ideally null) repellency effect, or if increasing the attractiveness of treated livestock to malaria vectors. The results suggest these are the most appropriate conditions for field testing insecticide-treated livestock in an Africa region with moderately zoophilic vectors, where this intervention could contribute to the integrated control of malaria and livestock diseases.  相似文献   

7.
Rapidly emerging insecticide resistance is creating an urgent need for new active ingredients to control the adult mosquitoes that vector malaria. Biopesticides based on the spores of entomopathogenic fungi have shown considerable promise by causing very substantial mortality within 7-14 days of exposure. This mortality will generate excellent malaria control if there is a high likelihood that mosquitoes contact fungi early in their adult lives. However, where contact rates are lower, as might result from poor pesticide coverage, some mosquitoes will contact fungi one or more feeding cycles after they acquire malaria, and so risk transmitting malaria before the fungus kills them. Critics have argued that 'slow acting' fungal biopesticides are, therefore, incapable of delivering malaria control in real-world contexts. Here, utilizing standard WHO laboratory protocols, we demonstrate effective action of a biopesticide much faster than previously reported. Specifically, we show that transient exposure to clay tiles sprayed with a candidate biopesticide comprising spores of a natural isolate of Beauveria bassiana, could reduce malaria transmission potential to zero within a feeding cycle. The effect resulted from a combination of high mortality and rapid fungal-induced reduction in feeding and flight capacity. Additionally, multiple insecticide-resistant lines from three key African malaria vector species were completely susceptible to fungus. Thus, fungal biopesticides can block transmission on a par with chemical insecticides, and can achieve this where chemical insecticides have little impact. These results support broadening the current vector control paradigm beyond fast-acting chemical toxins.  相似文献   

8.
BackgroundThe prevalence of Wuchereria bancrofti, which causes lymphatic filariasis (LF) in The Gambia was among the highest in Africa in the 1950s. However, surveys conducted in 1975 and 1976 revealed a dramatic decline in LF endemicity in the absence of mass drug administration (MDA). The decline in prevalence was partly attributed to a significant reduction in mosquito density through the widespread use of insecticidal nets. Based on findings elsewhere that vector control alone can interrupt LF, we asked the question in 2013 whether the rapid scale up in the use of insecticidal nets in The Gambia had interrupted LF transmission.ConclusionsWe conclude that LF transmission may have been interrupted in The Gambia through the extensive use of insecticidal nets for malaria control for decades. The growing evidence for the impact of malaria vector control activities on parasite transmission has been endorsed by WHO through a position statement in 2011 on integrated vector management to control malaria and LF.  相似文献   

9.
Malaria is the most significant vector‐borne disease and mostly affects people living in the lesser developed countries of tropical and sub‐tropical regions. Climate changes, rapid global transportation, immigration and invasion of exotic mosquito vectors bring the threat of introduction of the disease to developed nations. Sustainability of malaria control requires the discovery of therapeutic and prophylactic drugs, development of effective vaccines and control of vector mosquitoes. Drug development and vaccine research have been pursued aggressively over the past 20 years, and progress in novel approaches to vector control is now evident. Our long‐term objective is the production and utilization of strains of vector mosquitoes that are genetically refractory to the transmission of malaria parasites. These insects will be used to test the hypothesis that an increase in the frequency of a gene or allele that confers decreased vector competence to a population of mosquitoes will result in a reduction in the incidence and prevalence of malaria. Completed studies make it possible to develop strains of Anopheles mosquitoes expressing specific effector molecules that interfere completely with the transmission of the most lethal human malaria parasite, Plasmodium falciparum. Data are reviewed here that support the use of single‐chain monoclonal antibodies (scFv) that disable parasites in the midgut and hemolymph of transgenic mosquitoes.  相似文献   

10.

Background

Over the past 20 years, numerous studies have investigated the ecology and behaviour of malaria vectors and Plasmodium falciparum malaria transmission on the coast of Kenya. Substantial progress has been made to control vector populations and reduce high malaria prevalence and severe disease. The goal of this paper was to examine trends over the past 20 years in Anopheles species composition, density, blood-feeding behaviour, and P. falciparum sporozoite transmission along the coast of Kenya.

Methods

Using data collected from 1990 to 2010, vector density, species composition, blood-feeding patterns, and malaria transmission intensity was examined along the Kenyan coast. Mosquitoes were identified to species, based on morphological characteristics and DNA extracted from Anopheles gambiae for amplification. Using negative binomial generalized estimating equations, mosquito abundance over the period were modelled while adjusting for season. A multiple logistic regression model was used to analyse the sporozoite rates.

Results

Results show that in some areas along the Kenyan coast, Anopheles arabiensis and Anopheles merus have replaced An. gambiae sensu stricto (s.s.) and Anopheles funestus as the major mosquito species. Further, there has been a shift from human to animal feeding for both An. gambiae sensu lato (s.l.) (99% to 16%) and An. funestus (100% to 3%), and P. falciparum sporozoite rates have significantly declined over the last 20 years, with the lowest sporozoite rates being observed in 2007 (0.19%) and 2008 (0.34%). There has been, on average, a significant reduction in the abundance of An. gambiae s.l. over the years (IRR?=?0.94, 95% CI 0.90–0.98), with the density standing at low levels of an average 0.006 mosquitoes/house in the year 2010.

Conclusion

Reductions in the densities of the major malaria vectors and a shift from human to animal feeding have contributed to the decreased burden of malaria along the Kenyan coast. Vector species composition remains heterogeneous but in many areas An. arabiensis has replaced An. gambiae as the major malaria vector. This has important implications for malaria epidemiology and control given that this vector predominately rests and feeds on humans outdoors. Strategies for vector control need to continue focusing on tools for protecting residents inside houses but additionally employ outdoor control tools because these are essential for further reducing the levels of malaria transmission.  相似文献   

11.
Malaria control strategies have to be established locally according to epidemiological situations, including socio-economic factors and to resources available for their implementation. It has been stressed that all antimalaria activities be integrated in PHC.Stratification of malaria is the introduction to malaria control and serves as a basis for the planning which should be established by a body of experts on malaria at the central level (epidemiologist, entomologist, specialists in social sciences, sanitary engineer) who later will guide, supervise and evaluate the activities.Case treatments, sometimes presumptive, are the most basic activities of control. They are cheap and they can be carried out by PHC which insures the coverage of the entire population at risk. Drug resistance of Plasmodium falciparum is a growing and threatening problem. In a number of areas cheap and harmless chloroquine has to be replaced by drugs or combinations of drugs which can only be delivered by experienced personnel. Chemoprophylaxis is recommended for pregnant women but questioned for infants and young children because the risk of side-effects and resistance selection and the difficulties of maintaining a good coverage for a long time.Vector control by house-spraying remains the best means of reducing transmission and is still the basis of malaria control in countries in Asia and America where the disease has been seriously reduced. In some areas resistance to DDT lead to the use of more expensive organophosphates and/or carbamates. Resistance to these compounds has also been reported in several countries. House-spraying is probably one of the malaria activities which is the most difficult to integrate in PHC. Some attempts have been successful.Integrated vector control with community participation is not a simple task nor a panacea. To be efficient it needs to be established on a strong scientific basis. Tools and technics have to be selected for each area according to the vector ecology and socio-cultural habits of the population. Maintaining community interest in a long lasting activity is a problem which has never been really explored. Self-protection against vectors (mainly by using impregnated mosquito nets) has shown promise and is currently being evaluated at an operational scale with community involvement. There is great hope for a vaccine but more advances are necessary before its place in malaria control can be established.Intersectorial approach is the best way to counteract undesirable effects of development schemes like irrigation. There is a need for training in the scope of interdisciplinary actions for high level personnel. PHC agents need special training whatever they are, specialized or multipurpose. Special attention must be paid to malaria in health education for communities at risk. Some researches dealing with the most immediate problems are suggested.  相似文献   

12.
Antivector measures in malaria control should aim for a cost-effective reduction of the transmission potential ideally to below the critical level for sustained transmission. The available measures include those that decrease vector abundance, vector-human contact and vector survival rate or that increase the length of the sporogonic cycle. These have widely different impact on malaria transmission, as shown by epidemiological modelling. Direct modification of vector receptivity to Plasmodium is also hypothetically attainable by the use of transmission-blocking vaccines or by genetic manipulation and replacement of the vector population. Vector analysis constitutes the essential prerequisite for basic malaria epidemiology as well as for the development, planning and evaluation of antivector measures. The rationale, the problems and the perspectives of vector analysis are reviewed here by Mario Coluzzi, on the basis of his experience with Afrotropical and Mediterranean malaria vectors.  相似文献   

13.

Background

Plasmodium vivax is a widely distributed, neglected parasite that can cause malaria and death in tropical areas. It is associated with an estimated 80–300 million cases of malaria worldwide. Brazilian tropical rain forests encompass host- and vector-rich communities, in which two hypothetical mechanisms could play a role in the dynamics of malaria transmission. The first mechanism is the dilution effect caused by presence of wild warm-blooded animals, which can act as dead-end hosts to Plasmodium parasites. The second is diffuse mosquito vector competition, in which vector and non-vector mosquito species compete for blood feeding upon a defensive host. Considering that the World Health Organization Malaria Eradication Research Agenda calls for novel strategies to eliminate malaria transmission locally, we used mathematical modeling to assess those two mechanisms in a pristine tropical rain forest, where the primary vector is present but malaria is absent.

Methodology/Principal Findings

The Ross–Macdonald model and a biodiversity-oriented model were parameterized using newly collected data and data from the literature. The basic reproduction number () estimated employing Ross–Macdonald model indicated that malaria cases occur in the study location. However, no malaria cases have been reported since 1980. In contrast, the biodiversity-oriented model corroborated the absence of malaria transmission. In addition, the diffuse competition mechanism was negatively correlated with the risk of malaria transmission, which suggests a protective effect provided by the forest ecosystem. There is a non-linear, unimodal correlation between the mechanism of dead-end transmission of parasites and the risk of malaria transmission, suggesting a protective effect only under certain circumstances (e.g., a high abundance of wild warm-blooded animals).

Conclusions/Significance

To achieve biological conservation and to eliminate Plasmodium parasites in human populations, the World Health Organization Malaria Eradication Research Agenda should take biodiversity issues into consideration.  相似文献   

14.
Given the crucial role of climate in malaria transmission, many mechanistic models of malaria represent vector biology and the parasite lifecycle as functions of climate variables in order to accurately capture malaria transmission dynamics. Lower dimension mechanistic models that utilize implicit vector dynamics have relied on indirect climate modulation of transmission processes, which compromises investigation of the ecological role played by climate in malaria transmission. In this study, we develop an implicit process-based malaria model with direct climate-mediated modulation of transmission pressure borne through the Entomological Inoculation Rate (EIR). The EIR, a measure of the number of infectious bites per person per unit time, includes the effects of vector dynamics, resulting from mosquito development, survivorship, feeding activity and parasite development, all of which are moderated by climate. We combine this EIR-model framework, which is driven by rainfall and temperature, with Bayesian inference methods, and evaluate the model’s ability to simulate local transmission across 42 regions in Rwanda over four years. Our findings indicate that the biologically-motivated, EIR-model framework is capable of accurately simulating seasonal malaria dynamics and capturing of some of the inter-annual variation in malaria incidence. However, the model unsurprisingly failed to reproduce large declines in malaria transmission during 2018 and 2019 due to elevated anti-malaria measures, which were not accounted for in the model structure. The climate-driven transmission model also captured regional variation in malaria incidence across Rwanda’s diverse climate, while identifying key entomological and epidemiological parameters important to seasonal malaria dynamics. In general, this new model construct advances the capabilities of implicitly-forced lower dimension dynamical malaria models by leveraging climate drivers of malaria ecology and transmission.  相似文献   

15.
Malaria remains a major health burden especially for the developing countries. Despite concerted efforts at using the current control tools, such as bed nets, anti malarial drugs and vector control measures, the disease is accountable for close to a million deaths annually. Vaccines have been proposed as a necessary addition to the armamentarium that could work towards elimination and eventual eradication of malaria in view of their historical significance in combating infectious diseases. However, because malaria vaccines would work differently depending on the targeted parasite stage, this review addresses the potential impact various malaria vaccine types could have on transmission. Further, because of the wide variation in the epidemiology of malaria across the endemic regions, this paper proposes that the ideal approach to malaria control ought to be tailor-made depending on the specific context. Finally, it suggests that although it is highly desirable to anticipate and aim for malaria elimination and eventual eradication, many affected regions should prioritize reduction of mortality and morbidity before aspiring for elimination.  相似文献   

16.
Indoor residual spraying with DDT was the principle method by which malaria transmission was eradicated or greatly reduced in many countries between the late 1940s and 1970s. Since then, decreasing use of DDT has been associated with a resurgence of malaria in India, Sri Lanka, former Soviet Central Asia, Zanzibar, Venezuela and several other Latin American countries. In India and Zanzibar, DDT resistance in vectors, as well as a decline in spray coverage, are probable causes of reduced effectiveness of DDT in recent decades. In southern Europe, eradication of malaria transmission was achieved by DDT spraying in the 1940s and 50s and eradication has been sustained by adequate treatment of imported human malaria cases. In the highlands of Madagascar and South Africa, recent reversion to DDT spraying has been successful in stemming resurgences of malaria. Continued use of DDT for vector control, but not for agriculture, is approved by the Stockholm Convention on Persistent Organic Pollutants. DDE residues in breast milk have been associated with DDT anti-malaria spraying in South Africa, but it is not known whether this is harmful. A claimed association of DDE residues with breast cancer have not been substantiated. There is a recent report of association of DDE residues with probability of premature birth; the possible relevance of this to anti-malarial use of DDT should be investigated. In Colombia, testing of the DDT stockpile for suspensibility, DDT resistance in Anopheles darlingi and investigation of the present affordability of widespread spraying with DDT, compared with alternative chemicals, are recommended.  相似文献   

17.
Yakob L 《Biology letters》2011,7(6):947-949
A cryptic subgroup of Anopheles gambiae sensu stricto mosquitoes was recently discovered in West Africa. This 'GOUNDRY' subgroup has increased susceptibility to Plasmodium falciparum, the most deadly form of malaria. Unusual for this major malaria vector, GOUNDRY mosquitoes also seem to bite exclusively outdoors. A mathematical model is developed to assess the epidemiological implications of current vector control tools, bednets and indoor residual spray, preferentially suppressing the more typical indoor biting mosquitoes. It is demonstrated that even if the GOUNDRY mosquitoes have a decreased preference for human blood, vector controls which select for increased GOUNDRY abundance relative to their indoor biting counterparts risks intensifying malaria transmission. Given the widely observed phenomenon of outdoor biting by major malaria vectors, this behaviour should not be ignored in future modelling efforts and warrants serious consideration in control programme strategy.  相似文献   

18.
In developing strategies to control malaria vectors, there is increased interest in biological methods that do not cause instant vector mortality, but have sublethal and lethal effects at different ages and stages in the mosquito life cycle. These techniques, particularly if integrated with other vector control interventions, may produce substantial reductions in malaria transmission due to the total effect of alterations to multiple life history parameters at relevant points in the life-cycle and transmission-cycle of the vector. To quantify this effect, an analytically tractable gonotrophic cycle model of mosquito-malaria interactions is developed that unites existing continuous and discrete feeding cycle approaches. As a case study, the combined use of fungal biopesticides and insecticide treated bednets (ITNs) is considered. Low values of the equilibrium EIR and human prevalence were obtained when fungal biopesticides and ITNs were combined, even for scenarios where each intervention acting alone had relatively little impact. The effect of the combined interventions on the equilibrium EIR was at least as strong as the multiplicative effect of both interventions. For scenarios representing difficult conditions for malaria control, due to high transmission intensity and widespread insecticide resistance, the effect of the combined interventions on the equilibrium EIR was greater than the multiplicative effect, as a result of synergistic interactions between the interventions. Fungal biopesticide application was found to be most effective when ITN coverage was high, producing significant reductions in equilibrium prevalence for low levels of biopesticide coverage. By incorporating biological mechanisms relevant to vectorial capacity, continuous-time vector population models can increase their applicability to integrated vector management.  相似文献   

19.

Malaria remains a major health burden especially for the developing countries. Despite concerted efforts at using the current control tools, such as bed nets, anti malarial drugs and vector control measures, the disease is accountable for close to a million deaths annually. Vaccines have been proposed as a necessary addition to the armamentarium that could work towards elimination and eventual eradication of malaria in view of their historical significance in combating infectious diseases. However, because malaria vaccines would work differently depending on the targeted parasite stage, this review addresses the potential impact various malaria vaccine types could have on transmission. Further, because of the wide variation in the epidemiology of malaria across the endemic regions, this paper proposes that the ideal approach to malaria control ought to be tailor-made depending on the specific context. Finally, it suggests that although it is highly desirable to anticipate and aim for malaria elimination and eventual eradication, many affected regions should prioritize reduction of mortality and morbidity before aspiring for elimination.

  相似文献   

20.
Drug resistance is a major problem affecting progress on malaria control, while many current programmes are seeking to introduce impregnated bednets to reduce transmission and hence child mortality and morbidity. David Molyneux, Katherine Floyd, Guy Barnish and Eric Fèvre propose that more consideration should be given to the interaction between transmission control and the development of drug resistance, and that vector control as a means of reducing disease transmission is involved in reducing the rate of development, and the level, of resistance. Therefore, investment in vector control can have important benefits in reducing the future expenditure on drugs (as well as other costs, such as hospitalization, management of resistant cases and severe disease, drug development and household expenditure on malaria chemotherapy). Modelling the many parameters that impact on this complex relationship will better inform policy makers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号