首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
How stabilising non-native interactions influence protein folding energy landscapes is currently not well understood: such interactions could speed folding by reducing the conformational search to the native state, or could slow folding by increasing ruggedness. Here, we examine the influence of non-native interactions in the folding process of the bacterial immunity protein Im9, by exploiting our ability to manipulate the stability of the intermediate and rate-limiting transition state (TS) in the folding of this protein by minor alteration of its sequence or changes in solvent conditions. By analysing the properties of these species using Phi-value analysis, and exploration of the structural properties of the TS ensemble using molecular dynamics simulations, we demonstrate the importance of non-native interactions in immunity protein folding and demonstrate that the rate-limiting step involves partial reorganisation of these interactions as the TS ensemble is traversed. Moreover, we show that increasing the contribution to stability made by non-native interactions results in an increase in Phi-values of the TS ensemble without altering its structural properties or solvent-accessible surface area. The data suggest that the immunity proteins fold on multiple, but closely related, micropathways, resulting in a heterogeneous TS ensemble that responds subtly to mutation or changes in the solvent conditions. Thus, altering the relative strength of native and non-native interactions influences the search to the native state by restricting the pathways through the folding energy landscape.  相似文献   

2.
The bacterial immunity proteins Im7 and Im9 fold with mechanisms of different kinetic complexity. Whilst Im9 folds in a two-state transition at pH 7.0 and 10 degrees C, Im7 populates an on-pathway intermediate under these conditions. In order to assess the role of sequence versus topology in the folding of these proteins, and to analyse the effect of populating an intermediate on the landscape for folding, we have determined the conformational properties of the rate-limiting transition state for Im9 folding/unfolding using Phi(F)-value analysis and have compared the results with similar data obtained previously for Im7. The data show that the rate-limiting transition states for Im9 and Im7 folding/unfolding are similar: both are compact (beta(T)=0.94 and 0.89, respectively) and contain three of the four native helices docked around a specific hydrophobic core. Significant differences are observed, however, in the magnitude of the Phi(F)-values obtained for the two proteins. Of the 20 residues studied in both proteins, ten have Phi(F)-values in Im7 that exceed those in Im9 by more than 0.2, and of these five differ by more than 0.4. The data suggest that the population of an intermediate in Im7 results in folding via a transition state ensemble that is conformationally restricted relative to that of Im9. The data are consistent with the view that topology is an important determinant of folding. Importantly, however, they also demonstrate that while the folding transition state may be conserved in homologous proteins that fold with two and three-state kinetics, the population of an intermediate can have a significant effect on the breadth of the transition state ensemble.  相似文献   

3.
Garcia LG  Araújo AF 《Proteins》2006,62(1):46-63
Monte Carlo simulations of a hydrophobic protein model of 40 monomers in the cubic lattice are used to explore the effect of energetic frustration and interaction heterogeneity on its folding pathway. The folding pathway is described by the dependence of relevant conformational averages on an appropriate reaction coordinate, pfold, defined as the probability for a given conformation to reach the native structure before unfolding. We compare the energetically frustrated and heterogeneous hydrophobic potential, according to which individual monomers have a higher or lower tendency to form contacts unspecifically depending on their hydrophobicities, to an unfrustrated homogeneous Go-type potential with uniformly attractive native interactions and neutral non-native interactions (called Go1 in this study), and to an unfrustrated heterogeneous potential with neutral non-native interactions and native interactions having the same energy as the hydrophobic potential (called Go2 in this study). Folding kinetics are slowed down dramatically when energetic frustration increases, as expected and previously observed in a two-dimensional model. Contrary to our previous results in two dimensions, however, it appears that the folding pathway and transition state ensemble can be significantly dependent on the energy function used to stabilize the native structure. The sequence of events along the reaction coordinate, or the order along this coordinate in which different regions of the native conformation become structured, turns out to be similar for the hydrophobic and Go2 potentials, but with analogous events tending to occur at lower pfold values in the first case. In particular, the transition state obtained from the ensemble around pfold = 0.5 is more structured for the hydrophobic potential. For Go1, not only the transition state ensemble but the order of events itself is modified, suggesting that interaction heterogeneity, in addition to energetic frustration, can have significant effects on the folding mechanism, most likely by modifying the probability of different contacts in the unfolded state, the starting point for the folding reaction. Although based on a simple model, these results provide interesting insight into how sequence-dependent switching between folding pathways might occur in real proteins.  相似文献   

4.
A multi-site, time-resolved fluorescence resonance energy transfer methodology has been used to study structural heterogeneity in a late folding intermediate ensemble, IL, of the small protein barstar. Four different intra-molecular distances have been measured within the structural components of IL. The IL ensemble is shown to consist of different sub-populations of molecules, in each of which one or more of the four distances are native-like and the remaining distances are unfolded-like. In very stable conditions that favor formation of IL, all four distances are native-like in most molecules. In less stable conditions, one or more distances are unfolded-like. As stability is decreased, the proportion of molecules with unfolded-like distances increases. Thus, the results show that protein folding intermediates are ensembles of different structural forms, and they demonstrate that conformational entropy increases as structures become less stable. These observations provide direct experimental evidence in support of a basic tenet of energy landscape theory for protein folding, that available conformational space, as represented by structural heterogeneity in IL, becomes restricted as the stability is increased. The results also vindicate an important prediction of energy landscape theory, that different folding pathways may become dominant under different folding conditions. In more stable folding conditions, uniformly native-like compactness is achieved during folding to IL, whereas in less stable conditions, uniformly native-like compactness is achieved only later during the folding of IL to N.  相似文献   

5.
Cobos ES  Radford SE 《Biochemistry》2006,45(7):2274-2282
Intermediates have now been identified in the folding of a number of small, single-domain proteins. Here we describe experiments to determine the effect of Na(2)SO(4) on the properties of the on-pathway intermediate formed early during the folding of the four-helical protein, Im7. This intermediate, studied previously in 0.4 M Na(2)SO(4), contains three of the four native helices and is fascinating in that several residues in helices I, II, and IV make non-native interactions that stabilize this state. Whether these contacts form as a consequence of the presence of Na(2)SO(4), however, remained unresolved. Using kinetic analysis of the effect of Na(2)SO(4) on the unfolding and refolding kinetics of Im7*, combined with detailed analysis of the resulting chevron plots, we show that decreasing the concentration of Na(2)SO(4) from 0.4 to 0 M destabilizes the intermediate and rate-limiting transition (TS2) states by 7 and 10 kJ mol(-)(1), respectively, and has little effect on the relative compactness of these states compared with that of the unfolded ensemble (beta(I) approximately 0.8, beta(TS2) approximately 0.9 in 0 to 0.4 M Na(2)SO(4)). Analysis of 10 variants of the protein in 0.2 M Na(2)SO(4) using Phi-values showed that the structural properties of the intermediate and TS2 are not altered significantly by the concentration of the kosmotrope. The data demonstrate that the rapid formation of a compact intermediate stabilized by non-native interactions during Im7* folding is not induced by high concentrations of the stabilizing salt, but is a generic feature of the folding of this protein.  相似文献   

6.
The four-helical immunity protein Im7 folds through an on-pathway intermediate that has a specific, but partially misfolded, hydrophobic core. In order to gain further insight into the structure of this species, we have identified the backbone hydrogen bonds formed in the ensemble by measuring the amide exchange rates (under EX2 conditions) of the wild-type protein and a variant, I72V. In this mutant the intermediate is significantly destabilised relative to the unfolded state (deltadeltaG(ui) = 4.4 kJ/mol) but the native state is only slightly destabilised (deltadeltaG(nu) = 1.8 kJ/mol) at 10 degrees C in 2H2O, pH* 7.0 containing 0.4 M Na2SO4, consistent with the view that this residue forms significant non-native stabilising interactions in the intermediate state. Comparison of the hydrogen exchange rates of the two proteins, therefore, enables the state from which hydrogen exchange occurs to be identified. The data show that amides in helices I, II and IV in both proteins exchange slowly with a free energy similar to that associated with global unfolding, suggesting that these helices form highly protected hydrogen-bonded helical structure in the intermediate. By contrast, amides in helix III exchange rapidly in both proteins. Importantly, the rate of exchange of amides in helix III are slowed substantially in the Im7* variant, I72V, compared with the wild-type protein, whilst other amides exchange more rapidly in the mutant protein, in accord with the kinetics of folding/unfolding measured using chevron analysis. These data demonstrate, therefore, that local fluctuations do not dominate the exchange mechanism and confirm that helix III does not form stable secondary structure in the intermediate. By combining these results with previously obtained Phi-values, we show that the on-pathway folding intermediate of Im7 contains extensive, stable hydrogen-bonded structure in helices I, II and IV, and that this structure is stabilised by both native and non-native interactions involving amino acid side-chains in these helices.  相似文献   

7.
Many proteins populate collapsed intermediate states during folding. In order to elucidate the nature and importance of these species, we have mapped the structure of the on-pathway intermediate of the four-helix protein, Im7, together with the conformational changes it undergoes as it folds to the native state. Kinetic data for 29 Im7 point mutants show that the intermediate contains three of the four helices found in the native structure, packed around a specific hydrophobic core. However, the intermediate contains many non-native interactions; as a result, hydrophobic interactions become disrupted in the rate-limiting transition state before the final helix docks onto the developing structure. The results of this study support a hierarchical mechanism of protein folding and explain why the misfolding of Im7 occurs. The data also demonstrate that non-native interactions can play a significant role in folding, even for small proteins with simple topologies.  相似文献   

8.
Under appropriate conditions, the four-helical Im7 (immunity protein 7) folds from an ensemble of unfolded conformers to a highly compact native state via an on-pathway intermediate. Here, we investigate the unfolded, intermediate, and native states populated during folding using diffusion single-pair fluorescence resonance energy transfer by measuring the efficiency of energy transfer (or proximity or P ratio) between pairs of fluorophores introduced into the side chains of cysteine residues placed in the center of helices 1 and 4, 1 and 3, or 2 and 4. We show that while the native states of each variant give rise to a single narrow distribution with high P values, the distributions of the intermediates trapped at equilibrium (denoted Ieqm) are fitted by two Gaussian distributions. Modulation of the folding conditions from those that stabilize the intermediate to those that destabilize the intermediate enabled the distribution of lower P value to be assigned to the population of the unfolded ensemble in equilibrium with the intermediate state. The reduced stability of the Ieqm variants allowed analysis of the effect of denaturant concentration on the compaction and breadth of the unfolded state ensemble to be quantified from 0 to 6 M urea. Significant compaction is observed as the concentration of urea is decreased in both the presence and absence of sodium sulfate, as previously reported for a variety of proteins. In the presence of Na2SO4 in 0 M urea, the P value of the unfolded state ensemble approaches that of the native state. Concurrent with compaction, the ensemble displays increased peak width of P values, possibly reflecting a reduction in the rate of conformational exchange among iso-energetic unfolded, but compact conformations. The results provide new insights into the initial stages of folding of Im7 and suggest that the unfolded state is highly conformationally constrained at the outset of folding.  相似文献   

9.
TI I27, a beta-sandwich domain from the human muscle protein titin, has been shown to fold via two alternative pathways, which correspond to a change in the folding mechanism. Under physiological conditions, TI I27 folds by a classical nucleation-condensation mechanism (diffuse transition state), whereas at extreme conditions of temperature and denaturant it switches to having a polarized transition state. We have used experimental Phi-values as restraints in ensemble-averaged molecular dynamics simulations to determine the ensembles of structures representing the two transition states. The comparison of these ensembles indicates that when native interactions are substantially weakened, a protein may still be able to fold if it can access an alternative transition state characterized by a much larger entropic contribution. Analysis of the probability distribution of Phi-values derived from ensemble averaged simulations, enables us to identify residues that form contacts in some members of the ensemble but not in others illustrating that many interactions present in transition states are not strictly required for the successful completion of the folding process.  相似文献   

10.
A number of models have been proposed to account for nonlinearity in the relation between observed rate constants for folding and/or unfolding and denaturant concentration. Where curvature is seen principally in the arm of a chevron plot, three explanations are proposed: a change in the ground state at increasing concentration of urea, movement of the transition state along a broad energy barrier, and a switch between two sequential transition states separated by an on-pathway high-energy intermediate. Here we demonstrate that the latter two models in particular can be used to describe the data for the all-alpha protein spectrin R16. Further, whatever the method of analysis, the pattern of Phi-values seen is robust; thus we would draw the same conclusions from our data set independently of the method used for analysis. While this is not a novel observation, this is the first systematic study where a comparison has been made between Phi-values calculated using the broad and sequential transition state models.  相似文献   

11.
12.
Comparatively little is known about the role of non-native interactions in protein folding and their role in both folding and stability is controversial. We demonstrate that non-native electrostatic interactions involving specific residues in the denatured state can have a significant effect upon protein stability and can persist in the transition state for folding. Mutation of a single surface exposed residue, Lys12 to Met, in the N-terminal domain of the ribosomal protein L9 (NTL9), significantly increased the stability of the protein and led to faster folding. Structural and energetic studies of the wild-type and K12M mutant show that the 1.9 kcal mol(-1) increase in stability is not due to native state effects, but rather is caused by modulation of specific non-native electrostatic interactions in the denatured state. pH dependent stability measurements confirm that the increased stability of the K12M is due to the elimination of favorable non-native interactions in the denatured state. Kinetic studies show that the non-native electrostatic interactions involving K12 persist in the transition state. The analysis demonstrates that canonical Phi-values can arise from the disruption of non-native interactions as well as from the development of native interactions.  相似文献   

13.
Four versions of a beta-sheet protein (CD2.d1) have been made, each with a single artificial disulfide bond inserted into hairpin structures. Folding kinetics of reduced and oxidized forms shows bridge position strongly influences its effect on the folding reaction. Bridging residues 58 and 62 does not affect the rapidly formed intermediate (I) or rate-limiting transition (t) state, whereas bridging 33 and 38, or 31 and 41, lowers the t-state energy, with the latter having the stronger influence. Bridging residues 79 and 90 stabilizes both I- and t-states. To assess additivity in the energetic effects of these bridges, four double-bridge variants have also been made. All show precise additivity of overall stability, with two showing additivity when ground states and the rate-limiting t-state are assessed, i.e. no measurable change in the folding mechanism occurs. However, combining 31-41 and 79-90 bridges produces a molecule that folds through a different pathway, with a much more stable intermediate than expected and a much higher t-state barrier. This is explained by the artificial introduction of stabilizing, non-native contacts in the I-state. More surprisingly, for another double-bridge version (58-62 and 79-90) both I- and t-states are less stable than expected, showing that conformational constraints introduced by the two bridges prevent formation of non-native contacts that would otherwise stabilize the I- and t-states, thereby lowering the energy of the folding landscape in the wild-type (unbridged) molecule. We conclude that the lowest energy path for folding has I- and t-state structures that are stabilized by non-native interactions.  相似文献   

14.
15.
What is the mechanism of two-state protein folding? The rate-limiting step is typically explored through a Phi-value, which is the mutation-induced change in the transition state free energy divided by the change in the equilibrium free energy of folding. Phi-values ranging from 0 to 1 have been interpreted as meaning the transition state is denatured-like (0), native-like (1) or in-between. But there is no classical interpretation for the experimental Phi-values that are negative or >1. Using a rigorous method to identity transition states via an exact lattice model, we find that nonclassical Phi-values can arise from parallel microscopic flow processes, such as those in funnel-shaped energy landscapes. Phi < 0 results when a mutation destabilizes a slow flow channel, causing a backflow into a faster flow channel. Phi > 1 implies the reverse: a backflow from a fast channel into a slow one. Using a 'landscape mapping' method, we find that Phi correlates with the acceleration/deceleration of folding induced by mutations, rather than with the degree of nativeness of the transition state.  相似文献   

16.
The effect of trehalose on folding and stability of the small ribosomal protein S6 was studied. Non-disruptive point mutations distributed along the protein structure were analyzed to characterize the stabilizing effect of trehalose and map the folding pathway of S6. On average, the stability of the wild-type and S6 mutants increases by 3 kcal/mol M trehalose. Despite the non-specific thermodynamic stabilization mechanism, trehalose particularly stabilizes the less destabilized mutants. Folding/unfolding kinetics shows clearly that trehalose induces the collapse of the unfolded state to an off-pathway intermediate with non-native diffuse contacts. This state is similar to the collapsed state induced by high concentrations of stabilizing salts, as previously reported. Although it leads to the accumulation of this off-pathway intermediate, trehalose does not change the compactness of the transition state ensemble. Furthermore, the productive folding pathway of S6 is not affected by trehalose as shown by a Phi-value analysis. The unfolded state ensemble of S6 should be more compact in the presence of trehalose and therefore destabilized due to decreased conformational entropy. Increased compaction of the unfolded state ensemble might also occur for more stable mutants of S6, thus explaining the synergistic effect of trehalose and point mutations on protein stabilization.  相似文献   

17.
This paper presents a new method for studying protein folding kinetics. It uses the recently introduced Stochastic Roadmap Simulation (SRS) method to estimate the transition state ensemble (TSE) and predict the rates and the Phi-values for protein folding. The new method was tested on 16 proteins, whose rates and Phi-values have been determined experimentally. Comparison with experimental data shows that our method estimates the TSE much more accurately than an existing method based on dynamic programming. This improvement leads to better folding-rate predictions. We also compute the mean first passage time of the unfolded states and show that the computed values correlate with experimentally determined folding rates. The results on Phi-value predictions are mixed, possibly due to the simple energy model used in the tests. This is the first time that results obtained from SRS have been compared against a substantial amount of experimental data. The results further validate the SRS method and indicate its potential as a general tool for studying protein folding kinetics.  相似文献   

18.
We use two simple models and the energy landscape perspective to study protein folding kinetics. A major challenge has been to use the landscape perspective to interpret experimental data, which requires ensemble averaging over the microscopic trajectories usually observed in such models. Here, because of the simplicity of the model, this can be achieved. The kinetics of protein folding falls into two classes: multiple-exponential and two-state (single-exponential) kinetics. Experiments show that two-state relaxation times have “chevron plot” dependences on denaturant and non-Arrhenius dependences on temperature. We find that HP and HP+ models can account for these behaviors. The HP model often gives bumpy landscapes with many kinetic traps and multiple-exponental behavior, whereas the HP+ model gives more smooth funnels and two-state behavior. Multiple-exponential kinetics often involves fast collapse into kinetic traps and slower barrier climbing out of the traps. Two-state kinetics often involves entropic barriers where conformational searching limits the folding speed. Transition states and activation barriers need not define a single conformation; they can involve a broad ensemble of the conformations searched on the way to the native state. We find that unfolding is not always a direct reversal of the folding process. Proteins 30:2–33, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
20.
Recent advances in experimental and computational methods have made it possible to determine with considerable accuracy the structures whose formation is rate limiting for the folding of some small proteins-the transition state ensemble, or TSE. We present a method to analyze and validate all-atom models of such structures. The method is based on the comparison of experimental data with the computation of the change in free energy of the TSE resulting from specific mutations. Each mutation is modeled individually in all members of an ensemble of transition state structures using a method originally developed to predict mutational changes in the stability of native proteins. We first apply this method to six proteins for which we have determined the TSEs with a technique that uses experimental mutational data (Phi-values) as restraints in the structure determination and find a highly significant correlation between the calculated free energy changes and those derived from experimental kinetic data. We then use the procedure to analyze transition state structures determined by molecular dynamics simulations of unfolding, again finding a high correlation. Finally, we use the method to estimate changes in folding rates of several hydrophobic core mutants of Fyn SH3. Taken together, these results show that the procedure developed here is a tool of general validity for analyzing, assessing, and improving the quality of the structures of transition states for protein folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号