首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of an amphipathic alpha-helical peptide to small unilamellar lipid vesicles has been examined using chemical derivitization and mass spectrometry. The peptide is derived from the sequence of human apolipoprotein C-II (apoC-II), the protein activator of lipoprotein lipase (LpL). ApoC-II(19-39) forms approximately 60% alpha-helix upon binding to model egg yolk phosphatidylcholine small unilamellar vesicles. Measurement of the affinity of the peptide for lipid by spectrophotometric methods is complicated by the contribution of scattered light to optical signals. Instead, we characterize the binding event using the differential labeling of lysine residues by the lipid- and aqueous-phase cross-linkers, disuccinimidyl suberate (DSS) and bis(sulfosuccinimidyl) suberate (BS(3)), respectively. In aqueous solution, the three lysine residues of the peptide are accessible to both cross-linkers. In the presence of lipid, the C-terminal lysine residue becomes inaccessible to the lipid-phase cross-linker DSS, but remains accessible to the aqueous-phase cross-linker, BS(3). We use mass spectrometry to characterize this binding event and to derive a dissociation constant for the interaction (K(d) = 5 microM). We also provide evidence for the formation of dimeric cross-linked peptide when high densities of peptide are bound to the lipid surface.  相似文献   

2.
Chemical cross-linking in combination with mass spectrometry has largely been used to study protein structures and protein-protein interactions. Typically, it is used in a qualitative manner to identify cross-linked sites and provide a low-resolution topological map of the interacting regions of proteins. Here, we investigate the capability of chemical cross-linking to quantify protein-protein interactions using a model system of calmodulin and substrates melittin and mastoparan. Calmodulin is a well-characterized protein which has many substrates. Melittin and mastoparan are two such substrates which bind to calmodulin in 1:1 ratios in the presence of calcium. Both the calmodulin-melittin and calmodulin-mastoparan complexes have had chemical cross-linking strategies successfully applied in the past to investigate topological properties. We utilized an excess of immobilized calmodulin on agarose beads and formed complexes with varying quantities of mastoparan and melittin. Then, we applied disuccinimidyl suberate (DSS) chemical cross-linker, digested and detected cross-links through an LC-MS analytical method. We identified five interpeptide cross-links for calmodulin-melittin and three interpeptide cross-links for calmodulin-mastoparan. Using cross-linking sites of calmodulin-mastoparan, we demonstrated that mastoparan also binds in two orientations to calmodulin. We quantitatively demonstrated that both melittin and mastoparan preferentially bind to calmodulin in a parallel fashion, which is opposite to the preferred binding mode of the majority of known calmodulin binding peptides. We also demonstrated that the relative abundances of cross-linked peptide products quantitatively reflected the abundances of the calmodulin peptide complexes formed.  相似文献   

3.
Contact sites between the corticotropin-releasing factor receptor type 1 (CRFR1), the sauvagine (SVG) radioligands [Tyr(0),Gln(1)]SVG ((125)I-YQS) and [Tyr(0),Gln(1), Leu(17)]SVG ((125)I-YQLS) were examined. (125)I-YQLS or (125)I-YQS was cross-linked to CRFR1 using the chemical cross-linker, disuccinimidyl suberate (DSS), which cross-links the epsilon amino groups of lysine residues that have a molecular distance of 11.4 A. DSS specifically and efficiently cross-linked (125)I-YQLS and (125)I-YQS to CRFR1. CRFR1 contains 5 putative extracellular lysine residues (Lys(110), Lys(111), Lys(113), Lys(257), and Lys(262)) that can cross-link to the 4 lysine residues (Lys(16), Lys(22), Lys(25), and Lys(27)) of the radioligands. Identification of the CNBr-cleaved fragments of CRFR1 cross-linked to (125)I-YQLS or (125)I-YQS established that the second extracellular loop of CRFR1 cross-links to Lys(16) of YQS. Additionally, site-directed mutagenesis (changing Lys to Arg in CRFR1 individually and in combination) revealed that Lys(257) in the second extracellular loop of CRFR1 is an important cross-linking site. In conclusion, it was shown that in SVG-bound CRFR1, Lys(257) of CRFR1 lies in close proximity (11.4 A) to Lys(16) of SVG.  相似文献   

4.
In Alzheimer's disease, microtubule-associated protein tau becomes abnormally phosphorylated and aggregates into paired helical filaments. Sulfated glycosaminoglycans such as heparin and heparan sulfate were shown to accumulate in pretangle neurons, stimulate in vitro tau phosphorylation, and cause tau aggregation into paired helical filament-like filaments. The sulfated glycosaminoglycan-tau interaction was suggested to be the central event in the development of neuropathology in Alzheimer's disease brain (Goedert, M., Jakes, R., Spillantini, M. G., Hasegawa, M., Smith, M. J., and Crowther, R. A. (1996) Nature 383, 550-553). The biochemical mechanism by which sulfated glycosaminoglycans stimulate tau phosphorylation and cause tau aggregation remains unclear. In this study, disuccinimidyl suberate (DSS), a bifunctional chemical cross-linker, cross-linked tau dimers, tetramers, high molecular size aggregates, and two tau species of sizes 72 and 83 kDa in the presence of heparin. In the absence of heparin only dimeric tau was cross-linked by DSS. Fast protein liquid chromatography gel filtration revealed that 72- and 83-kDa species were formed by intramolecular cross-linking of tau by DSS. These observations indicate that heparin, in addition to causing aggregation, also induces a conformational change in tau in which reactive groups are unmasked or move closer leading to the DSS cross-linking of 72- and 83-kDa species. Heparin-induced structural changes in tau molecule depended on time of heparin exposure. Dimerization and tetramerization peaked at 48 h, whereas conformational change was completed within 30 min of heparin exposure. Heparin exposure beyond 48 h caused an abrupt aggregation of tau into high molecular size species. Heparin stimulated tau phosphorylation by neuronal cdc2-like kinase (NCLK) and cAMP-dependent protein kinase. Phosphopeptide mapping and phosphopeptide sequencing revealed that tau is phosphorylated by NCLK on Thr212 and Thr231 and by cAMP-dependent protein kinase on Ser262 only in the presence of heparin. Heparin stimulation of tau phosphorylation by NCLK showed dependence on time of heparin exposure and correlated with the heparin-induced conformational change of tau. Our data suggest that heparin-induced conformational change exposes new sites for phosphorylation within tau molecule.  相似文献   

5.
Fluorescence photobleaching recovery was employed to investigate the relationship between the activation of neutrophil NADPH oxidase and lateral mobility of membrane proteins. Treatment of neutrophils with the crosslinking reagent disuccinimidyl suberate (DSS) blocked activation of the respiratory burst without affecting the lateral motion of concanavalin A receptors. Neutrophils treated with DSS after prestimulation with concanavalin A generated superoxide in response to another stimulator, phorbol myristate acetate, in spite of the lateral immobilization of concanavalin A receptors. The apparent lack of correlation between the activation of NADPH oxidase and the lateral motion of membrane proteins is discussed.  相似文献   

6.
Fluorescence photobleaching recovery was employed to investigate the relationship between the activation of neutrophil NADPH oxidase and lateral mobility of membrane proteins. Treatment of neutrophils with the crosslinking reagent disuccinimidyl suberate (DSS) blocked activation of the respiratory burst without affecting the lateral motion of concanavalin A receptors. Neutrophils treated with DSS after prestimulation with concanavalin A generated superoxide in response to another stimulator, phorbol myristate acetate, in spite of the lateral immobilization of concanavalin A receptors. The apparent lack of correlation between the activation of NADPH oxidase and the lateral motion of membrane proteins is discussed.  相似文献   

7.
Plasma membranes from rat adipocytes and liver and from human placenta have been labeled by covalent cross-linking to membrane-bound 125I-labeled multiplication stimulating activity (125I-MSA) with three different bishydroxysuccinimide esters: disuccinimidyl suberate, disuccinimidyl succinate, and ethyleneglycolyl bis(succinimidyl succinate). Dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiographic analysis of the 125I-MSA-labeled material in the presence of dithiothreitol reveals one single-labeled protein migrating with an apparent Mr = 255,000 regardless of the kind and concentration of cross-linker used. Electrophoresis in the absence of reductant indicates that the affinity-labeled species is not disulfide-linked to any other protein in the native plasma membrane, but contains internal disulfide bonds that compact its structure. The labeling of the Mr = 255,000 species increases with increasing concentrations of 125I-MSA between 0.3 and 3 nM. Labeling is abolished in a competitive manner by nonradioactive MSA but not by similar concentrations of insulin, proinsulin, or epidermal growth factor in all three tissues examined. The unique labeling of this Mr = 225,000 membrane component and its selective inhibition by MSA suggest that this protein is a plasma membrane receptor for MSA.  相似文献   

8.
The neuron-specific protein B-50 has been described as an atypical calmodulin (CaM) binding protein, because the purified protein has a higher affinity for CaM in the absence than in the presence of Ca2+. We have studied CaM binding to endogenous B-50 in native synaptosomal plasma membranes (SPM) and growth cone membranes in order to assess the physiological relevance of the binding. To detect B-50/CaM binding, we used the cross-linker disuccimidyl suberate (DSS) to form a covalent B-50/CaM complex, which is stable on SDS-PAGE. Upon addition of DSS, purified B-50 and calmodulin form a 70-kDa complex in the absence but not in the presence of Ca2+. This complex can be detected by protein staining and on Western blots using anti-B-50 and anti-CaM IgGs. DSS treatment of SPM or growth cone membranes with or without exogenous CaM results in the formation of a 70-kDa B-50/CAM complex detectable only in the absence of Ca2+ with both antibodies. Our results strongly suggest that the binding of CaM to endogenous B-50 in SPM and growth cone membranes is of physiological relevance. CaM binding to B-50 may be an important factor in regulating neurite outgrowth and/or neurotransmitter release.  相似文献   

9.
125I-labeled vasoactive intestinal polypeptide (125I-VIP) was covalently cross-linked with its binding sites on intact cultured human lymphoblasts by each of three bifunctional reagents: disuccinimidyl suberate (DSS), ethylene glycol bis(succinimidyl succinate) (EGS), and N-succinimidyl 6-(4'-azido-2'-nitrophenylamino) hexanoate (SANAH). A fourth cross-linking agent with a shorter chain length, N-hydroxysuccinimidyl 4-azidobenzoate (HSAB), was much less effective in cross-linking 125I-VIP to the site. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography demonstrated a band of Mr approximately equal to 50,000 +/- 3,000, regardless of which cross-linker was used. The labeling of this band was specific in that it was prevented by 10(-6) M unlabeled VIP and was partially blocked by the homologous hormones secretin and glucagon. The relative potencies of these peptides in blocking the cross-linking of 125I-VIP to the Mr approximately equal to 50,000 band of the lymphoblasts (VIP greater than secretin greater than or equal to glucagon) were similar to those previously found for competitive inhibition of 125I-VIP binding to its putative high-affinity receptor on these cells. The covalent cross-linking required a bifunctional reagent; it was dependent on both the number of Molt cells and the concentration of 125I-VIP. The apparent molecular weight of the cross-linked species was unchanged by treatment with dithiothreitol. These observations suggest that the Mr = 50,000 species represents 125I-VIP cross-linked to a specific plasma membrane receptor and that the receptor does not contain interchain disulfide bonds.  相似文献   

10.
S M Waugh  P F Pilch 《Biochemistry》1989,28(6):2722-2727
The homobifunctional cross-linking reagent disuccinimidyl suberate (DSS) was used to probe the interface region between the two alpha subunits of the alpha 2 beta 2 human insulin receptor. The two alpha subunits formed a covalent dimer when affinity-purified receptor or membrane-bound receptor was reacted with DSS. The alpha 2 species was detected on protein blots from SDS gels using an anti-alpha-subunit antibody or 125I-concanavalin A. Alternatively, iodinated receptor was reacted with DSS and the alpha 2 species measured directly in an SDS gel. As shown by all three assay systems, more alpha 2 was formed when insulin was bound to receptor than when insulin was absent. These data indicate that the conformational change which occurs in the alpha subunit in response to insulin binding results in a change in the alpha-alpha interaction within the receptor complex. The results are consistent with a kinase activation mechanism involving communication between the two alpha beta receptor halves.  相似文献   

11.
125I-labeled human somatotropin specifically bound to the lactogenic sites of microsomal membranes from pregnant rat liver, originated a radioactive covalent complex of Mr 63,000 upon reaction with dimethyl suberimidate, disuccinimidyl suberate (DSS) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The amoun of this species was closely parallel with the preexisting amount of the ligand-receptor complex. Photoactivation of a hormone derivative bound to the receptor also gave rise to the 63 K species. A ternary complex of receptor, hormone and Triton X-100 cross-linked with DSS yielded the 63 K species and a new one of 96 K. The data indicate that the 63 K complex involves the radioactive hormone and a constituent of the binding site. The 96 K species could comprise a second component of the receptor.  相似文献   

12.
(1) Sucrose gradient centrifugation of cytochrome oxidase in the presence of Triton X-100 gave one slowly sedimenting green band. After cross-linking with dithiobis(succinimidylpropionate) (DSP), two green bands were observed, one sedimenting like the control and the other one more rapidly. Only the slowly sedimenting band was observed if the cross-linker was cleaved by dithiothreitol before centrifugation. (2) The rapidly sedimenting band in the Triton-containing sucrose gradient is probably the internally cross-linked dimer of cytochrome oxidase; the one sedimenting slowly is the monomeric enzyme. (3) Cross-linking with DSP after monomerization yields a small fraction of internally cross-linked dimers in addition to the internally cross-linked monomers. Under similar conditions, but using the shorter cross-linker disuccinimidyl tartarate (DST), no dimers are detected. (4) Both DSP and DST cross-link the dimeric enzyme so that it could no longer be monomerized by centrifugation in Triton, unless the cross-link is cleaved. (5) Polypeptide analysis using two-dimensional gel electrophoresis of cross-linked dimers and monomers suggest that subunit VIb is involved in intermonomeric cross-linking of dimeric enzyme by DSP.  相似文献   

13.
The binding of 125I-cholecystokinin-33 (125I-CCK-33) to its receptors on rat pancreatic membranes was decreased by modification of membrane protein sulfhydryl groups. Sulfhydryl modifying reagents also caused an accelerated release of bound 125I-CCK-33 from its receptor. Because of the presence of an essential sulfhydryl group(s) in CCK receptor binding we studied the application of the heterobifunctional (SH,NH2) cross-linker, m-maleimidobenzoyl N-hydroxysuccinimide ester (MBS), to affinity label 125I-CCK-33 binding proteins on rat pancreatic plasma membranes. Analysis of the cross-linked products by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography revealed that this heterobifunctional cross-linker affinity labeled a major Mr = 80,000-95,000 protein previously identified as part of the CCK receptor on the basis of affinity labeling using homobifunctional and heterobifunctional photoreactive cross-linkers. Additional proteins of Mr greater than 200,000, and Mr = 130,000-140,000 were affinity labeled using MBS. The efficiency of the cross-linking reaction between 125I-CCK-33 and its membrane binding proteins with MBS was significantly greater than that obtained with NH2-directed homobifunctional reagents such as disuccinimidyl suberate. The efficiency of cross-linking could be dramatically improved by reduction of membrane proteins with low-molecular weight thiols prior to binding and cross-linking. The differential labeling patterns of the CCK binding proteins obtained with chemical cross-linkers of similar length but different chemical reactivity underscores the need for caution in predicting native receptor structure from affinity labeling data alone. Using the same pancreatic plasma membrane preparation and 125I-insulin, the Mr = 125,000 alpha-subunit of the insulin receptor was affinity labeled using MBS as cross-linker, demonstrating its utility in identifying other peptide hormone receptors.  相似文献   

14.
The binding of epidermal growth factor (EGF) to its cell surface receptor (EGF-R) results in a number of intracellular responses including the activation of the receptor intracellular tyrosine kinase. Receptor oligomerization induced by ligand binding has been suggested to play an important role in signal transduction. However, the mechanisms involved in oligomerization and signal transduction are poorly understood. We have produced and purified several milligrams of recombinant extracellular domain of the EGF receptor (EGF-Rx) using the baculovirus/insect cell expression system. The baculovirus-generated EGF-Rx is glycosylated, has had its signal peptide correctly cleaved, and exhibits a dissociation constant for EGF similar to that for solubilized full-length receptor, of about 100 nM. The binding of EGF to EGF-Rx leads to the formation of receptor dimers and higher oligomerization states which are irreversibly captured using the covalent cross-linking agent disuccinimidyl suberate. Interestingly, purified receptor monomers and dimers, stabilized by the cross-linker in the presence of EGF, exhibit increased binding affinity toward EGF as compared with receptor monomers which have not been exposed to EGF. It appears that the high affinity state of receptor can be maintained by the covalent cross-linking agent. These results indicate that in addition to ligand binding, the extracellular domain of EGF receptor possesses the inherent ability to undergo ligand-induced dimerization and that the low affinity state is converted to a high affinity state by EGF.  相似文献   

15.
The effect of 10 bifunctional cross-linking agents and four monofunctional analogues was studied on isolated adipocytes. [125I]Insulin binding and degradation, basal and insulin-stimulated glucose oxidation, and 3-O-methyl glucose uptake were measured. Two cross-linkers, which possess succinimide ester residues (disuccinimidyl suberate and dithiobis(succinimidyl propionate)) and react selectively with amino groups, appeared to react relatively specifically with the insulin receptor. Both produced a slight stimulation of basal glucose transport and metabolism, a marked inhibition of insulin-stimulated glucose transport and metabolism, and a marked decrease in insulin binding. Pretreatment of cells with unlabelled insulin partially blocked the effect of disuccinimidyl suberate, and as has been previously shown, disuccinimidyl suberate cross-linked insulin to its receptor. A monofunctional analogue of these compounds was 100-fold less active in altering cellular metabolic activity. Bisimidates, such as dimethyl suberimidate, dimethyl adipimidate, and dimethyl dithiobispropionimidate, also react with free amino groups but are more hydrophilic. These agents produced similar effects on glucose oxidation as the succinimide esters, but had little or no effect on insulin binding. The effects of these agents are not blocked by insulin and they do not cross-link insulin to its receptor. Mixed bifunctional reagents containing either a succinimide ester or an imidate and a group which reacts with thiols produced effects similar to the cross-linkers containing two succinimide groups or bisimidates, respectively. The bifunctional arylating agents difluorodinitrobenzene and bis(fluoronitrophenyl)sulfone produce marked effects on insulin binding and glucose oxidation at micromolar concentrations, but the monofunctional analogue fluorodinitrobenzene is almost equally active suggesting that with these compounds chemical modifications and not cross-linking was important. With neither the mixed bifunctional reagents, nor the arylating agents, did insulin pretreatment alter the effect of cross-linker and none of these agents cross-linked [125I]insulin to its receptor. These data suggest that the insulin receptor possesses a free amino group in a hydrophobic environment in its active site. A reactive amino group in a hydrophilic environment as well as other reactive groups are also present in some component of the insulin receptor-effector complex. Chemical modification or cross-linking of these functional groups results in an inhibition or mimicking of insulin action. Further study will be required to identify the exact locus of these sites.  相似文献   

16.
The subunit composition of the thyrotropin (TSH) receptor has been characterized using the bifunctional crosslinking agent, disuccinimidyl suberate (DSS), to covalently link [125I]TSH to its receptor. Purified thyroid membranes were labeled with [125I]TSH, and the hormone-receptor complex was crosslinked by incubation with 0.1 mM DSS. Analysis of this crosslinked complex by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under reducing conditions indicated the presence of a specifically labeled hormone-receptor complex, corresponding to a Mr of 68,000 +/- 3000 before correction for the relative molecular mass of TSH. When reducing agents were absent during SDS solubilization, the mobility of the band increased slightly, suggesting the presence of intramolecular disulfide bonds. The labeling of the 68,000 band was specifically inhibited by TSH, but not by other glycoprotein hormones. Specific labeling occurred only in thyroid, and not in liver or muscle plasma membranes. Protease-free immunoglobulin G, isolated from sera of patients with Graves' disease and capable of competing with TSH for binding to its receptor, inhibited the labeling of the 68,000 complex. When the hormone-receptor complex was crosslinked with higher concentrations of DSS (greater than 0.3 mM), a second specifically labeled band was observed, with a Mr of 80,000 +/- 5000. This complex exhibited hormone, tissue, and immunologic specificities similar to those of the 68,000 band. Continuous sucrose density gradient analysis indicated that the intact solubilized receptor possessed a sedimentation coefficient of 10.5 S prior to correction for detergent binding. However, this value increased to 16 S when determined under conditions which took into account the change in hydrodynamic properties attributable to bound Triton X-100. These data suggest that the 80,000 and 68,000 bands represent binding components of the TSH receptor and that the receptor molecule most likely contains multiple subunits, linked by noncovalent forces.  相似文献   

17.
Bivalent effectors have been reported to provide superior pretargeting by affinity enhancement. We recently reported that one bivalent MORF (phosphorodiamidate morpholino, a DNA analogue oligomer) exhibited affinity enhancement (ratio of bivalent to monovalent equilibrium constants for binding) to immobilized complementary DNA (cDNA) by surface plasmon resonance (SPR). Because bivalent effectors using oligomers are easily synthesized with molecular spacing between binding sites, an important determinant of binding, adjustable simply by selecting linkers of different dimensions and/or lengthening or shortening the oligomer chain length, they may have advantages over existing bivalent effectors. We synthesized four bivalent MORFs with different dimensions between binding sites and measured binding affinities and affinity enhancement by SPR. An 18 mer (MORF18) was made bivalent by dimerizing both with disuccinimidyl suberate (DSS) and disuccinimidyl glutarate (DSG) linkers. By again using DSS but adding seven nonbinding adenine bases and by eliminating six binding bases, a total of four bivalent effectors, DSS-MORF12, DSG-MORF18, DSS-MORF18, and DSS-MORF25, were prepared with two different hybridization affinities (i.e. MORF12 and MORF18/25) and three different spacings (i.e. 20, 25, and 100 angstroms) between binding sites. The biotinylated cDNA was immobilized on a sensor chip at 500 and 100 RU coating densities providing an average cDNA separation of 25 and 80 angstroms. As expected, bimolecular binding dominated monomolecular binding in all cases, especially at lower MORF effector concentrations and at higher coating densities. All bivalent MORFs showed equilibrium constants superior to their monovalent form and therefore affinity enhancement. DSS-MORF25 showed the highest equilibrium constant for bimolecular binding presumably because of its larger separation between binding sites. Nevertheless, DSS-MORF12 showed the largest affinity enhancement of almost 3 orders of magnitude presumably because the shorter chain lowered the equilibrium constant for monomolecular binding. We have shown that bivalent effectors may be easily synthesized using MORF. The results provide further evidence that the use of bivalent effectors can greatly improve MORF pretargeting and, finally, that bivalent MORFs with reduced equilibrium constants may actually exhibit higher affinity enhancement.  相似文献   

18.
Identification of the polymorphonuclear leukocyte C5a receptor   总被引:9,自引:0,他引:9  
The peptide C5a is thought to play an important role in the inflammatory response primarily through its action on the polymorphonuclear leukocyte (PMN). The receptor for C5a on human PMN has now been identified by affinity labeling. Cross-linking 125I-C5a to intact PMN with disuccinimidyl suberate produced a species that had a molecular mass on sodium dodecyl sulfate gels of 5.2 X 10(4) daltons. We believe this species represents a complex between C5a and its receptor for the following reasons. The band is eliminated if the cross-linking experiment is performed in the presence of a large excess of unlabeled C5a, but is unaffected by the presence of nonspecific protein or the chemotactic factors N-formyl-Met-Leu-Phe and leukotriene B4. The 5.2 X 10(4)-dalton species is not observed if the cross-linker is omitted. Finally, the dose-response curves for the inhibition of binding of 125I-C5a by unlabeled C5a and the inhibition of cross-linking are similar. Subtraction of the molecular mass of C5a from that of the complex gives a molecular mass for the binding moiety of the C5a receptor of 4.0 X 10(4) daltons.  相似文献   

19.
1. The camel has insulin receptors that by multiple function criteria are very similar to those of the other mammals (rabbit and rat) and non-mammals (chicken and pigeon), with sharp pH dependence to insulin binding at pH 7.2-7.6. 2. Equilibrium binding was faster at higher temperatures (24-37 degrees C) than at lower (4 degrees C). 3. Binding data yielded curvilinear Scatchard plots with half maximal displacement of 125I-insulin at 9 x 10(-9) M, 2.5 x 10(-9) M, 6.3 x 10(-10) M for camel, rabbit, pigeon and chicken respectively, suggesting differences in mammalian and non-mammalian liver membranes. 4. Autoradiogram patterns showed the presence of an identical subunit structure with Mr 74,000 for all membranes studied. Pigeon membrane showed a band with Mr 110,000, the absence of which in other membranes could be due to the degradation factor or the concentration of disuccinimidyl suberate (DSS).  相似文献   

20.
Granulocyte colony-stimulating factor (G-CSF) and multipotential colony-stimulating factor (multi-CSF or interleukin 3) are two members of a family of hemopoietic growth and differentiation factors. Using biologically active radioiodinated derivatives and chemical cross-linking (predominantly with the homobifunctional reagent disuccinimidyl suberate) followed by gel electrophoresis and autoradiography, receptors for these two factors have been identified. The G-CSF receptor was identified as a single subunit protein of Mr approximately 150,000 while two molecular species able to specifically cross-link to 125I-multi-CSF were identified of Mr approximately 75,000 and 60,000. For both CSFs specificity of formation of cross-linked species was demonstrated by showing that the homologous unlabeled CSF (but not other CSFs) competed for formation of the complexes with the appropriate dose-response relation, by showing that saturation occurred over the appropriate range of 125I-CSF concentration and by showing that the cellular specificity of CSF binding paralleled that for cross-linked complex formation. The formation of cross-linked complexes was dependent on the concentration and type of chemical cross-linker, especially for cross-linking of 125I-multi-CSF. Based on a number of criteria it is suggested that the two species cross-linked to 125I-multi-CSF do not represent receptors of different affinity but, rather, two noncovalently associated subunits of a receptor complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号