首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Muscle force recovery from short term intense exercise was examined in 16 physically active men. They performed 50 consecutive maximal voluntary knee extensions. Following a 40-s rest period five additional maximal contractions were executed. The decrease in torque during the 50 contractions and the peak torque during the five contractions relative to initial torque were used as indices for fatigue and recovery, respectively. Venous blood samples were collected repeatedly up to 8 min post exercise for subsequent lactate analyses. Muscle biopsies were obtained from m. vastus lateralis and analysed for fiber type composition, fiber area, and capillary density. Peak torque decreased 67 (range 47-82%) as a result of the repeated contractions. Following recovery, peak torque averaged 70 (47-86%) of the initial value. Lactate concentration after the 50 contractions was 2.9 +/- 1.3 mmol X 1(-1) and the peak post exercise value averaged 8.7 +/- 2.1 mmol X 1(-1). Fatigue and recovery respectively were correlated with capillary density (r = -0.71 and 0.69) but not with fiber type distribution. A relationship was demonstrated between capillary density and post exercise/peak post exercise blood lactate concentration (r = 0.64). Based on the present findings it is suggested that lactate elimination from the exercising muscle is partly dependent upon the capillary supply and subsequently influences the rate of muscle force recovery.  相似文献   

2.
Muscle pH and temperature were measured before, and continuously for 30 min after, a 30-s maximal sprint exercise in ten subjects. These measurements were made with a needle-tipped pH electrode and a thermocouple placed in vastus lateralis. Venous blood samples were collected for pH, lactate and catecholamine estimations and measurements were also made of the arterial blood pressure and heart rate. The muscle and venous pH decreased from 7.17 +/- 0.01 (mean +/- SEM) and 7.39 +/- 0.01 to 6.57 +/- 0.04 and 7.04 +/- 0.03, respectively, in response to the exercise. No significant recovery occurred in either pH measurement for 10 min, after which muscle pH increased to 7.03 +/- 0.03 and venous pH to 7.29 +/- 0.01 by 30 min. Muscle temperature increased by 2.1 degrees C with exercise and also failed to return to pre-exercise values by 30 min. Blood lactate concentration increased from 0.75 +/- 0.04 mmol l-1 before exercise to a peak value of 15.76 +/- 0.35 mmol l-1 5 min after completion of the exercise, and then declined slowly to 10.30 +/- 0.61 mmol l-1 by 30 min. Arterial blood pressure increased transiently with exercise but recovered rapidly, whereas the exercise-induced tachycardia was sustained throughout the recovery period. The recovery from the metabolic and cardiovascular responses to maximal sprint exercise in man is incomplete 30 min after cessation of the exercise.  相似文献   

3.
The evolution of blood lactate concentrations has been studied during a force/velocity test on a cycloergometer in order to specify if the repetition of short (6 s) and intense exercises induced an important participation of lactic anaerobic metabolism. Seven moderately trained male subjects, aged from 23 to 29 years (mean = 24.92 +/- 0.79) participated in this study. Two blood samples (venous catheter) were performed, at rest, then for each work load (1 kg to 10 kg): at the end of the exercise (P1) and during the recovery at 5 min (P2). From the lowest work load, blood lactate concentration increased significantly, at the end of the exercise (F = 16.21; P less than 0.001) and during the recovery (F = 22.62; P less than 0.001). The mean values were respectively at the peak of power: 9.84 +/- 0.85 et 10.19 +/- 0.75 mmol.l-1. Once the peak of power was obtained, the blood lactate concentration remained steady. In conclusion, the repetition of short and intense exercises induced an important participation of lactic anaerobic metabolism. The lactate could be the limiting factor of the maximal power.  相似文献   

4.
Disposal of blood [1-13C]lactate in humans during rest and exercise   总被引:1,自引:0,他引:1  
Lactate irreversible disposal (RiLa) and oxidation (RoxLa) rates were studied in six male subjects during rest (Re), easy exercise [EE, 140 min of cycling at 50% of maximum O2 consumption (VO2max)] and hard exercise (HE, 65 min at 75% VO2max). Twenty minutes into each condition, subjects received a Na+-L(+)-[1-13C]lactate intravenous bolus injection. Blood was sampled intermittently from the contralateral arm for metabolite levels, acid-base status, and enrichment of 13C in lactate. Expired air was monitored continuously for determination of respiratory parameters, and aliquots were collected for determination of 13C enrichment in CO2. Steady-rate values for O2 consumption (VO2) were 0.33 +/- 0.01, 2.11 +/- 0.03, and 3.10 +/- 0.03 l/min for Re, EE, and HE, respectively. Corresponding values of blood lactate levels were 0.84 +/- 0.01, 1.33 +/- 0.05, and 4.75 +/- 0.28 mM in the three conditions. Blood lactate disposal rates were significantly correlated to VO2 (r = 0.78), averaging 123.4 +/- 20.7, 245.5 +/- 40.3, and 316.2 +/- 53.7 mg X kg-1 X h-1 during Re, EE, and HE, respectively. Lactate oxidation rate was also linearly related to VO2 (r = 0.81), and the percentage of RiLa oxidized increased from 49.3% at rest to 87.0% during exercise. A curvilinear relationship was found between RiLa and blood lactate concentration. It was concluded that, in humans, 1) lactate disposal (turnover) rate is directly related to the metabolic rate, 2) oxidation is the major fate of lactate removal during exercise, and 3) blood lactate concentration is not an accurate indicator of lactate disposal and oxidation.  相似文献   

5.
Five healthy males took part in two separate studies. In one study subjects breathed air (control, C) and in the other 5% CO2 in 21% O2 (respiratory acidosis, RA). Measurements were made at rest, during exercise at 30 and 60% maximal O2 uptake (VO2 max), (20 min each) and in recovery. RA was associated with higher arterial CO2 partial pressure (PCO2) and bicarbonate and lower pH than C. The increase with exercise in plasma lactate (mmol . l-1) was less in RA than C from 1.0 +/- 0.15 (SE) (C = 1.1 +/- 0.17) at rest to 5.3 +/- 1.25 (C = 6.8 +/- 0.98) at 60% VO2 max (P less than 0.10). Plasma pyruvate, alanine, and glycerol concentrations increased with exercise; free fatty acids did not change. There were no significant differences between RA and C in any of these metabolites. Norepinephrine concentrations were similar at rest but increased to a greater extent during exercise in RA than C (P less than 0.02). Epinephrine levels were also higher in RA than C at 60% VO2 max (NS); the two subjects in whom lactate was not lower with RA showed the greatest increase in epinephrine. Exercise in RA was associated with higher heart rates (P less than 0.05), blood pressures (NS), and ventilation (P less than 0.01). In hypercapnia the metabolic effects of acidosis are modified by increased levels of circulating catecholamines.  相似文献   

6.
In order to test the effect of artificially induced alkalosis and acidosis on the appearance of plasma lactate and work production, six well-trained oarsmen (age = 23.8 +/- 2.5 years; mass = 82.0 +/- 7.5 kg) were tested on three separate occasions after ingestion of 0.3 g.kg-1. NH4Cl (acidotic), NaHCO3 (alkalotic) or a placebo (control). Blood was taken from a forearm vein immediately prior to exercise for determination of pH and bicarbonate. One hour following the ingestion period, subjects rowed on a stationary ergometer at a pre-determined sub-maximal rate for 4 min, then underwent an immediate transition to a maximal effort for 2 min. Blood samples from an indwelling catheter placed in the cephalic vein were taken at rest and every 30 s during the 6 min exercise period as well as at 1, 3, 6, 9, 12, 15, 18, 21, 25 and 30 min during the passive recovery period. Pre-exercise blood values demonstrated significant differences (p less than 0.01) in pH and bicarbonate in all three conditions. Work outputs were unchanged in the submaximal test and in the maximal test (p greater than 0.05), although a trend toward decreased production was evident in the acidotic condition. Analysis of exercise blood samples using ANOVA with repeated measures revealed that the linear increase in plasma lactate concentration during control was significantly greater than acidosis (p less than 0.01). Although plasma lactate values during alkalosis were consistently elevated above control there was no significant difference in the linear trend (p greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The purpose of this study was to examine plasma and intraerythrocyte lactate concentrations during graded exercise in humans. Seven adult volunteers performed a maximum O2 uptake (VO2max) test on a cycle ergometer. Plasma and intraerythrocyte lactate concentrations (mmol . L-1 of plasma or cell water) were determined at rest, during exercise, and at 15-min post-exercise. The results show that plasma and intraerythrocyte lactate concentrations were not significantly different from each other at rest or moderate (less than or equal to 50% VO2max) exercise. However, the plasma concentrations were significantly increased over the intraerythrocyte levels at 75% and 100% VO2max. The plasma to red cell lactate gradient reached a mean (+/- SE) 1.7 +/- 0.4 mmol . L-1 of H2O at exhaustion, and was linearly (r = 0.84) related to the plasma lactate concentration during exercise. Interestingly, at 15-min post-exercise the direction of the lactate gradient was reversed, with the mean intraerythrocyte concentration now being significantly increased over that found in the plasma. These results suggest that the erythrocyte membrane provides a barrier to the flux of lactate between plasma and red cells during rapidly changing blood lactate levels. Furthermore, these data add to the growing body of research that indicates that lactate is not evenly distributed in the various water compartments of the body during non-steady state exercise.  相似文献   

8.
Regulation of cerebral blood flow during physiological activation including exercise remains unknown but may be related to the arterial lactate-to-pyruvate (L/P) ratio. We evaluated whether an exercise-induced increase in middle cerebral artery mean velocity (MCA Vmean) relates to the arterial L/P ratio at two plasma lactate levels. MCA Vmean was determined by ultrasound Doppler sonography at rest, during 10 min of rhythmic handgrip exercise at approximately 65% of maximal voluntary contraction force, and during 20 min of recovery in seven healthy male volunteers during control and a approximately 15 mmol/l hyperglycemic clamp. Cerebral arteriovenous differences for metabolites were obtained by brachial artery and retrograde jugular venous catheterization. Control resting arterial lactate was 0.78 +/- 0.09 mmol/l (mean +/- SE) and pyruvate 55.7 +/- 12.0 micromol/l (L/P ratio 16.4 +/- 1.0) with a corresponding MCA Vmean of 46.7 +/- 4.5 cm/s. During rhythmic handgrip the increase in MCA Vmean to 51.2 +/- 4.6 cm/s was related to the increased L/P ratio (23.8 +/- 2.5; r2 = 0.79; P < 0.01). Hyperglycemia increased arterial lactate and pyruvate to 1.9 +/- 0.2 mmol/l and 115 +/- 4 micromol/l, respectively, but it did not significantly influence the L/P ratio or MCA Vmean at rest or during exercise. Conversely, MCA Vmean did not correlate significantly, neither to the arterial lactate nor to the pyruvate concentrations. These results support that the arterial plasma L/P ratio modulates cerebral blood flow during cerebral activation independently from the plasma glucose concentration.  相似文献   

9.
The aim of this study was to determine whether the decreased muscle and blood lactate during exercise with hyperoxia (60% inspired O2) vs. room air is due to decreased muscle glycogenolysis, leading to decreased pyruvate and lactate production and efflux. We measured pyruvate oxidation via PDH, muscle pyruvate and lactate accumulation, and lactate and pyruvate efflux to estimate total pyruvate and lactate production during exercise. We hypothesized that 60% O2 would decrease muscle glycogenolysis, resulting in decreased pyruvate and lactate contents, leading to decreased muscle pyruvate and lactate release with no change in PDH activity. Seven active male subjects cycled for 40 min at 70% VO2 peak on two occasions when breathing 21 or 60% O2. Arterial and femoral venous blood samples and blood flow measurements were obtained throughout exercise, and muscle biopsies were taken at rest and after 10, 20, and 40 min of exercise. Hyperoxia had no effect on leg O2 delivery, O2 uptake, or RQ during exercise. Muscle glycogenolysis was reduced by 16% with hyperoxia (267 +/- 19 vs. 317 +/- 21 mmol/kg dry wt), translating into a significant, 15% reduction in total pyruvate production over the 40-min exercise period. Decreased pyruvate production during hyperoxia had no effect on PDH activity (pyruvate oxidation) but significantly decreased lactate accumulation (60%: 22.6 +/- 6.4 vs. 21%: 31.3 +/- 8.7 mmol/kg dry wt), lactate efflux, and total lactate production over 40 min of cycling. Decreased glycogenolysis in hyperoxia was related to an approximately 44% lower epinephrine concentration and an attenuated accumulation of potent phosphorylase activators ADPf and AMPf during exercise. Greater phosphorylation potential during hyperoxia was related to a significantly diminished rate of PCr utilization. The tighter metabolic match between pyruvate production and oxidation resulted in a decrease in total lactate production and efflux over 40 min of exercise during hyperoxia.  相似文献   

10.
Six healthy male subjects performed three exercise tests in which the power output was increased by 100 kpm/min each minute until exhaustion. The studies were carried out after oral administration of CaCO3 (control), NH4Cl (metabolic acidosis), and NaHCO3 (metabolic alkalosis). Ventilation (VE), O2 intake (VO2), and CO2 output (VCO2) were monitored continuously. Arterialized-venous blood samples were drawn at specific times and analyzed for pH, PCO2, and lactate concentration. Resting pH (mean +/- SE) was lowest in acidosis (7.29 +/- 0.01) and highest in alkalosis (7.46 +/- 0.02). A lower peak power output (kpm/min) was achieved in acidosis (1,717 +/- 95) compared with control (1,867 +/- 120) alkalosis (1,867 +/- 125). Submaximal VO2 and VCO2 were similar, but peak VO2 and VCO2 were lower in acidosis. Plasma lactate concentration was lower at rest and during exercise in acidosis. Although lactate accumulation was reduced in acidosis, increases in hydrogen ion concentration were similar in the three conditions. We conclude that acid-base changes influence the maximum power output that may be sustained in incremental dynamic exercise and modify plasma lactate appearance, but have little effect on hydrogen ion appearance in plasma.  相似文献   

11.
Dynamic activities such as running, cycling, and swimming have been shown to effectively reduce lactate in the postexercise period. It is unknown whether core stabilization exercises performed following an intense bout would exhibit a similar effect. Therefore, this study was designed to assess the extent of the lactate response with core stabilization exercises following high-intensity anaerobic exercise. Subjects (N = 12) reported twice for testing, and on both occasions baseline lactate was obtained after 5 minutes of seated rest. Subjects then performed a 30-second Wingate anaerobic cycle test, immediately followed by a blood lactate sample. In the 5-minute postexercise period, subjects either rested quietly or performed core stabilization exercises. A final blood lactate sample was obtained following the 5-minute intervention period. Analysis revealed a significant interaction (p = 0.05). Lactate values were similar at rest (core = 1.4 +/- 0.1, rest = 1.7 +/- 0.2 mmol x L(-1)) and immediately after exercise (core = 4.9 +/- 0.6, rest = 5.4 +/- 0.4 mmol x L(-1)). However, core stabilization exercises performed during the 5-minute postexercise period reduced lactate values when compared to rest (5.9 +/- 0.6 vs. 7.6 +/- 0.8 mmol x L(-1)). The results of this study show that performing core stabilization exercises during a recovery period significantly reduces lactate values. The reduction in lactate may be due to removal via increased blood flow or enhanced uptake into the core musculature. Incorporation of core stability exercises into a cool-down period following muscular work may result in benefits to both lactate clearance as well as enhanced postural control.  相似文献   

12.
We used (31)P-magnetic resonance spectroscopy to study proton buffering in finger flexor muscles of eight healthy men (25-45 yr), during brief (18-s) voluntary finger flexion exercise (0.67-Hz contraction at 10% maximum voluntary contraction; 50/50 duty cycle) and 180-s recovery. Phosphocreatine (PCr) concentration fell 19 +/- 2% during exercise and then recovered with half time = 0.24 +/- 0.01 min. Cell pH rose by 0.058 +/- 0.003 units during exercise as a result of H(+) consumption by PCr splitting, which (assuming no lactate production or H(+) efflux) implies a plausible non-P(i) buffer capacity of 20 +/- 3 mmol. l intracellular water(-1). pH unit(-1). There was thus no evidence of significant glycogenolysis to lactate during exercise. Analysis of PCr kinetics as a classic linear response suggests that oxidative ATP synthesis reached 48 +/- 2% of ATP demand by the end of exercise; the rest was met by PCr splitting. Postexercise pH recovery was faster than predicted, suggesting "excess proton" production, with a peak value of 0.6 +/- 0.2 mmol/l intracellular water at 0.45 min of recovery, which might be due to, e.g., proton influx driven by cellular alkalinization, or a small glycolytic contribution to PCr resynthesis in recovery.  相似文献   

13.
This study examined the effects of an external nasal dilator (END) on sedentary and aerobically trained women using the blood lactate threshold as a measure of aerobic performance. Three groups of women (sedentary, pre-season, in-season) participated in the study: nine sedentary college students (age 19 +/- 1.0 y), eight pre-season college athletes (age 20 +/- 2.3 y), and six in-season college rowers (age 20 +/- 1.7 y). A two-way repeated-measures design was used with subjects in each group being exposed to both conditions (with END and without END). The first two groups performed two incremental exercise tests in random order on a cycle ergometer, and the third group performed the tests on a rowing ergometer. Participants in each group wore an END strip for only one of the tests. Venous blood was collected at rest, during the final 30 seconds of each stage, and 1 and 3 minutes into the recovery period for the determination of blood lactate concentration and identification of the blood lactate threshold. No significant differences (P = 0.05) were found in blood lactate concentration at the lactate threshold between conditions for either group (sedentary: with END 2.51 +/- 1.18 mmol x L(-1), without END 2.56 +/- 0.84 mmol x L(-1); pre-season: with END 2.93 +/- 0.97 mmol x L(-1), without END 2.81 +/- 1.15 mmol x L(-1); and in-season: with END 3.93 +/- 0.50 mmol x L(-1), without END 3.49 +/- 0.387 mmol x L(-1)). We conclude that (a) the END did not improve the lactate threshold in either sedentary or trained college-age women, and (b) the END did not result in lower blood lactate levels during moderate to high-intensity exercise in the three groups examined in this study.  相似文献   

14.
The objective of this study was to determine whether arterial PCO2 (PaCO2) decreases or remains unchanged from resting levels during mild to moderate steady-state exercise in the dog. To accomplish this, O2 consumption (VO2) arterial blood gases and acid-base status, arterial lactate concentration ([LA-]a), and rectal temperature (Tr) were measured in 27 chronically instrumented dogs at rest, during different levels of submaximal exercise, and during maximal exercise on a motor-driven treadmill. During mild exercise [35% of maximal O2 consumption (VO2 max)], PaCO2 decreased 5.3 +/- 0.4 Torr and resulted in a respiratory alkalosis (delta pHa = +0.029 +/- 0.005). Arterial PO2 (PaO2) increased 5.9 +/- 1.5 Torr and Tr increased 0.5 +/- 0.1 degree C. As the exercise levels progressed from mild to moderate exercise (64% of VO2 max) the magnitude of the hypocapnia and the resultant respiratory alkalosis remained unchanged as PaCO2 remained 5.9 +/- 0.7 Torr below and delta pHa remained 0.029 +/- 0.008 above resting values. When the exercise work rate was increased to elicit VO2 max (96 +/- 2 ml X kg-1 X min-1) the amount of hypocapnia again remained unchanged from submaximal exercise levels and PaCO2 remained 6.0 +/- 0.6 Torr below resting values; however, this response occurred despite continued increases in Tr (delta Tr = 1.7 +/- 0.1 degree C), significant increases in [LA-]a (delta [LA-]a = 2.5 +/- 0.4), and a resultant metabolic acidosis (delta pHa = -0.031 +/- 0.011). The dog, like other nonhuman vertebrates, responded to mild and moderate steady-state exercise with a significant hyperventilation and respiratory alkalosis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Ion concentration changes in whole blood, plasma, and erythrocytes across inactive muscle were examined in eight healthy males performing four 30-s bouts of maximal isokinetic cycling with 4 min rest between each bout. Blood was sampled from the arm brachial artery and deep antecubital vein during the intermittent exercise period and for 90 min of recovery. Arterial and venous erythrocyte lactate concentration ([Lac-]) increased from 0.3 +/- 0.1 to 12.5 +/- 1.3 (p < 0.01) and 1.1 +/- 0.4 to 8.5 +/- 1.5 mmol/L (p < 0.01), respectively, returning to control values during recovery. Arterial and venous plasma [Lac-] increased from 1.5 +/- 0.2 to 27.7 +/- 1.8 and from 1.3 +/- 0.4 to 25.7 +/- 3.5 mmol/L, respectively, and was greater than erythrocyte [Lac-] throughout exercise and recovery. Arterial and venous [K+] increased in erythrocytes from 119.5 +/- 5.1 to 125.4 +/- 4.6 (p < 0.01) and from 113.6 +/- 1.7 to 120.6 +/- 7.1 mmol/L, respectively, decreasing to control during recovery. In arterial and venous plasma, [K+] increased from 4.3 +/- 0.1 to 6.1 +/- 0.2 (p < 0.01) and from 4.5 +/- 0.2 to 5.3 +/- 0.2 mmol/L (p < 0.01), respectively, decreasing to control during recovery. The efflux of Lac- out of erythrocytes against an electrochemical concentration gradient suggests the presence of an active transport system. Efflux of K+ from erythrocytes as blood passes across inactive muscle affords an important adaptation to the K+ release from muscle activated in heavy exercise.  相似文献   

16.
This study attempted to quantify the difference in heart rate and exercise stage at which blood lactate threshold (T(bla)) occurs using 3 different modes of exercise: running, double poling (DP) on roller skis, and skating (SK) on roller skis. Nine elite collegiate cross-country ski racers (4 men, 5 women) served as test subjects. Testing was conducted on a motorized FitNex treadmill, specially designed for roller skiing. Heart rate was monitored via telemetry with values averaged over the last 30 seconds of each stage. A 40-micro l blood sample was obtained at the fingertip at the end of each 4-minute stage, and 25 micro l was analyzed for whole blood lactate concentration. The T(bla) was determined by the first exercise stage that elicited a concentration over 4.0 mmol.L(-1). The same test protocol was used for all 3 exercise modes. Mean heart rate, in beats per minute (b.min(-1)), at T(bla) was not significantly different (P < or = 0.05) for SK (mean 187 +/- 14 b.min(-1) SD) vs. running (mean 187 +/- 12 b.min(-1) SD); however, heart rate was significantly lower at T(bla) for DP (mean 161 +/- 17 b.min(-1) SD) vs. running and DP vs. SK. The mean exercise protocol stage that induced a blood lactate value which exceeded T(bla) was significantly different (P < or = 0.05) for running (5.22 +/- 1.20 mmol.L(-1) SD) vs. DP (1.89 +/- 0.78 mmol.L(-1) SD), running vs. SK (3.67 +/- 0.71 mmol.L(-1) SD), and SK vs. DP. It was concluded that T(bla) occurs at a lower heart rate and exercise stage during DP as compared with SK or running. Therefore, it stands to reason that the heart rate at T(bla) may vary based on mode of exercise, and when using heart rate to estimate blood lactate concentration, coaches and athletes should be aware that different modes of exercise elicit a different blood lactate concentration at a given heart rate depending on exercise mode used.  相似文献   

17.
Seven trained male cyclists (VO2max = 4.42 +/- 0.23 l.min-1; weight 71.7 +/- 2.7 kg, mean +/- SE) completed two incremental cycling tests on the cycle ergometer for the estimation of the "individual anaerobic threshold" (IAT). The cyclists completed three more exercises in which the work rate incremented by the same protocol, but upon reaching selected work rates of approximately 40, 60 and 80% VO2max, the subjects cycled for 60 min or until exhaustion. In these constant load studies, blood lactate concentration was determined on arterialized venous ([La-]av) and deep venous blood ([La-]v) of the resting forearm. The av-v lactate gradient across the inactive forearm muscle was -0.08 mmol.l-1 at rest. After 3 min at each of the constant load work rates, the gradients were +0.05, +0.65* and +1.60* mmol.l-1 (*P less than 0.05). The gradients after 10 min at these same work rates were -0.09, +0.24 and +1.03* mmol.l-1. For the two highest work rates taken together, the lactate gradient was less at 10 min than 3 min constant load exercise (P less than 0.05). The [La-]av was consistently higher during prolonged exercise at both 60 and 80% VO2max than that observed at the same work rate during progressive exercise. At the highest work rate (at or above the IAT), time to exhaustion ranged from 3 to 36 min in the different subjects. These data showed that [La-] uptake across resting muscle continued to increase to work rates above the IAT. Further, the greater av-v lactate gradient at 3 min than 10 min constant load exercise supports the concept that inactive muscle might act as a passive sink for lactate in addition to a metabolic site.  相似文献   

18.
The purpose of the present study was to use the microdialysis technique to simultaneously measure the interstitial concentrations of several putative stimulators of the exercise pressor reflex during 5 min of intermittent static quadriceps exercise in humans (n = 7). Exercise resulted in approximately a threefold (P < 0.05) increase in muscle sympathetic nerve activity (MSNA) and 13 +/- 3 beats/min (P < 0.05) and 20 +/- 2 mmHg (P < 0.05) increases in heart rate and blood pressure, respectively. During recovery, all reflex responses quickly returned to baseline. Interstitial lactate levels were increased (P < 0.05) from rest (1.1 +/- 0.1 mM) to exercise (1. 6 +/- 0.2 mM) and were further increased (P < 0.05) during recovery (2.0 +/- 0.2 mM). Dialysate phosphate concentrations were 0.55 +/- 0. 04, 0.71 +/- 0.05, and 0.48 +/- 0.03 mM during rest, exercise, and recovery, respectively, and were significantly elevated during exercise. At the onset of exercise, dialysate K(+) levels rose rapidly above resting values (4.2 +/- 0.1 meq/l) and continued to increase during the exercise bout. After 5 min of contractions, dialysate K(+) levels had peaked with an increase (P < 0.05) of 0.6 +/- 0.1 meq/l and subsequently decreased during recovery, not being different from rest after 3 min. In contrast, H(+) concentrations rapidly decreased (P < 0.05) from resting levels (69.4 +/- 3.7 nM) during quadriceps exercise and continued to decrease with a mean decline (P < 0.05) of 16.7 +/- 3.8 nM being achieved after 5 min. During recovery, H(+) concentrations rapidly increased and were not significantly different from baseline after 1 min. This study represents the first time that skeletal muscle interstitial pH, K(+), lactate, and phosphate have been measured in conjunction with MSNA, heart rate, and blood pressure during intermittent static quadriceps exercise in humans. These data suggest that interstitial K(+) and phosphate, but not lactate and H(+), may contribute to the stimulation of the exercise pressor reflex.  相似文献   

19.
Muscle glycogenolytic flux and lactate accumulation during exercise are lower after 3-7 days of "short-term" aerobic training (STT) in men (e.g., Green HJ, Helyar R, Ball-Burnett M, Kowalchuk N, Symon S, and Farrance B. J Appl Physiol 72: 484-491, 1992). We hypothesized that 5 days of STT would attenuate pyruvate production and the increase in muscle tricarboxylic acid cycle intermediates (TCAI) during exercise, because of reduced flux through the reaction catalyzed by alanine aminotransferase (AAT; pyruvate + glutamate <--> 2-oxoglutarate + alanine). Eight women [22 +/- 1 yr, peak oxygen uptake (Vo2 peak) = 40.3 +/- 4.6 ml. kg-1. min-1] performed seven 45-min bouts of cycle exercise at 70% Vo2 peak over 9 days (1 bout/day; rest only on days 2 and 8). During the first and last bouts, biopsies (vastus lateralis) were obtained at rest and after 5 and 45 min of exercise. Muscle glycogen concentration was approximately 50% higher at rest after STT (493 +/- 38 vs. 330 +/- 20 mmol/kg dry wt; P 相似文献   

20.
Hepatic lactate uptake versus leg lactate output during exercise in humans.   总被引:1,自引:0,他引:1  
The exponential rise in blood lactate with exercise intensity may be influenced by hepatic lactate uptake. We compared muscle-derived lactate to the hepatic elimination during 2 h prolonged cycling (62 +/- 4% of maximal O(2) uptake, (.)Vo(2max)) followed by incremental exercise in seven healthy men. Hepatic blood flow was assessed by indocyanine green dye elimination and leg blood flow by thermodilution. During prolonged exercise, the hepatic glucose output was lower than the leg glucose uptake (3.8 +/- 0.5 vs. 6.5 +/- 0.6 mmol/min; mean +/- SE) and at an arterial lactate of 2.0 +/- 0.2 mM, the leg lactate output of 3.0 +/- 1.8 mmol/min was about fourfold higher than the hepatic lactate uptake (0.7 +/- 0.3 mmol/min). During incremental exercise, the hepatic glucose output was about one-third of the leg glucose uptake (2.0 +/- 0.4 vs. 6.2 +/- 1.3 mmol/min) and the arterial lactate reached 6.0 +/- 1.1 mM because the leg lactate output of 8.9 +/- 2.7 mmol/min was markedly higher than the lactate taken up by the liver (1.1 +/- 0.6 mmol/min). Compared with prolonged exercise, the hepatic lactate uptake increased during incremental exercise, but the relative hepatic lactate uptake decreased to about one-tenth of the lactate released by the legs. This drop in relative hepatic lactate extraction may contribute to the increase in arterial lactate during intense exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号