首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Naiki T  Karino T 《Biorheology》1999,36(3):243-256
The effect of steady shear flow on concentration polarization of plasma proteins and lipoproteins at the luminal surface of a semipermeable vessel wall was studied experimentally using suspensions of these molecules in a cell culture medium and a semipermeable membrane dialysis tube which served as a model of an implanted vascular graft or an artery. The study was carried out by flowing a cell culture medium containing fetal calf serum or bovine plasma lipoproteins or bovine albumin through a 7.5 mm diameter, 60 mm-long dialysis tube in steady flow under a physiologic mean arterial perfusion pressure of 100 mmHg, and measuring the filtration velocity of water (cell culture medium) at the vessel wall which varied as a consequence of the change in concentration of plasma protein particles at the luminal surface of the semipermeable membrane dialysis tube. It was found that for perfusates containing plasma proteins and/or lipoproteins, filtration velocity of water was the lowest in the absence of flow, and it increased or decreased as the flow rate (hence wall shear rate) increased or decreased from a certain non-zero value, indicating that surface concentration of protein particles varied reversibly as a direct function of flow rate. It was also found that at particle concentrations equivalent to those found in a culture medium containing serum at 5% by volume, plasma lipoproteins which were much smaller in number and lower in concentration but larger in size than albumin, had a much larger effect on the filtration velocity of water than albumin. These findings were very much the same as those previously obtained with a cultured endothelial cell monolayer, strongly suggesting that the flow-dependent variation in filtration velocity of water at a vessel wall results from a physical phenomenon, that is, flow-dependent concentration polarization of low density lipoproteins at the luminal surface of the endothelial cell monolayer.  相似文献   

2.
Naiki T  Karino T 《Biorheology》2000,37(5-6):371-384
To substantiate the occurrence of flow-dependent concentration or depletion of atherogenic lipoproteins, which has been theoretically predicted to take place at a blood/endothelium boundary, we have studied the effects of perfusion pressure and wall shear rate on the accumulation and uptake of microspheres by cultured vascular endothelial cells in a monolayer. The study was carried out by flowing a cell culture medium containing fetal calf serum and fluorescent microspheres through a parallel-plate flow chamber having a cultured bovine aortic endothelial cell (BAEC) monolayer on one wall of the chamber. The microspheres had a nominal diameter of 19 nm, approximately the same as that of low-density lipoproteins, and thus served as models and tracers of plasma proteins and lipoproteins. Experiments were carried out in steady flow in the physiological range of wall shear rate and water filtration velocity at the monolayer, while monitoring the intensity of fluorescence of the spheres accumulated at and taken up by the endothelial cells. It was found that in a perfusate containing only fluorescent microspheres, due to increased phagocytic activity of the endothelial cells, the intensity of fluorescence which reflected the number of the microspheres taken up by the endothelial cells, increased almost linearly with time and independently of wall shear rate. However, with perfusates containing fetal calf serum, this abnormal phenomenon did not occur, and the intensity of fluorescence increased with increasing perfusion pressure and decreasing wall shear rate. It was also found that the number of fluorescent microspheres accumulated at and taken up by the BAEC monolayer was shear-dependent only at low wall shear rates, and increased sharply when the flow rate was reduced to zero. These results provided solid experimental evidence that flow-dependent concentration or depletion of macromolecules occurs at the luminal surface of the endothelium at physiological wall shear rates and water filtration velocities, and strongly supports the hypothesis that flow-dependent concentration polarization of lipoproteins plays an important role in the localization of atherosclerosis and intimal hyperplasia in man by facilitating the uptake of atherogenic lipoproteins by endothelial cells.  相似文献   

3.
Wada S  Karino T 《Biorheology》1999,36(3):207-223
It is suspected that physical and fluid mechanical factors play important roles in the localization of atherosclerotic lesions and intimal hyperplasia in man by affecting the transport of cholesterol in flowing blood to arterial walls. Hence, we have studied theoretically the effects of various physical and fluid mechanical factors such as wall shear rate, diffusivity of low density lipoproteins (LDL), and filtration velocity of water at the vessel wall on surface concentration of LDL at an arterial wall by means of a computer simulation of convective and diffusive transport of LDL in flowing blood to the wall of a straight artery under conditions of a steady flow. It was found that under normal physiologic conditions prevailing in the human arterial system, due to the presence of a filtration flow of water at the vessel wall, flow-dependent concentration polarization (accumulation or depletion) of LDL occurs at a blood/endothelium boundary. The surface concentration of LDL at an arterial wall takes higher values than that in the bulk flow in that vessel, and it is affected by three major factors, that is, wall shear rate, gamma w, filtration velocity of water at the vessel wall, Vw, and the distance from the entrance of the artery, L. It increases with increasing Vw and L, and decreasing gamma w hence the flow rate. Thus, under certain circumstances, the surface concentration of LDL could rise locally to a value which is several times higher than that in the bulk flow, or drop locally to a value even lower than a critical concentration for the maintenance of normal functions and survival of cells forming the vessel wall. These results suggest the possibility that all the vascular phenomena such as the localization of atherosclerotic lesions and intimal hyperplasia, formation of cerebral aneurysms, and adaptive changes of lumen diameter and wall structure of arteries and veins to certain changes in hemodynamic conditions in the circulation are governed by this flow-dependent concentration polarization of LDL which carry cholesterol.  相似文献   

4.
Wada S  Karino T 《Biorheology》2002,39(3-4):331-336
To find out whether concentration polarization of low-density lipoprotein (LDL) occurs at the surface of a vascular endothelium or not, transport of LDL in flowing blood to an water-permeable endothelium was studied theoretically by means of CFD. Calculations were carried out for an endothelium exposed to a Couette flow by assuming that the surface geometry of the endothelium could be expressed by a cosine function. Two typical cases were considered for the permeability of endothelium to water; one was uniform permeability everywhere in the endothelium, and the other was uneven permeability which was augmented at the intercellular junction. It was found that, in both cases, the surface concentration of LDL increased in going distally from the entrance, taking locally high and low values at the valleys and hills of the endothelium, respectively, and the variation was larger in the case of endothelium with uneven permeability. These results clearly showed that concentration polarization of LDL which might affect the uptake of LDL by the arterial wall certainly occurs at the surface of the endothelium even if the flow is disturbed microscopically by the uneven surface of the endothelium.  相似文献   

5.
The macromolecular permeability of cultured bovine aortic, bovine venous, and human umbilical vein endothelial cell monolayers was decreased significantly in culture medium containing L-ascorbic acid (Asc Acid; 0.01–0.1 mM) and L-ascorbic acid 2-phosphate (Asc 2-P). Dithiothreitol, which shows reducing activity equivalent to that of Asc Acid, did not affect endothelial permeability. Asc Acid induced a sixfold increase in collagen synthesis by the endothelial cells. The coexistence of L-azetidine 2-carboxylic acid, an inhibitor of collagen synthesis, attenuated the effect of Asc 2-P in a dose-dependent manner. Another collagen synthesis inhibitor, ethyl-3,4-dihydroxybenzoate, also inhibited collagen synthesis and increased endothelial permeability. The decrease in permeability of the endothelial monolayer was dependent on a reduction of the permeability coefficient of the endothelial monolayer. These findings indicate that endothelial barrier function is stimulated by Asc Acid via an increase in collagen synthesis. © 1995 Wiley-Liss, Inc.  相似文献   

6.
Atherosclerosis is the underlying cause of most heart attacks and strokes. It is thereby the leading cause of death in the Western world, and it places a significant financial burden on health care systems. There is evidence that complex, multi-scale arterial mass transport processes play a key role in the development of atherosclerosis. Such processes can be controlled both by blood flow patterns and by properties of the arterial wall. This short review focuses on one vascular-scale, flow-regulated arterial mass transport process, namely concentration polarization of low density lipoprotein at the luminal surface of the arterial endothelium, and on one cellular-scale, structural determinant of arterial wall mass transport, namely the endothelial glycocalyx layer. Both have attracted significant attention in recent years. In addition to reviewing and appraising relevant literature, we propose various directions for future work.  相似文献   

7.
Molecular sieving characteristics of the cultured endothelial monolayer   总被引:10,自引:0,他引:10  
We examined the selectivity of the bovine pulmonary artery endothelial monolayer in vitro to molecules of different sizes. The cultured bovine pulmonary endothelial monolayer was grown on a gelatinized filter and the transendothelial transport was studied by determining the permeability of molecules ranging from 182 to 340,000 daltons under diffusion conditions. The permeabilities across the cultured bovine endothelium were modeled according to cylindrical pore theory. The data were best fit by a two-pore model with radii 65 A and 304 A and a ratio of small to large pores of 160:1. The results indicate that the cultured endothelial monolayer is a selective barrier to molecules of different sizes and that the molecular selectivity is consistent with a diffusional pathway through endothelial pore equivalents. The cultured endothelial monolayer is a useful system for studying the permeability characteristics of the endothelial barrier.  相似文献   

8.
Two kinds of membrane (luminal and abluminal membrane domains) fractions have been isolated from bovine aortic endothelial cells by fractionation of whole cell homogenate on discontinuous sucrose density gradients. The luminal membrane domain was enriched 12-16-fold for angiotensin-converting enzyme activity and 8-10-fold in alkaline phosphatase activity. The abluminal membrane domain displayed an enrichment of 8-fold in (Na+ + K+)-ATPase activity. Both of the membrane domains were minimally contaminated with mitochondria, microsomes and Golgi bodies, as assessed by their corresponding marker enzyme activities. 125I-labeling of endothelial cell monolayers by the Enzymo-Bead lactoperoxidase-catalyzed iodination procedure, followed by isolation of membranes, revealed that the radioactivity was predominantly associated with membranes enriched in angiotensin-converting enzyme activity, corresponding to the luminal membrane domain. However, when cells were radioiodinated in suspension culture, radioactivity was found equally associated in both the luminal and abluminal membrane fractions. Electron microscopy of freeze-fractured and sectioned material showed both luminal and abluminal membrane domains to be in the form of vesicles varying in size from 100 to 400 nm in diameter. To characterize the separation of endothelial cell membrane domains, we have attempted to prepare monoclonal antibodies specific for endothelial cells. Several clones were obtained, producing antibodies which bound to endothelial cells of arterial, venous and capillary origin. Two antibodies of these clones, XIVC6 and XVD2, were studied in more detail. In the ELISA assay, these antibodies reacted with bovine vascular endothelial cells, but not with human umbilical cord endothelial cells, nor with bovine corneal endothelial cells, smooth muscle cells or fibroblasts. Both of these antibodies are directed against an antigen of approximately 130 kDa, under reducing and non-reducing conditions, as assayed by the immunoprecipitation method. Western blot analysis of luminal and abluminal membrane fractions revealed that only MAb XVD2 reacted with an antigen, indicating that the antibody XIVC6 is directed against an epitope which is denatured by SDS. Moreover, MAb XVD2 preferentially reacted with the luminal membrane compared to the abluminal membrane domain of the endothelial cell. These monoclonal antibodies do not react with platelet membrane proteins, indicating that this 130 kDa membrane antigen is not common to both endothelial cells and platelets.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
It is recalled that the tension in a stretched polyelectrolyte chain mechanically compensates both the coulomb interaction and the hydrostatic pressure increase around the chain in a compromise which minimises the free energy and keeps water chemical potential constant throughout. Stretching strongly favors parallel cylinder nematic order in polyelectrolyte brushes on a surface or in the slit between two surfaces when the polyelectrolyte chains function as bridges. Strong, stiffly stretched chains result when the molarity of the fixed charge distribution is larger than the molarity of the neutral salt solution with which the brushes are in equilibrium. The relevance of these two systems to the endothelial cells which cover the walls of blood vessels is discussed.  相似文献   

10.
《Insect Biochemistry》1984,14(1):87-95
Cell surface proteins and glycoproteins of a cultured Drosophila melanogaster cell line were studied by two-dimensional electrophoresis. Proteins radiolabelled by the lactoperoxidase method were examined for hydrophilic or hydrophobic properties using a phase separation technique, as well as for trypsin sensitivity. The populations of proteins labelled by lactoperoxidase catalyzed radio-iodination were compared to the populations of glycoproteins labelled by either metabolic incorporation of tritiated glucosamine or by binding of radiolabelled concanavalin A. The general distribution and characteristics of the proteins labelled by the lactoperoxidase method are also discussed.  相似文献   

11.
We have studied the mechanisms of angiotensin II (A-II) transport through a cultured arterial endothelial cell monolayer. The transport of 125I-labeled A-II was inhibited by excess unlabeled A-II (50 microM) and [Sar1, Ile8]-A-II (50 microM), but was not inhibited by bradykinin (50 microM). The transport process was shown to be temperature dependent and was inhibited by 10 mM NaN3 plus 50 mM 2-deoxyglucose. Monensin (50 microM), an inhibitor of endocytotic trafficking, reduced the rate of transport of 125I-A-II. It is also shown that the specific pathway for A-II transport was unidirectional from the apical to the basolateral surface of the endothelial cell monolayer.  相似文献   

12.
A human breast cancer cell line (MCF-7), when sealed on confluent bovine pulmonary aortic endothelial cell (CPAE) monolayers, induced morphological changes (retraction) in CPAE cells. The area of retraction depended on the incubation time and the number of MCF-7 cells, suggesting that MCF-7 cells had the capacity to retract CPAE cells. This capacity was reduced by 60% by pretreatment of MCF-7 cells with 17β-estradiol (E) and progesterone (Pg). The extent of retraction was not affected by the addition of various protease inhibitors. CPAE retraction was induced also by adding conditioned medium (CM) from the culture of MCF-7 cells. Considerably less activity was detected in the CM obtained from MCF-7 cells cultured in the presence of E and Pg. The retraction was reversed in 24 h by culturing the monolayer in fresh medium without CM and was not induced by trypsin treatment of the CM.  相似文献   

13.
Sialic acid-bearing molecules on the luminal surface of the vascular endothelium in mouse and rat pancreatic capillaries were detected electron microscopically by using a procedure with ferritin hydrazide (FH), after preferential oxidation of sialyl residues with sodium periodate. The distribution of FH on the endothelial surface demonstrated the existence of microdomains with various densities of sialoglycoconjugates oxidizable by sodium periodate and accessible to the tracer. On the plasmalemma proper, FH binding sites were heterogeneously distributed. Their concentration on various microdomains decreased as follows: plasmalemma proper greater than coated pits greater than stomal diaphragms of plasmalemmal vesicles and transendothelial channels, and fenestral diaphragms. The membrane of plasmalemmal vesicles and transendothelial channels was not labeled by FH. Nonspecific binding of FH to the nonoxidized endothelial surface or that oxidized after neuraminidase treatment was relatively low.  相似文献   

14.
Dynamics of putative raft-associated proteins at the cell surface   总被引:6,自引:0,他引:6  
Lipid rafts are conceptualized as membrane microdomains enriched in cholesterol and glycosphingolipid that serve as platforms for protein segregation and signaling. The properties of these domains in vivo are unclear. Here, we use fluorescence recovery after photobleaching to test if raft association affects a protein's ability to laterally diffuse large distances across the cell surface. The diffusion coefficients (D) of several types of putative raft and nonraft proteins were systematically measured under steady-state conditions and in response to raft perturbations. Raft proteins diffused freely over large distances (> 4 microm), exhibiting Ds that varied 10-fold. This finding indicates that raft proteins do not undergo long-range diffusion as part of discrete, stable raft domains. Perturbations reported to affect lipid rafts in model membrane systems or by biochemical fractionation (cholesterol depletion, decreased temperature, and cholesterol loading) had similar effects on the diffusional mobility of raft and nonraft proteins. Thus, raft association is not the dominant factor in determining long-range protein mobility at the cell surface.  相似文献   

15.
Galvanotaxis, that is, migration induced by DC electric fields, is thought to play a significant role in development and wound healing, however, the mechanisms by which extrinsic electric fields orchestrate intrinsic motility responses are unknown. Using mammalian cell lines (3T3, HeLa, and CHO cells), we tested one prevailing hypothesis, namely, that electric fields polarize charged cell surface molecules, and that these polarized molecules drive directional motility. Negatively charged sialic acids, which contribute the bulk of cell surface charge, redistribute preferentially to the surface facing the direction of motility, as measured by labeling with fluorescent wheat germ agglutinin. We treated cells with neuraminidase to remove sialic acids; as expected, this decreased total cell surface charge. We also changed cell surface charge independent of sialic acid moieties, by conjugating cationic avidin to the surface of live cells. Neuraminidase inhibited the electric field-induced directional polarization of membrane ruffling and alpha4 integrin, while avidin treatment actually reversed the directional polarization of sialic acids. Neuraminidase treatment inhibited directionality but did not alter speed of motility. Surprisingly, avidin treatment did not significantly alter either directionality or speed of motility. Thus, our results demonstrate that electric field-induced polarization of charged species indeed occurs. However, polarization of the bulk of charged cell surface proteins is neither necessary nor sufficient to cause motility, thus contradicting the second part of our hypothesis. Because neuraminidase inhibited directional motility, we also conclude that sialic acids are required constituents of some cell surface molecule(s) through which electric fields mount a polarized transmembrane response.  相似文献   

16.
Previously, in vivo studies showed that neuropeptide Y (NPY) elevates vascular permeability in isolated lung perfusion preparations, possibly through binding to the NPY Y(3) receptor. The present study used monolayers in a double-chamber culture method under conditions of normoxia (5% CO(2)-20% O(2)-75% N(2)) or hypoxia (5% CO(2)-5% O(2)-90% N(2)) to test the hypothesis that NPY directly affects rat aortic endothelial cells (RAECs). RAECs were cultured on the base of the upper chamber, into which FITC-labeled albumin was introduced, and permeation into the lower chamber was measured. The RAEC monolayer was treated with 10(-8)-3 x 10(-7) M NPY for 2 h in normoxia or hypoxia. In hypoxia, NPY concentration dependently increased the permeability of the RAEC monolayer, whereas in normoxia no significant change was observed. Peptide YY, NPY Y(1), and NPY Y(2) receptor agonists and NPY Y(1) receptor antagonist exerted no significant effects under hypoxic conditions. NPY-(18-36), an NPY Y(3) receptor antagonist, elicited an inhibitory action on the NPY-induced increase in monolayer permeability. Furthermore, neither N-monomethyl-l-arginine, a nitric oxide synthase inhibitor, the bradykinin B(2) receptor antagonist FK-3657, nor the vascular endothelial growth factor receptor-coupled tyrosine kinase inhibitor tyrphostin SU-1498, injected into the medium of the upper chamber, affected the NPY-induced permeability changes under hypoxic conditions. The results suggest that the NPY-induced increase in permeability across the RAEC monolayer is closely related to low O(2) tension, possibly mediated by direct action on the NPY Y(3) receptor expressed on the endothelial cell membrane. Furthermore, this NPY-induced increase is not likely due to nitric oxide, bradykinin, or vascular endothelial growth factor.  相似文献   

17.
The effects of ionizing irradiation (0, 600, 1,500, or 3,000 rads) on the permeability of pulmonary endothelial monolayers to albumin were studied. Pulmonary endothelial cells were grown to confluence on gelatin-coated polycarbonate filters, placed in serum-free medium, and exposed to a 60Co source. The monolayers were placed in modified flux chambers 24 hours after irradiation; 125I-albumin was added to the upper well, and both the upper and lower wells were serially sampled over 4 hours. The amount of albumin transferred from the upper well/hour over the period of steady-state clearance (90-240 min after addition of 125I-albumin) was 2.8 +/- 0.2% in control monolayers and was increased in monolayers exposed to 1,500 or 3,000 rads (increase of 63 +/- 10% and 61 +/- 10%, respectively, P less than 0.01). No increase was found in monolayers exposed to 600 rads. The increases in endothelial albumin transfer rates were associated with morphologic evidence of monolayer disruption and endothelial injury which paralleled the changes in albumin permeability. Dose-dependent alterations in endothelial actin filament organization were also found. Incubation of the monolayers exposed to 3,000 rads with medium supplemented with 10% fetal calf serum for 24 hours resulted in normalization of albumin permeability, improvement in morphologic appearance of the monolayers, and reorganization of the actin filament structure. These studies demonstrate that ionizing radiation is an active principle in the reversible disorganization of cultured pulmonary endothelial cell monolayers without the need of other cell types or serum components.  相似文献   

18.
The endothelial luminal glycocalyx has been largely ignored as a target in vascular pathophysiology even though it occupies a key location. As a model of the inflammatory response, we tested the hypothesis that tumor necrosis factor-alpha (TNF-alpha) can alter the properties of the endothelial apical glycocalyx. In the intact hamster cremaster microcirculation, fluorescein isothiocyanate (FITC)-labeled Dextrans 70, 580, and 2,000 kDa are excluded from a region extending from the endothelial surface almost 0.5 micrometer into the lumen. This exclusion zone defines the boundaries of the glycocalyx. Red blood cells (RBC) under normal flow conditions are excluded from a region extending even farther into the lumen. The cremaster microcirculation was pretreated with topical or intrascrotal applications of TNF-alpha. After infusion of FITC-dextran, FITC-albumin, or FITC-immunoglubulin G (IgG) via a femoral cannula, microvessels were observed with bright-field and fluorescence microscopy to obtain estimates of the anatomic diameters and the widths of fluorescent tracer columns and of the RBC columns (means +/- SE). After 2 h of intrascrotal TNF-alpha exposure, there was a significant increase in access of FITC-Dextrans 70 and 580 to the space bounded by the apical glycocalyx in arterioles, capillaries, and venules, but no significant change in access of FITC-Dextran 2,000. The effects of TNF-alpha could be observed as early as 20 min after the onset of topical application. TNF-alpha treatment also significantly increased the penetration rate of FITC-Dextran 40, FITC-albumin, and FITC-IgG into the glycocalyx and caused a significant increase in the intraluminal volume occupied by flowing RBC. White blood cell adhesion increased during TNF-alpha application, and we used the selectin antagonist fucoidan to attenuate leukocyte adhesion during TNF-alpha stimulation. This did not inhibit the TNF-alpha-mediated increase in permeation of the glycocalyx. These results show that proinflammatory cytokines can cause disruption of the endothelial apical glycocalyx, leading to an increased macromolecular permeation in the absence of an increase in leukocyte recruitment.  相似文献   

19.
Autotransporter proteins: novel targets at the bacterial cell surface   总被引:3,自引:0,他引:3  
Autotransporter proteins constitute a family of outer membrane/secreted proteins that possess unique structural properties that facilitate their independent transport across the bacterial membrane system and final routing to the cell surface. Autotransporter proteins have been identified in a wide range of Gram-negative bacteria and are often associated with virulence functions such as adhesion, aggregation, invasion, biofilm formation and toxicity. The importance of autotransporter proteins is exemplified by the fact that they constitute an essential component of some human vaccines. Autotransporter proteins contain three structural motifs: a signal sequence, a passenger domain and a translocator domain. Here, the structural properties of the passenger and translocator domains of three type Va autotransporter proteins are compared and contrasted, namely pertactin from Bordetella pertussis, the adhesion and penetration protein (Hap) from Haemophilus influenzae and Antigen 43 (Ag43) from Escherichia coli. The Ag43 protein is described in detail to examine how its structure relates to functional properties such as cell adhesion, aggregation and biofilm formation. The widespread occurrence of autotransporter-encoding genes, their apparent uniform role in virulence and their ability to interact with host cells suggest that they may represent rational targets for the design of novel vaccines directed against Gram-negative pathogens.  相似文献   

20.
3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (i.e. statins) are currently under clinical investigation as a prophylactic immunomodulatory treatment for neurological diseases where an inflammatory disruption of the blood-brain barrier plays a pathogenic role. Here, we investigated whether atorvastatin pre-treatment modulates inflammatory-induced barrier dysfunction of cultured human brain microvascular endothelial cells (HBMEC). Pre-treatment of immortalized HBMEC with atorvastatin (50 nmol/L to 1 micromol/L) dose-dependently prevented an inflammatory up-regulation of monocyte chemoattractant protein-1/CCL2 but not of interleukin-8/CXCL8 and intercellular adhesion molecule-1 expression by tumor necrosis factor-alpha or interleukin-1beta. It antagonized an inflammatory up-regulation of claudin-3 expression while zonula occludens-1 and occludin protein levels remained unaltered. Like immortalized HBMEC, primary HBMEC also showed a reduction of claudin-3 and of inducible CCL2 expression following atorvastatin pre-treatment. On a functional level, atorvastatin pre-treatment of HBMEC strongly and dose-dependently reduced adhesion of activated T lymphocytes to pre-activated primary endothelium. Atorvastatin effects could partially be abolished by parallel mevalonate treatment. These anti-inflammatory effects of atorvastatin were observed already at a pharmacologically relevant concentration of 50 nmol/L. Our results obtained with human brain endothelial cells demonstrate how statins may partially prevent an inflammatory-mediated blood-brain barrier breakdown in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号