首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The crystal structures of the Na(+)- and Li(+)-bound NtpK rings of Enterococcus hirae V-ATPase have been obtained. The coupling ion (Na(+) or Li(+)) was surrounded by five oxygen atoms contributed by residues T64, Q65, Q110, E139, and L61, and the hydrogen bonds of the side chains of Q110, Y68, and T64 stabilized the position of the E139 γ carboxylate essential for ion occlusion (PDB accession numbers 2BL2 and 2CYD). We previously indicated that an NtpK mutant strain (E139D) lost tolerance to sodium but not to lithium at alkaline pHs and suggested that the E139 residue is indispensable for the enzymatic activity of E. hirae V-ATPase linked with the sodium tolerance of this bacterium. In this study, we examined the activities of V-ATPase in which these four residues, except for E139, were substituted. The V-ATPase activities of the Q65A and Y68A mutants were slightly retained, but those of the T64A and Q110A mutants were negligible. Among the residues, T64 and Q110 are indispensable for the ion coupling of E. hirae V-ATPase, in addition to the essential residue E139.  相似文献   

5.
6.
7.
8.
Salt stress is one of the most serious environmental factors limiting the productivity of crop plants. To understand the molecular basis for salt responses, we used mutagenesis to identify plant genes required for salt tolerance in tomato. As a result, three tomato salt-hypersensitive (tss) mutants were isolated. These mutants defined two loci and were caused by single recessive nuclear mutations. The tss1 mutant is specifically hypersensitive to growth inhibition by Na(+) or Li(+) and is not hypersensitive to general osmotic stress. The tss2 mutant is hypersensitive to growth inhibition by Na(+) or Li(+) but, in contrast to tss1, is also hypersensitive to general osmotic stress. The TSS1 locus is necessary for K(+) nutrition because tss1 mutants are unable to grow on a culture medium containing low concentrations of K(+). Increased Ca(2)+ in the culture medium suppresses the growth defect of tss1 on low K(+). Measurements of membrane potential in apical root cells were made with an intracellular microelectrode to assess the permeability of the membrane to K(+) and Na(+). K(+)-dependent membrane potential measurements indicate impaired K(+) uptake in tss1 but not tss2, whereas no differences in Na(+) uptake were found. The TSS2 locus may be a negative regulator of abscisic acid signaling, because tss2 is hypersensitive to growth inhibition by abscisic acid. Our results demonstrate that the TSS1 locus is essential for K(+) nutrition and NaCl tolerance in tomato. Significantly, the isolation of the tss2 mutant demonstrates that abscisic acid signaling is also important for salt and osmotic tolerance in glycophytic plants.  相似文献   

9.
10.
11.
12.
The MelB permease of Salmonella typhimurium (MelB-ST) catalyzes the coupled symport of melibiose and Na(+), Li(+), or H(+). In right-side-out membrane vesicles, melibiose efflux is inhibited by an inwardly directed gradient of Na(+) or Li(+) and stimulated by equimolar concentrations of internal and external Na(+) or Li(+). Melibiose exchange is faster than efflux in the presence of H(+) or Na(+) and stimulated by an inwardly directed Na(+) gradient. Thus, sugar is released from MelB-ST externally prior to the release of cation in agreement with current models proposed for MelB of Escherichia coli (MelB-EC) and LacY. Although Li(+) stimulates efflux, and an outwardly directed Li(+) gradient increases exchange, it is striking that internal and external Li(+) with no gradient inhibits exchange. Furthermore, Trp → dansyl FRET measurements with a fluorescent sugar (2'-(N-dansyl)aminoalkyl-1-thio-β-D-galactopyranoside) demonstrate that MelB-ST, in the presence of Na(+) or Li(+), exhibits (app)K(d) values of ~1 mM for melibiose. Na(+) and Li(+) compete for a common binding pocket with activation constants for FRET of ~1 mM, whereas Rb(+) or Cs(+) exhibits little or no effect. Taken together, the findings indicate that MelB-ST utilizes H(+) in addition to Na(+) and Li(+). FRET studies also show symmetrical emission maximum at ~500 nm with MelB-ST in the presence of 2'-(N-dansyl)aminoalkyl-1-thio-β-D-galactopyranoside and Na(+), Li(+), or H(+), which implies a relatively homogeneous distribution of conformers of MelB-ST ternary complexes in the membrane.  相似文献   

13.
Inactivation of serotonin transporter (SERT) expressed in HeLa cells by [2-(trimethylammonium)ethyl]methanethiosulfonate (MTSET) occurred much more readily when Na(+) in the reaction medium was replaced with Li(+). This did not result from a protective effect of Na(+) but rather from a Li(+)-specific increase in the reactivity of Cys-109 in the first external loop of the transporter. Li(+) alone of the alkali cations caused this increase in reactivity. Replacing Na(+) with N-methyl-d-glucamine (NMDG(+)) did not reduce the affinity of cocaine for SERT, as measured by displacement of a high affinity cocaine analog, but replacement of Na(+) with Li(+) led to a 2-fold increase in the K(D) for cocaine. The addition of either cocaine or serotonin (5-HT) protected SERT against MTSET inactivation. When SERT was expressed in Xenopus oocytes, inward currents were elicited by superfusing the cell with 5-HT (in the presence of Na(+)) or by replacing Na(+) with Li(+) but not NMDG(+). MTSET treatment of oocytes in Li(+) but not in Na(+) decreased both 5-HT and Li(+) induced currents, although 5-HT-induced currents were inhibited to a greater extent. Na(+) antagonized the effects of Li(+) on both inactivation and current. These results are consistent with Li(+) inducing a conformational change that exposes Cys-109, decreases cocaine affinity, and increases the uncoupled inward current.  相似文献   

14.
15.
Li(+) interacts with the Na(+)/Cl(-)-dependent GABA transporter, GAT1, under two conditions: in the absence of Na(+) it induces a voltage-dependent leak current; in the presence of Na(+) and GABA, Li(+) stimulates GABA-induced steady-state currents. The amino acids directly involved in the interaction with the Na(+) and Li(+) ions at the so-called "Na2" binding site have been identified, but how Li(+) affects the kinetics of GABA cotransport has not been fully explored. We expressed GAT1 in Xenopus oocytes and applied the two-electrode voltage clamp and (22)Na uptake assays to determine coupling ratios and steady-state and presteady-state kinetics under experimental conditions in which extracellular Na(+) was partially substituted by Li(+). Three novel findings are: 1) Li(+) reduced the coupling ratio between Na(+) and net charge translocated during GABA cotransport; 2) Li(+) increased the apparent Na(+) affinity without changing its voltage dependence; 3) Li(+) altered the voltage dependence of presteady-state relaxations in the absence of GABA. We propose an ordered binding scheme for cotransport in which either a Na(+) or Li(+) ion can bind at the putative first cation binding site (Na2). This is followed by the cooperative binding of the second Na(+) ion at the second cation binding site (Na1) and then binding of GABA. With Li(+) bound to Na2, the second Na(+) ion binds more readily GAT1, and despite a lower apparent GABA affinity, the translocation rate of the fully loaded carrier is not reduced. Numerical simulations using a nonrapid equilibrium model fully recapitulated our experimental findings.  相似文献   

16.
17.
18.
19.
20.
We have identified hybrid plasmids carrying the melibiose operon of Escherichia coli in a colony bank of Clarke and Carbon (Tsuchiya, T., Ottina, K., Moriyama, Y., Newman, M., and Wilson, T. H. (1982) J. Biol. Chem. 257, 5125-5128). Using one of the plasmids as a starting material, the DNA fragments containing the melibiose operon were recloned in a vector pBR322. Restriction maps were prepared, and several DNA segments were subcloned into pBR322. Genetic complementation tests and recombination analyses using those plasmids and melA- and melB- mutants as well as biochemical analyses of mel mutants transformed with those plasmids enabled us to determine the physical location of promoter, melA, and melB on the DNA segment. The size of the melAB region was about 3,000 base pairs. Gene products were identified using maxicells harboring plasmids carrying the melibiose operon. The apparent molecular weight of the alpha-galactosidase (coded by melA) was about 50,000 and that of the melibiose carrier (coded by melB) was about 31,000, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The melibiose carrier was also identified as a 30,000-dalton protein in reconstituted proteoliposomes which possessed melibiose transport activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号