首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The correlation between the substitutions of penicillin-binding protein 1 (PBP1) and amoxicillin resistance was studied for the determination of the substitutions in PBP1 which confer amoxicillin resistance in Helicobacter pylori. By the comparison of the amino acid sequences of PBP1 in the amoxicillinresistant (n=3), low-susceptible (n=3), and susceptible (n=13) H. pylori isolates, the substitution Asn562-->Tyr, which is adjacent to KTG motif (555-557), was common and specific to amoxicillin-resistant H. pylori. Additionally, all amoxicillin-resistant isolates had multiple substitutions such as Ser414-->Arg in the transpeptidase region of PBP1 of H. pylori. Furthermore all transformants obtained by the natural transformation using the pbp1 genes of amoxicillin-resistant H. pylori isolates had multiple substitutions including Asn562-->Tyr. These results suggest that multiple amino acid substitutions in the transpeptidase region of PBP1 are closely related to amoxicillin resistance in H. pylori.  相似文献   

2.
Because the molecular mechanism of amoxicillin resistance in Helicobacter pylori seems to be partially explained by several mutational changes in the pbp1A gene, the aim of the present study was to evaluate the gene expression pattern in response to amoxicillin in the Amx(R) Hardenberg strain using RNA arbitrarily primed PCR (RAP-PCR). In the experiments, c. 100 differentially expressed RAP-PCR products were identified using five arbitrary primers. The cDNAs that presented the highest levels of induction or repression were cloned and sequenced, and the sequences were compared with those present in databases using the blast search algorithm. The differential expression of the isolated cDNAs was confirmed by real-time PCR. The preliminary results showed that amoxicillin alters the expression of five cDNAs involved in biosynthesis, two involved with pathogenesis, four related to cell envelope formation, two involved in cellular processes, three related with transport and binding proteins, one involved with protein degradation, one involved with energy metabolism and seven hypothetical proteins. Further analysis of these cDNAs will allow a better comprehension of both the molecular mechanism(s) of amoxicillin resistance and the adaptative mechanism(s) used by H. pylori in the presence of this antibiotic.  相似文献   

3.
Enterococcus hirae ATCC 9790 produces a penicillin-binding protein (PBP5) of low penicillin affinity which under certain conditions can take over the functions of all the other PBPs. The 7.1-kb EcoRI fragment containing the pbp5 gene of this strain and of two mutants, of which one (E. hirae R40) overproduces PBP5 and the other (E. hirae Rev14) does not produce PBP5, was cloned in pUC18 and sequenced. In the 7.1-kb EcoRI fragment cloned from strain ATCC 9790, an open reading frame (psr) potentially encoding a 19-kDa protein was identified 1 kb upstream of the pbp5 gene. An 87-bp deletion in this element was found in the 7.1-kb EcoRI fragment cloned from strains R40 and Rev14. In addition, several base substitutions were found in the pbp5 genes of strains R40 and Rev14. One of these converted the 42nd codon, TCA, to the stop codon, TAA, in the pbp5 gene of Rev14. Escherichia coli strains were transformed with plasmids carrying the 7.1-kb EcoRI insert or a 2.6-kb HincII insert containing only the pbp5 gene of the three strains. Immunoblotting analysis of proteins expressed by these transformants showed that the 87-bp deletion in psr was associated with the PBP5 overproducer phenotype of strain R40 and the conversion of the TCA codon to the stop codon was associated with the PBP5 nonproducer phenotype of strain Rev14. None of the other nucleotide substitutions had any apparent effect on the level of PBP5 synthesized.  相似文献   

4.
5.
The aim of this study was to investigate the nature of the amino acid motifs found in penicillin-binding proteins (PBP) 2b, 2x, and 1a of penicillin-nonsusceptible Streptococcus pneumoniae isolates from Shenyang, China, and to obtain information regarding the prevalence of alterations within the motifs or in positions flanking the motifs. For 18 clinical isolates comprising 4 penicillin-susceptible S. pneumoniae, 5 penicillin-intermediate S. pneumoniae, and 9 penicillin-resistant S. pneumoniae. the DNA sequences of PBP2b, PBP2x, and PBP1a transpeptidase domains were determined and then genotyped by multilocus sequence typing. Sequence analysis revealed that most penicillin-nonsusceptible S. pneumoniae isolates (penicillin MIC > or = 1.5 microg/mL and cefotaxime MIC > or = 2 microg/mL) shared identical PBP2b, PBP2x, and PBP1a amino acid profiles. Most penicillin-resistant S. pneumoniae isolates were ST320 (4-16-19-15-6-20-1), the double-locus variant of the Taiwan19F-14 clone. This study will serve as a basis for future monitoring of genetic changes associated with the emergence and spread of beta-lactam resistance in Shenyang, China.  相似文献   

6.
One group of penicillin target enzymes, the class A high-molecular-weight penicillin-binding proteins (PBPs), are bimodular enzymes. In addition to a central penicillin-binding-transpeptidase domain, they contain an N-terminal putative glycosyltransferase domain. Mutations in the genes for each of the three Streptococcus pneumoniae class A PBPs, PBP1a, PBP1b, and PBP2a, were isolated by insertion duplication mutagenesis within the glycosyltransferase domain, documenting that their function is not essential for cellular growth in the laboratory. PBP1b PBP2a and PBP1a PBP1b double mutants could also be isolated, and both showed defects in positioning of the septum. Attempts to obtain a PBP2a PBP1a double mutant failed. All mutants with a disrupted pbp2a gene showed higher sensitivity to moenomycin, an antibiotic known to inhibit PBP-associated glycosyltransferase activity, indicating that PBP2a is the primary target for glycosyltransferase inhibitors in S. pneumoniae.  相似文献   

7.
Three benzylpenicillin-resistant, clinical isolates of Enterococcus faecium (MIC values 16-64 micrograms ml-1) contained six penicillin-binding proteins (PBPs), of which PBP5 was the most abundant and had the lowest affinity for the antibiotic. Four benzylpenicillin-susceptible strains (MIC values 0.031-0.5 microgram ml-1) were obtained as spontaneous derivatives from these above organisms. There were significant decreases in the amounts of PBP5 in each of the derivatives, with the concomitant appearance of a new, higher affinity PBP (5*) in three strains. Increased amounts of PBP5, with no changes in PBP5*, were found in several mutants with intermediate-level benzylpenicillin-resistance (MIC values 1-8 micrograms ml-1) selected from two of the susceptible strains. Examination of 18 other clinical isolates, with a wide range of susceptibilities to benzylpenicillin (MIC values 0.062-128 micrograms ml-1), showed that PBP5* was present in 13 strains, and PBP5 in all of them, but in differing amounts. The results concerning the relative amounts and relative affinities of PBPs 5* and 5 allowed the categorization of the various strains into six groups, within which organisms had somewhat similar susceptibilities to benzylpenicillin.  相似文献   

8.
Penicillin-binding protein (PBP) alterations have been associated with non-beta-lactamase-mediated ampicillin resistance in Haemophilus influenzae. We evaluated the PBP profiles of several ampicillin-susceptible and -resistant clinical isolates of H. influenzae to determine how consistently the described alterations occurred, and to document the reproducibility of the PBP profiles for this species. The MIC of ampicillin ranged from 0.06 to 0.13 microgram ml-1 for the susceptible isolates at an inoculum of 100,000 c.f.u. when tested by broth dilution, and was 0.5 microgram ml-1 for all four isolates when tested by agar dilution. The MIC for the resistant isolates ranged from 4 to 8 micrograms ml-1 when tested by broth dilution, and from 1.5 to 16 micrograms ml-1 when tested by agar dilution. At least eight distinct PBPs with molecular masses ranging from 27 to 90 kDa were detected both in cell membrane preparations and whole cell (in vivo) binding assays done on cells in the exponential growth phase. PBP variability was evident both in the ampicillin-susceptible and -resistant isolates; however, much greater variability existed within the four resistant strains. The differences in PBP patterns included (1) electrophoretic mobility, (2) binding capacity for the antibiotic and (3) the presence of additional PBPs in two of the resistant isolates. However, decreased binding capacity was consistently demonstrated in PBP 5 (56 kDa) of all of the resistant isolates. Saturation curves with both penicillin and ampicillin indicated that PBP 5 had decreased affinity for the antibiotics.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
Low-cost and rescue treatments for Helicobacter pylori infections involve combinations of several drugs including tetracycline. Resistance to tetracycline has recently emerged in H. pylori. The 16S rRNA gene sequences of two tetracycline-resistant clinical isolates (MIC = 64 microg/ml) were determined and compared to the consensus H. pylori 16S rRNA sequence. One isolate had four nucleotide substitutions, and the other had four substitutions and two deletions. Natural transformation with the 16S rRNA genes from the resistant organisms conferred tetracycline resistance on susceptible strains. 16S rRNA genes containing the individual mutations were constructed and tested for the ability to confer resistance. Only the 16S rRNA gene containing the triple mutation, AGA965-967TTC, was able to confer tetracycline resistance on H. pylori 26695. The MICs of tetracycline for the transformed strains were equivalent to those for the original clinical isolates. The two original isolates were also metronidazole resistant, but this trait was not linked to the tetracycline resistance phenotype. Serial passage of several H. pylori strains on increasing concentrations of tetracycline yielded mutants with only a very modest increase in tetracycline resistance to a MIC of 4 to 8 microg/ml. These mutants all had a deletion of G942 in the 16S rRNA genes. The mutations in the 16S rRNA are clearly responsible for tetracycline resistance in H. pylori.  相似文献   

11.
目的探讨耐青霉素肺炎链球菌pbp2b和pbp1 a基因的突变与青霉素耐药的关系,为明了肺炎链球菌的耐药性变异机制,防治其感染提供实验依据。方法从呼吸道感染患儿痰标本中分离肺炎链球菌163株,液体培养基连续稀释法测定其对青霉素的最小抑菌浓度(M IC),套式聚合酶链反应(nPCR)扩增pbp2b和pbp1 a基因,扩增产物直接DNA测序,所测序列与青霉素敏感株(SPN R6)的基因序列进行比较,并分析其氨基酸结构的改变。结果 163株肺炎链球菌中检出青霉素敏感菌75株,中度敏感17株,青霉素耐药菌71株(44%)。耐药菌中58株存在pbp2b突变(81.7%),其中,56株为点突变,2株为CCT插入突变;在27株有pbp2b基因突变的B型和C型耐药菌中,21株出现了不同程度的pbp1 a基因突变。PBP2B氨基酸结构改变以苏氨酸变为丙氨酸、精氨酸变为赖氨酸为主,PBP1A以丙氨酸变为苏氨酸、谷氨酸变为天门冬氨酸为主。结论肺炎链球菌的pbp2b和pbp1 a基因突变与对青霉素的耐药性密切相关,PBP2b突变导致低水平耐药;PBP2b和PBP1A突变导致高水平耐药。  相似文献   

12.
Multimodular penicillin-binding proteins (PBPs) are essential enzymes responsible for bacterial cell wall peptidoglycan (PG) assembly. Their glycosyltransferase activity catalyzes glycan chain elongation from lipid II substrate (undecaprenyl-pyrophosphoryl-N-acetylglucosamine-N-acetylmuramic acid-pentapeptide), and their transpeptidase activity catalyzes cross-linking between peptides carried by two adjacent glycan chains. Listeria monocytogenes is a food-borne pathogen which exerts its virulence through secreted and cell wall PG-associated virulence factors. This bacterium has five PBPs, including two bifunctional glycosyltransferase/transpeptidase class A PBPs, namely, PBP1 and PBP4. We have expressed and purified the latter and have shown that it binds penicillin and catalyzes in vitro glycan chain polymerization with an efficiency of 1,400 M(-1) s(-1) from Escherichia coli lipid II substrate. PBP4 also catalyzes the aminolysis (d-Ala as acceptor) and hydrolysis of the thiolester donor substrate benzoyl-Gly-thioglycolate, indicating that PBP4 possesses both transpeptidase and carboxypeptidase activities. Disruption of the gene lmo2229 encoding PBP4 in L. monocytogenes EGD did not have any significant effect on growth rate, peptidoglycan composition, cell morphology, or sensitivity to beta-lactam antibiotics but did increase the resistance of the mutant to moenomycin.  相似文献   

13.
We determined the active site of penicillin-binding protein (PBP) 2 of Escherichia coli. A water-soluble form of PBP 2, which was constructed by site-directed mutagenesis, was purified by affinity chromatography, labeled with dansyl-penicillin, and then digested with a combination of proteases. The amino acid composition of the labeled chymotryptic peptide purified by HPLC was identical with that of the amino acid sequence, Ala-Thr-Gln-Gly-Val-Tyr-Pro-Pro-Ala-Ser330-Thr-Val-Lys-Pro (residues 321-334) of PBP 2, which was deduced from the nucleotide sequence of the pbpA gene encoding PBP 2. This amino acid sequence was verified by sequencing the labeled tryptic peptide containing the labeled chymotryptic peptide region. A mutant PBP 2 (thiol-PBP 2), constructed by site-directed mutagenesis to replace Ser330 with Cys, lacked the penicillin-binding activity. These findings provided evidence that Ser330 near the middle of the primary structure of PBP 2 is the penicillin-binding active-site residue, as predicted previously on the basis of the sequence homology. Around this active site, the sequence Ser-Xaa-Xaa-Lys was observed, which is conserved in the active-site regions of all E. coli PBPs so far studied, class A and class C beta-lactamases, and D-Ala carboxypeptidases. The COOH-terminal amino acid of PBP 2 was identified as His633.  相似文献   

14.
Incubation of pneumococci with D-alanine-containing peptides naturally occurring in peptidoglycan protected cells against lysis and killing by beta-lactam antibiotics near MIC. Such peptides caused decreased binding of the antibiotic to penicillin-binding proteins (PBPs), primarily PBP 2B. This provides direct evidence in vivo for the hypothesis that beta-lactams act as substrate analogues and identifies PBP 2B as a killing target in pneumococci.  相似文献   

15.
Thirty-five clinical isolates of coagulase-negative staphylococci with decreased glycopeptide sensitivity were examined by a penicillin-binding protein (PBP2′) latex agglutination (LA) test and were compared to the detection of the mecA gene by PCR, and oxacillin susceptibility determined minimum inhibitory concentrations. The latex test demonstrated high sensitivity and specificity for detecting methicillin resistance in coagulase-negative staphylococci after PBP2′ induction with oxacillin.  相似文献   

16.
Clinical isolates of Streptococcus pneumoniae that have greatly increased levels of resistance to penicillin (greater than 1000-fold) have been reported from South Africa during the last ten years. Penicillin resistance in these strains is entirely due to the development of penicillin-binding proteins (PBPs) with decreased affinity for penicillin. We have cloned and sequenced the coding region for the transpeptidase domain of penicillin-binding protein 2B from three penicillin-sensitive strains of S. pneumoniae and from a penicillin-resistant South African strain. The amino acid sequences of the transpeptidase domains of PBP2B of the three penicillin-sensitive strains were identical and there were only between one and four differences in the nucleotide sequences of their coding regions. The corresponding region of the PBP2B gene from the penicillin-resistant strain differed by 74 nucleotide substitutions which resulted in 17 alterations in the amino acid sequence of PBP2B. The most remarkable alteration that has occurred during the development of the 'penicillin-resistant' form of PBP2B is the substitution of seven consecutive residues in a region that is predicted to form a loop at the bottom of the penicillin-binding site.  相似文献   

17.
BACKGROUND: Previous studies in Alaska have demonstrated elevated proportions of antimicrobial resistance among Helicobacter pylori isolates. MATERIALS AND METHODS: We analyzed H. pylori data from the Centers for Disease Control and Prevention (CDC)'s sentinel surveillance in Alaska from July 1999 to June 2003 to determine the proportion of culture-positive biopsies from Alaska Native persons undergoing routine upper-endoscopy, and the susceptibility of H. pylori isolates to metronidazole [minimum inhibitory concentration (MIC) of > 8 g metronidazole/mL), clarithromycin (MIC > or = 1), tetracycline (MIC > or = 2) and amoxicillin (MIC > or = 1)] using agar dilution. RESULTS: Nine-hundred sixty-four biopsy specimens were obtained from 687 participants; 352 (51%) patients tested culture positive. Mean age of both culture-positive and culture-negative patients was 51 years. Metronidazole resistance was demonstrated in isolates from 155 (44%) persons, clarithromycin resistance from 108 (31%) persons, amoxicillin resistance from 8 (2%) persons, and 0 for tetracycline resistance. Metronidazole and clarithromycin resistance varied by geographic region. Female patients were more likely than male subjects to show metronidazole resistance (p < .01) and clarithromycin resistance (p = .05). CONCLUSIONS: Resistance to metronidazole and clarithromycin is more common among H. pylori isolates from Alaska Native persons when compared with those from elsewhere in the USA.  相似文献   

18.
Colonization of the gastric mucosa with the spiral-shaped Gram-negative proteobacterium Helicobacter pylori is probably the most common chronic infection in humans. The genomes of H. pylori strains J99 and 26695 have been completely sequenced. Functional and three-dimensional structural information is available for less than one third of all open reading frames. We investigated the function and three-dimensional structure of a member from a family of cysteine-rich hypothetical proteins that are unique to H. pylori and Campylobacter jejuni. The structure of H. pylori cysteine-rich protein (Hcp) B possesses a modular architecture consisting of four alpha/alpha-motifs that are cross-linked by disulfide bridges. The Hcp repeat is similar to the tetratricopeptide repeat, which is frequently found in protein/protein interactions. In contrast to the tetratricopeptide repeat, the Hcp repeat is 36 amino acids long. HcpB is capable of binding and hydrolyzing 6-amino penicillinic acid and 7-amino cephalosporanic acid derivatives. The HcpB fold is distinct from the fold of any known penicillin-binding protein, indicating that the Hcp proteins comprise a new family of penicillin-binding proteins. The putative penicillin binding site is located in an amphipathic groove on the concave side of the molecule.  相似文献   

19.
An internal fragment of the ddl gene, encoding the cytoplasmic enzyme D-alanyl-D-alanine ligase, was sequenced from 566 isolates of Streptococcus pneumoniae and single isolates of Streptococcus mitis and Streptococcus oralis. The 52 alleles found among the S. pneumoniae isolates fell into two groups. Group A alleles were very uniform in sequence and were present in both penicillin-susceptible and penicillin-resistant pneumococci. Group B alleles were much more diverse and were found only in penicillin-resistant isolates. The Streptococcus oralis and Streptococcus mitis alleles were less diverged from group A alleles than some of the group B pneumococcal alleles, suggesting that the latter alleles contain interspecies recombinational replacements. The ddl gene was located 783 bp downstream of the penicillin-binding protein 2b gene (pbp2b). Sequencing of the pbp2b-recR-ddl-murF region of three penicillin-resistant pneumococci that had diverged ddl alleles showed that the whole region from pbp2b to ddl (or beyond) was highly diverged (about 8%) compared with the sequences from three penicillin-susceptible isolates. The high levels of diversity in the group B ddl alleles from penicillin-resistant isolates were ascribed to a hitchhiking effect whereby interspecies recombinational exchanges at pbp2b, selected by penicillin usage, often extend into, or through, the ddl gene. The data allow the average size of the interspecies recombinational replacements to be estimated at about 6 kb.  相似文献   

20.
Abstract The region encoding the transpeptidase domain of the penicillin-binding protein 2B (PBP 2B) gene of two penicillin-resistant clinical isolates of Streptococcus oralis was > 99.6% identical in nucleotide sequence to that of a penicillin-resistant serotype 6 isolate of Streptococcus pneumoniae . The downstream 849 base pairs of these genes were identical. Analysis of the data indicates that the PBP gene has probably been transferred from S. pneumoniae into S. oralis , rather than vice versa, and shows that one region of this resistance gene has been distributed horizontally both within S. pneumoniae and into two different viridans group streptococci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号