首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tryptase, a serine protease with trypsin-like substrate cleavage properties, is one of the key effector molecules during allergic inflammation. It is stored in large quantities in the mast cell secretory granules in complex with heparin proteoglycan, and these complexes are released during mast cell degranulation. In the present paper, we have studied the mechanism for tryptase activation. Recombinant mouse tryptase, mouse mast cell protease 6 (mMCP-6), was produced in a mammalian expression system. The mMCP-6 fusion protein contained an N-terminal 6 x His tag followed by an enterokinase (EK) site replacing the native activation peptide (6xHis-EK-mMCP-6). In the absence of heparin, barely detectable enzyme activity was obtained after enterokinase cleavage of 6xHis-EK-mMCP-6 over a pH range of 5.5-7.5. However, when heparin was present, 6xHis-EK-mMCP-6 yielded active enzyme when enterokinase cleavage was performed at pH 5.5-6.0 but not at neutral pH. Affinity chromatography analysis showed that mMCP-6 bound strongly to heparin-Sepharose at pH 6.0 but not at neutral pH. After enterokinase cleavage of the sample at pH 6.0, mMCP-6 occurred in inactive monomeric form as shown by FPLC analysis on a Superdex 200 column. When heparin was added at pH 6.0, enzymatically active higher molecular weight complexes were formed, e.g., a dominant approximately 200 kDa complex that may correspond to tryptase tetramers. No formation of active tetramers was observed at neutral pH. When injected intraperitoneally, mMCP-6 together with heparin caused neutrophil influx, but no signs of inflammation were seen in the absence of heparin. The present paper thus indicates a crucial role for heparin in the formation of active mast cell tryptase.  相似文献   

2.
方亮  胡景鑫  刘国辉  邓广斐 《生物磁学》2009,(20):3845-3847,F0002
目的:研究1.甲基4-苯基-1,2,3,6-四氢吡啶(1-methy-4-phenyl-1,2,3,6-tetrahy-dropyridine,MPTP)帕金森病(PD)模型中小胶质细胞的激活情况,探讨低分子肝素对MPTP导致的小胶质细胞活化的抑制作用。方法:C57BL随机分成正常对照组、MPTP组、低分子肝素+MPTP组。MPTP组腹腔注射MPTP(30mg/kgx7d)同时腹部皮下注射生理盐水,低分子肝素+MPTP组在注射MPTP同时腹部皮下注射低分子肝素(1501U/kg·12hx7d)。各组于末次给药后予行为学测试,7d后免疫组化检测酪氨酸羟化酶(TyrosineHydroxylase,TH)阳性细胞。镀银染色观察小胶质细胞激活情况。结果:MPTP组较低分子肝素+MPTP组爬竿时间明显延长,并出现更多非随意动作。低分子肝素+MPTP组黑质部位TH阳性细胞数量高于MPTP组。MPTP组活化的小胶质细胞数量高于低分子肝素+MPTP组。结论:低分子肝素通过抑制小胶质细胞的激活减少MPTP帕金森小鼠多巴胺能神经元的损伤,提示低分子肝素可能有延缓PD进程的作用。  相似文献   

3.
Detailed structure activity relationships (SARs) for a series of dibasic human tryptase inhibitors are presented. The structural requirements for potent inhibitory activity are remarkably broad with a range of core template modifications being well tolerated. Optimized inhibitors demonstrate potent anti-asthmatic activity in a sheep model of allergic asthma. APC-2059, a dibasic tryptase inhibitor with subnanomolar activity, has been advanced to phase II clinical trials for the treatment of both psoriasis and ulcerative colitis.  相似文献   

4.
An enzymatically active subunit was isolated from the high molecular weight (6-8S) DNA polymerase. This activity had an identical sedimentation coefficient and the same elution profile from Sephadex G-100 as the low molecular weight (3. 3S) DNA polymerase.  相似文献   

5.
Mast cells play a critical role in the development of the allergic response. Upon activation by allergens and IgE via the high affinity receptor for IgE (Fc?RI), these cells release histamine and other functional mediators that initiate and propagate immediate hypersensitivity reactions. Mast cells also secrete cytokines that can regulate immune activity. These processes are controlled, in whole or part, by increases in intracellular Ca(2+) induced by the Fc?RI. We show here that N-(4-(3,5-bis(trifluoromethyl)-1H-pyrazol-1-yl)phenyl)-4-methyl-1,2,3-thiadiazole-5-carboxamide (BTP2), a pyrazole derivative, inhibits activation-induced Ca(2+) influx in the rat basophil cell line RBL-2H3 and in bone marrow-derived mast cells (BMMCs), without affecting global tyrosine phosphorylation of cellular proteins or phosphorylation of the mitogen-activated protein kinases Erk1/2, JNK and p38. BTP2 also inhibits activation-induced degranulation and secretion of interleukin (IL)-2, IL-3, IL-4, IL-6, IL-13, tumor necrosis factor (TNF)-α, and granulocyte macrophage-colony stimulating factor (GM-CSF) by BMMCs, which correlates with the inhibition of Nuclear Factor of Activated T cells (NFAT) translocation. In vivo, BTP2 inhibits antigen-induced histamine release. Structure-activity relationship analysis indicates that substitution at the C3 or C5 position of the pyrazole moiety on BTP2 (5-trifluoromethyl-3-methyl-pyrazole or 3-trifluoromethyl-5-methyl-pyrazole, respectively) affected its activity, with the trifluoromethyl group at the C3 position being critical to its activity. We conclude that BTP2 and related compounds may be potent modulators of mast cell responses and potentially useful for the treatment of symptoms of allergic inflammation.  相似文献   

6.
A natural low molecular weight heparin (8.5 kDa), with an anticoagulant activity of 95 IU/mg by the USP assay, was isolated from the shrimp Penaeus brasiliensis. The crustacean heparin was susceptible to both heparinase and heparitinase II from Flavobacterium heparinum forming tri- and di-sulfated disaccharides as the mammalian heparins. (13)C and (1)H NMR spectroscopy revealed that the shrimp heparin was enriched in both glucuronic and non-sulfated iduronic acid residues. The in vitro anticlotting activities in different steps of the coagulation cascade have shown that its anticoagulant action is mainly exerted through the inhibition of factor Xa and heparin cofactor II-mediated inhibition of thrombin. The shrimp heparin has also a potent in vivo antithrombotic activity comparable to the mammalian low molecular weight heparins.  相似文献   

7.
Mannose 6-phosphate-modified N-glycans are the determinant for intracellular targeting of newly synthesized lysosomal hydrolases to the lysosome. The enzyme responsible for the initial step in the synthesis of mannose 6-phosphate is UDP-N-acetylglucosamine:lysosomal-enzyme-N-acetylglucosmine-1-phosphotransferase(GlcNAc-phosphotransferase). GlcNAc-phosphotransferase is a multisubunit enzyme with an alpha2beta2gamma2 arrangement that requires a detergent for solubilization. Recent cloning of cDNAs and genes encoding these subunits revealed that the alpha- and beta-subunits are encoded by a single gene as a precursor, whereas the gamma-subunit is encoded by a second gene. The hydropathy plots of the deduced amino acid sequences suggested that the alpha- and beta-subunits but not the gamma-subunit contain transmembrane domains. Access to these cDNAs allowed us to express a soluble form of human recombinant GlcNAc-phosphotransferase by removing the putative transmembrane and cytoplasmic domains from the alpha- and beta-subunits. Because this modification prevented precursor processing to mature alpha- and beta-subunits, the native cleavage sequence was replaced by a cleavage site for furin. When the modified alpha/beta-subunits (alpha'/beta'-subunits) precursor and wild type gamma-subunit cDNAs were co-expressed in 293T or CHO-K1 cells, a furin-like protease activity in these cells cleaved the precursor and produced an active and processed soluble GlcNAc-phosphotransferase with an alpha'2beta'2gamma2-subunits arrangement. Recombinant soluble GlcNAc-phosphotransferase exhibited specific activity and substrate preferences similar to the wild type bovine GlcNAc-phosphotransferase and was able to phosphorylate a lysosomal hydrolase, acid alpha-glucosidase in vitro.  相似文献   

8.
9.
Bieber T  Elsässer HP 《BioTechniques》2001,30(1):74-7, 80-1
Polyethylenimines (PEIs) of a molecular weight between 25 and about 800 kDa have successfully been used for in vitro and in vivo gene delivery approaches. Recent publications indicated that PEI molecules of lower molecular weight and a small molecular weight range are also efficient transfection reagents with a much lower cytotoxicity compared to high molecular weight PEIs. Here, we describe the application of a molecular sieve chromatography to fractionate a commercially available 25-kDa PEI. We generated three pools of PEIs with molecular weight ranges of 70-360 (I), 10-70 (II), and 0.5-10 kDa (III), respectively. We show that, in comparison with the 25-kDa PEI, pool III increased the expression of luciferase up to 100-fold and the number of transfected cells 2-3 fold. In addition, the kinetics of reporter gene expression was also much faster in pool III, compared with the 25-kDa PEI or with pools I or II. Finally, pool III showed the lowest cytotoxicity in comparison with the other PEI preparations. Thus, we provide a one-step processing of a 25-kDa PEI, resulting in a more effective and also less cytotoxic transfection reagent.  相似文献   

10.
Native human pool serum and individual sera were ultrafiltered by Pellicon ultrafilters (Millipore) and the ultrafiltrates were extracted by an ammonium pyrrolidinedithicarbamate/methylisobutylketone system after addition of different internal iron standards to three of four identical ultrafiltrates. The extracts were examined for iron content by atomic absorption spectrometry. During ultrafiltration pH 7.4 was miantained by a constant atmosphere of a CO2/air mixture.Low molecular weigth iron in native human sera from normal, normal orally iron substituted and siderotic individuals was found to be less than 0.05 μg/100 ml. Elevating serum citrate to 3-fold normal had no effect on this result.More iron became ultrafiltrable if the serum pH were lowered by citric acid as compared with hydrochloric acid.  相似文献   

11.
Mast cell tryptase is a secretory granule associated serine protease with trypsin-like specificity released extracellularly during mast cell degranulation. To determine the full primary structure of the catalytic domain and precursor forms of tryptase and to gain insight into its mode of activation, we cloned cDNAs coding for the complete amino acid sequence of dog mast cell tryptase and a second, possibly related, serine protease. Using RNA from dog mastocytoma cells, we constructed a cDNA library in lambda gt 10. Screening of the library with an oligonucleotide probe based on the N-terminal sequence of tryptase purified from the same cell source allowed us to isolate and sequence overlapping clones coding for dog mast cell tryptase. The tryptase sequence includes the essential residues of the catalytic triad and an aspartic acid at the base of the putative substrate binding pocket that confers P1 Arg and Lys specificity on tryptic serine proteases. The apparent N-terminal signal/activation peptide terminates in a glycine. A glycine in this position has not been observed previously in serine proteases and suggests a novel mode of activation. Additional screening of the library with a trypsinogen cDNA led to the isolation and sequencing of a full-length clone apparently coding for the complete sequence of a second tryptic serine protease (DMP) which is only 53.4% identical with the dog tryptase sequence but which contains an apparent signal/activation peptide also terminating in a glycine. Thus, the proteases encoded by these cloned cDNAs may share a common mode of activation from N-terminally extended precursors.  相似文献   

12.
13.
Activation of the membrane-associated NADPH oxidase in intact human neutrophils requires a receptor-associated heterotrimeric GTP-binding protein that is sensitive to pertussis toxin. Activation of this NADPH oxidase by arachidonate in a cell-free system requires an additional downstream pertussis toxin-insensitive G protein (Gabig, T. G., English, D., Akard, L. P., and Schell, M. J. (1987) (J. Biol. Chem. 262, 1685-1690) that is located in the cytosolic fraction of unstimulated cells (Gabig, T. G., Eklund, E. A., Potter, G. B., and Dykes, J. R. (1990) J. Immunol. 145, 945-951). In the present study, immunodepletion of G proteins from the cytosolic fraction of unstimulated neutrophils resulted in a loss of the ability to activate NADPH oxidase in the membrane fraction. The activity in immunodepleted cytosol was fully reconstituted by a partially purified fraction from neutrophil cytosol that contained a 21-kDa GTP-binding protein. Purified human recombinant Krev-1 p21 also completely reconstituted immunodepleted cytosol whereas recombinant human H-ras p21 or yeast RAS GTP-binding proteins had no reconstitutive activity. Rabbit antisera raised against a synthetic peptide corresponding to the effector region of Krev-1 (amino acids 31-43) completely inhibited cell-free NADPH oxidase activation, and this inhibition was blocked by the synthetic 31-43 peptide. An inhibitory monoclonal antibody specific for ras p21 amino acids 60-77 (Y13-259) had no effect on cell-free NADPH oxidase activation. Activation of the NADPH oxidase in intact neutrophils by stimulation with phorbol myristate acetate caused a marked increase in the amount of membrane-associated antigen recognized by 151 antiserum on Western blot. Thus a G protein in the cytosol of unstimulated neutrophils antigenically and functionally related to Krev-1 may be the downstream effector G protein for NADPH oxidase activation. This system represents a unique model to study molecular interactions of a ras-like G protein.  相似文献   

14.
TSG-6 (TNF-α-stimulated gene/protein 6), a hyaluronan (HA)-binding protein, has been implicated in the negative regulation of inflammatory tissue destruction. However, little is known about the tissue/cell-specific expression of TSG-6 in inflammatory processes, due to the lack of appropriate reagents for the detection of this protein in vivo. Here, we report on the development of a highly sensitive detection system and its use in cartilage proteoglycan (aggrecan)-induced arthritis, an autoimmune murine model of rheumatoid arthritis. We found significant correlation between serum concentrations of TSG-6 and arthritis severity throughout the disease process, making TSG-6 a better biomarker of inflammation than any of the other arthritis-related cytokines measured in this study. TSG-6 was present in arthritic joint tissue extracts together with the heavy chains of inter-α-inhibitor (IαI). Whereas TSG-6 was broadly detectable in arthritic synovial tissue, the highest level of TSG-6 was co-localized with tryptases in the heparin-containing secretory granules of mast cells. In vitro, TSG-6 formed complexes with the tryptases murine mast cell protease-6 and -7 via either heparin or HA. In vivo TSG-6-tryptase association could also be detected in arthritic joint extracts by co-immunoprecipitation. TSG-6 has been reported to suppress inflammatory tissue destruction by enhancing the serine protease-inhibitory activity of IαI against plasmin. TSG-6 achieves this by transferring heavy chains from IαI to HA, thus liberating the active bikunin subunit of IαI. Because bikunin is also present in mast cell granules, we propose that TSG-6 can promote inhibition of tryptase activity via a mechanism similar to inhibition of plasmin.  相似文献   

15.
Gelatin is used as a stabilizer in several vaccines. Allergic reactions to gelatins have been reported, including anaphylaxis. These gelatins are derived from animal tissues and thus represent a potential source of contaminants that cause transmissible spongiform encephalopathies. We have developed a low molecular weight human sequence gelatin that can substitute for the animal sourced materials. A cDNA fragment encoding 101 amino acids of the human proalpha1 (I) chain was amplified, cloned into plasmid pPICZalpha, integrated into Pichia pastoris strain X-33, and isolates expressing high levels of recombinant gelatin FG-5001 were identified. Purified FG-5001 was able to stabilize a live attenuated viral vaccine as effectively as porcine gelatin. This prototype recombinant gelatin was homogeneous with respect to molecular weight but consisted of several charge isoforms. These isoforms were separated by cation exchange chromatography and found to result from a combination of truncation of the C-terminal arginine and post-translational phosphorylation. Site-directed mutagenesis was used to identify the primary site of phosphorylation as serine residue 546; serine 543 was phosphorylated at a low level. A new construct was designed encoding an engineered gelatin, FG-5009, with point mutations that eliminated the charge heterogeneity. FG-5009 was not recognized by antigelatin IgE antibodies from children with confirmed gelatin allergies, establishing the low allergenic potential of this gelatin. The homogeneity of FG-5009, the ability to produce large quantities in a reproducible manner, and its low allergenic potential make this a superior substitute for the animal gelatin hydrolysates currently used to stabilize many pharmaceuticals.  相似文献   

16.
A highly active, recyclable homogeneous palladium(II) catalyst is described for the manufacture of viscous, low molecular weight CO-ethene-propene-based polyketone (CariliteOligomer), used for the manufacture of a new class of resins (CariliteResins). The catalyst is composed of palladium acetate, and a sulfonated diphosphine ligand, bdompp-S (1,3-bis(di-(2-methoxy, 5-sulfonatophenyl)phosphino)propane). In comparison with its non-sulfonated counterpart this catalyst not only exhibits a much more favourable partitioning coefficient in liquid-liquid separation of the polyketone product and solvent, but it also exhibits an approximately 2.5 times higher catalytic activity (up to 11.2 kg PK (g Pd)−1 h−1) in the manufacture of PK-PE-30 (polyketone terpolymer built up of CO, ethene and propene in a molar ratio of 100:30:70). A variety of salts were found to exert a positive influence on the activity of the catalyst. Possible origins of this ‘salt-effect’ are briefly discussed. The bdompp-S ligand was synthesised by sulfonation of bdompp using either a boric acid-oleum mixture or sulfuric acid as the sulfonation reagent. The product was isolated either as sodium-salt (bdompp-S[Na]4·nNa2SO4), by extraction with methanol after neutralisation, or, in acidic, hydrated form (bdompp-S[H]4·nH2O), via a new and highly efficient procedure, i.e. cooling the reaction mixture after dilution with water. The X-ray crystal structure of bdompp-S[H]4·nH2O is discussed.  相似文献   

17.
The oxidative mechanism whereby heparin may interact with various proteins was investigated in detail in this work by addressing the role of doses of heparin on the nature and effects of its binding to bovine trypsin, taken as reference protein. Unfractionated heparin was used at concentrations ranging from 6 to 400 microg/ml with a fixed trypsin concentration (250 microg/ml). At concentrations of up to 60 microg/ml, equivalent to trypsin/heparin molar ratios of between 30 and 3, increasing inhibition of amidolytic activity and radical-dependent peptide bond cleavage of the enzyme was observed, with the appearance in the electrophoretic pattern of new bands of trypsin fragments to which heparin was demonstrated to be bound specifically. Structural modifications were also revealed by increases in fluorescence emission spectra. On the whole, however, the alterations induced by these heparin concentrations only involved a limited number of trypsin molecules. At concentrations from 120 to 400 microg/ml (equivalent trypsin/heparin molar ratios of 1.5-0.46), heparin binding to trypsin appeared to cause more profound and generalized alterations of enzyme structure and function, with dose-dependent quenching of fluorescence emission and almost complete loss of amidolytic activity, although evidence of radical production was lacking. Collectively, the results stress the crucial role of heparin dose on both the nature and effects of its binding to trypsin. The change in heparin effects which reflects distinct underlying molecular mechanisms occurs dramatically at a critical concentration threshold. While a specific, radical-generating mechanism operates at low concentrations, less specific ionic linkages, apparently independent of radical production, best explain the effects of high heparin concentrations.  相似文献   

18.
The gamma gamma isozyme of rabbit enolase was labeled with fluorescein and the effects of NaClO4 on both enzymatic activity and fluorescence polarization were studied. NaClO4, but not NaCl, dissociates and partially inactivates the enzyme. If dissociation is prevented, either by the addition of substrate or by covalently crosslinking the enzyme, inactivation is also prevented. Analysis of the time and concentration dependence of inactivation and dissociation shows that the decrease in activity is a two-step process: D in equilibrium 2M in equilibrium 2M*. Both monomeric forms of the enzyme are catalytically active.  相似文献   

19.
  • 1.1. A low molecular weight metal-binding protein was found in the snail Nassarius reticulatus cytosol, which was induced in heavy metal contaminated environments.
  • 2.2. In our sodium dodecyl sulfate-mercaptoethanol polyacrylamide gel systems it behaved as a protein of 19 kDa mol. wt.
  • 3.3. Amino acid composition studies definitely established this protein not to be metallothionein (Mt) like, because it had a much lower level of cysteine and substantial amounts of aromatic amino acids and histidine.
  • 4.4. The metal-binding strength of this protein was concluded to be much weaker than that of Mt.
  • 5.5. In the crustacean Pagurus bernhardus L. such a protein could not be demonstrated.
  • 6.6. In both the snail and the crustacean Zn may inhibit the accumulation of Hg. The premise for studying the induction of the metal-binding Nassarius protein as a supplement to environmental metal monitoring purposes is briefly discussed.
  相似文献   

20.
Antigen/IgE-mediated mast cell activation via FcvarepsilonRI can be markedly enhanced by the activation of other receptors expressed on mast cells and these receptors may thus contribute to the allergic response in vivo. One such receptor family is the G protein-coupled receptors (GPCRs). Although the signaling cascade linking FcvarepsilonRI aggregation to mast cell activation has been extensively investigated, the mechanisms by which GPCRs amplify this response are relatively unknown. To investigate this, we utilized prostaglandin (PG)E2 based on initial studies demonstrating its greater ability to augment antigen-mediated degranulation in mouse mast cells than other GPCR agonists examined. This enhancement, and the ability of PGE2 to amplify antigen-induced calcium mobilization, was independent of phosphoinositide 3-kinase but was linked to a pertussis toxin-sensitive synergistic translocation to the membrane of phospholipase (PL)Cgamma and PLCbeta and to an enhancement of PLCgamma phosphorylation. This "trans-synergistic" activation of PLCbeta and gamma, in turn, enhanced production of inositol 1,4,5-trisphosphate, store-operated calcium entry, and activation of protein kinase C (PKC) (alpha and beta). These responses were critical for the promotion of degranulation. This is the first report of synergistic activation between PLCgamma and PLCbeta that permits reinforcement of signals for degranulation in mast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号