首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid and transient decrease in 2'-phosphodiesterase activity in NIH 3T3 mouse cells was observed after adrenaline addition. The decrease of activity was accompanied by an elevation of intracellular cAMP level. The 2'-phosphodiesterase activity changed similarly when cells sink deeper into the resting state. In the latter case, the fall of the enzyme activity was correlated with elevation of the activity of cAMP-dependent proteinkinase and, moreover, a considerable increase of the intracellular level of 2',5'-oligoadenylate was observed. Phosphorylation of proteins by cAMP-dependent proteinkinase in the cell lysate also produced a pronounced drop of 2'-phosphodiesterase activity. Exogenous 2',5'-oligo (A) treatment of the cells resulted in the rise of 2'-phosphodiesterase activity; actinomycin D prevented this effect. The data presented suggest the involvement of two different mechanisms in regulation of 2'-phosphodiesterase activity: cAMP-dependent phosphorylation and induction of 2'-phosphodiesterase by 2',5'-oligoadenylate.  相似文献   

2.
The current data about the 2',5'-oligoadenylate system is reviewed. Its role in interferon signaling and cell metabolism regulation is discussed. The interferon system is known to be characterized by a wide range of biological functions such as antiviral defense, control of cell growth and differentiation, oncogenic stability, apoptosis, immune activation, etc. The biological role of interferon that is the multifunctional cytokine is discussed more in detail. The structure of main components of interferon signal transduction cascade (2',5'-oligoadenylate, 2',5'-oligoadenylate-synthetase and ribonuclease L) is reviewed. The interferon-induced 2',5'-oligoadenylate system is considered as the component of common regulatory system coordinating cell metabolism.  相似文献   

3.
Recent studies on the mechanisms of cell regulation have demonstrated that the reactions occurring with participation of secondary messengers, i.e., cyclic adenosine-3',5'-monophosphate (cAMP), Ca2+, 2',5'-oligoadenylate (oligoA), etc., are closely interrelated and the secondary messengers involved therein can thus be regarded as components of the integral regulatory system of the cell. The interaction between these components occurs via at least two pathways. Firstly, some reactions, that are vital for the cell, are under a simultaneous control of several messengers. Secondly, any changes in the intracellular level of one of the messengers inevitably affects the concentrations of other messengers.  相似文献   

4.
To explore bidirectional regulatory interactions between interferons and autocrine polypeptide factors, we examined the modulation of expression of transforming growth factor-alpha and 2',5'-oligoadenylate synthetase activity in A431 epidermoid carcinoma cells after treatment with interferon-gamma and transforming growth factor-alpha. Treatment of A431 cells with interferon-gamma increased steady state levels of transforming growth factor-alpha mRNA by 4-fold and increased the levels of transforming growth factor-alpha in the culture medium. There were additive growth inhibitory effects upon coaddition of exogenous transforming growth factor-alpha and interferon-gamma to the cultures. Addition of transforming growth factor-alpha to A431 cell cultures in the absence of interferon could stimulate the induction of 2',5'-oligoadenylate synthetase activity by more than 2-fold. These findings demonstrate that the induction of transforming growth factor-alpha in interferon-gamma-treated A431 cells could act to regulate interferon-induced gene(s), e.g. 2',5'-oligoadenylate synthetase, suggesting interactions between a potential autocrine growth factor and the interferon system in the growth regulation of A431 cells.  相似文献   

5.
Phosphodiesterase stability of synthetic analogs of 2',5'-oligoadenylates, the mediators of antiviral and antiproliferative action of interferons was analysed. The analogs with a 3'-terminal acyclic nucleoside residue were prepared. These analogs were treated with NIH3T3 cell lysate, mice liver homogenate and snake venom phosphodiesterase. All analogs have demonstrated a high stability as compared with the natural 2',5'-oligoadenylate and its 3'-deoxyderivative. The possible biological activity of these stable analogs of 2',5'-oligoadenylates is discussed.  相似文献   

6.
The activity of 2',5'-oligoadenylate synthetase, an enzyme recently discovered in interferon-treated cells, was found in lymphocytes from normal mouse spleen that had received neither exogenous interferon nor its inducers. The oligoadenylate synthesized by lymphocyte cell extracts inhibited protein synthesis in rabbit reticulocyte lysates. The oligomers were composed mainly of trimer and were resistant to digestion by T2 ribonuclease. The level of the enzyme in lymphocytes was about 20 to 30% of that in L929 cells treated with interferon. The activity of the enzyme was further enhanced in lymphocytes in vitro by addition of interferon. The 2',5'-oligoadenylate synthetase was distributed among several lymphoid tissues, but was not detected in cell extracts from brain or liver. The enzyme may play an important role in the regulation of the immune system.  相似文献   

7.
Treatment of primary cultures of chicken embryo cells with homologous interferon results in a substantial increase in the level of 2',5'-oligoadenylate synthetase activity that can be detected in cell extracts. This increase can be prevented by inhibitors of RNA or protein synthesis and is thus thought to represent the induction of an interferon-inducible gene, perhaps the 2',5'-oligoadenylate synthetase gene itself. To examine this response in greater detail, we studied its kinetics under the following conditions: (i) cessation of interferon treatment after different lengths of time, (ii) delayed inhibition of RNA or protein synthesis, and (iii) combinations of these treatments. The results showed that in cells treated continuously with interferon, the enzyme level reached a peak after 9 h of treatment and then decreased with a half-life of about 30 h, despite the continued presence of interferon. Removal of interferon during induction reduced the peak level of activity that was attained and somewhat accelerated its decline but did not otherwise affect the time-course of the response. On the other hand, removal of interferon after maximum induction clearly accelerated the decay of enzyme activity. This process could be delayed by inhibitors of protein synthesis, which effectively stabilized the induced enzyme. This behavior is reminiscent of other inducible enzymes, such as the steroid-induced tyrosine aminotransferase, and suggests that the level of 2',5'-oligoadenylate synthetase, which is also inducible by steroid hormones in some cell types, is subject to similar control mechanisms.  相似文献   

8.
2'5'-Oligoadenylate Polymerase Activity in the Rat Small Intestine   总被引:1,自引:0,他引:1  
2'5'-Oligoadenylates are potent protein synthesis inhibitors: they are synthesized by a polymerase which was first described in interferon-treated cells. This system may also be involved in a normal process of cell proliferation and differentiation, in the absence of any viral infection. The small intestine enterocyte has been investigated as a model to test this hypothesis. The presence of 2'5'-oligoadenylate polymerase activity is demonstrated in the intestinal mucosa of normal adult rats. The distribution of this enzyme, and of the enzymes degrading 2'5' oligoadenylates have been investigated on enterocyte pools selectively extracted, under mild conditions, from the different parts of the rat small intestine. Similar results were obtained with enterocytes extracted from the mucosa of germ-free animals.  相似文献   

9.
2',5'-Oligoadenylate and 2',5'-oligoadenylate phosphodiesterase activity were detected in the human plasma and serum by sensitive radioimmuno assays. The phosphodiesterase in the serum degraded 20 nM of added 2',5'-oligoadenylate in less than 1 hr. Addition of EDTA in the blood sample inhibited the phosphodiesterase activity completely and allowed the measurement of low levels of 2',5'-oligoadenylate. The concentration in the plasma from healty people was in the range of 0.03 to 0.3 nM.  相似文献   

10.
The effect of deoxyadenosine (dAdo) with deoxycoformycin on the induction of 2',5'-oligoadenylate synthetase by interferon was investigated. After semi-purification through poly(I):poly(C) gel, the activity was similar in control and dAdo-treated cells. However, the activity in the crude extract decreased with rising concentrations of dAdo. On the other hand, the level of 2'-phosphodiesterase, which is also induced by interferon and degrades 2',5'-oligoadenylate, showed no significant change after dAdo treatment. Thus, the crude extract was speculated to contain an inhibitor of 2',5'-oligoadenylate synthetase. Further characterization of the inhibitor revealed that inhibition was not due to dATP accumulation in cells.  相似文献   

11.
12.
13.
14.
Down regulation of poly(ADP-ribose)polymerase (ADPRP) activity was observed in mouse LW-cells after treatment with 2'-5'oligoadenylates or with fibroblast interferon and poly(rI) poly(rC). The poly(rI) poly(rC)-induced inhibition of the enzymatic activity correlates with the observed increase of endogenous 2',5'-oligoadenylate cores which were reported to be potent inhibitors of ADPRP in vitro.  相似文献   

15.
Chloroquine, a weak base which raises the pH in acidic cellular compartments such as lysosomes and endosomes, counteracts the induction by interferon of the antiviral state but not that of the 2',5'-oligoadenylate synthetase in three different types of cell lines (MDBK, WISH, and L929). Active interferon is recovered in crude extracts of cells which have been treated with interferon and chloroquine together, but not in extracts of cells treated with interferon alone, indicating that chloroquine has inhibited the intralysosomal proteolysis of interferon. A low pH-dependent event in the intracellular fate of interferon (perhaps its intralysosomal degradation) is, therefore, necessary for the establishment of the antiviral state but not for the induction of the 2',5'-oligoadenylate synthetase.  相似文献   

16.
We demonstrate here that ethanol, in contrast to heat shock (Chousterman, S., Chelbi-Alix, M.K., and Thang, M.N. (1987) J. Biol. Chem. 262, 4806-4811), induces interferon (IFN) synthesis and its related activities in Madin-Darby bovine kidney (MDBK) cells. The induced IFN is secreted maximally at 6 h, whereas the induction of 2',5'-oligoadenylate synthetase mRNA peaks between 9 and 12 h and its activity at 15 h. The appearance of both 2',5'-oligoadenylate synthetase activity and the antiviral state upon ethanol treatment is prevented by anti-bovine recombinant IFN-beta antibodies. Bovine diarrhea virus infection-free MDBK cells cultured in medium supplemented with serum substitute also gave similar results, thus indicating that IFN synthesis induced by ethanol is not mediated by the activation of bovine diarrhea virus. Together, these results show that: 1) ethanol induces the 2',5'-oligoadenylate synthetase and antiviral activities through IFN-beta production; and 2) the IFN produced does not act directly from inside the cells, but has to be first secreted to bind to its receptor. In MDBK cells, ethanol induces the synthesis of the 70-kDa protein, which precedes the expression of 2',5'-oligoadenylate synthetase; moreover, the transient nature of the synthesis of the hsp 70 in these cells is similar after both heat shock and ethanol treatment.  相似文献   

17.
A gradual increase in the level of 2',5'-oligoadenylate synthetase takes place in Friend erythroleukemia cells after a shiftdown in the rate of cell growth. The increase is about 5-fold after entry of cells into the stationary phase of growth, but much higher (25-fold) when reduction in growth accompanies cell differentiation. In the latter case, the enzyme increase is similar to that which can be induced in these cells by exogenous interferon (IFN). The increase in 2',5'-oligoadenylate synthetase was shown to be due to a spontaneous secretion of IFN by the cells themselves: it is completely abolished if antiserum to murine type I IFN is added to the culture medium. In attempts to isolate some of this spontaneously secreted IFN, we show that it is stable at pH 2, not neutralized by antiserum to type II IFN, and that it also differs from the known IFN species induced by Sendai virus in Friend cells. The major component of this spontaneously secreted IFN is 20,000 M(r) and differs from the corresponding virus-induced 20,000-M(r) IFN by its lower affinity for antiserum to type I IFN and its antigenic characterization as beta-murine IFN. The major component of the spontaneous IFN also exhibits a higher ratio of antigrowth to antiviral activity than the Sendai-induced IFNs. We suggest that Friend cells produce this specific type of IFN for the regulation of their growth and differentiation.  相似文献   

18.
To define the epitopes involved in binding anti-oligonucleotide antibodies, several hybridomas producing monoclonal antibodies directed against 2',5'-oligoadenylate were established. A solid-phase enzyme-linked immunoassay that employed microtiter wells coated with Ficoll-2',5'-oligoadenylate conjugates proved useful in screening and characterizing hybridoma supernatants. Control experiments demonstrated that the conjugates were irreversibly adsorbed to polystyrene wells under the conditions employed in the assay. Reactivity of monoclonal antibodies with numerous analogues of 2',5'-oligoadenylate was measured by using a competition assay. Several monoclonal antibodies originating from different mice immunized with the same or different immunogens possessed distinctive fine specificities. At least one 2',5'-phosphodiester bond was important in forming each epitope, suggesting that the ribose phosphate backbone is a critical element in defining an antigenic domain of an oligonucleotide. The purine bases were also important, and modification of the bases had varied effects on the extent of antibody recognition. The length of the oligonucleotide and the nature of the termini were also of some importance. In several instances the modification created by linkage of 2',5'-oligoadenylate to carrier protein also contributed to the determinant. The monoclonal antibody most specific for 2',5'-oligoadenylates was relatively insensitive to ionic strength. In contrast, a monoclonal antibody with a 2',5'-oligopurine specificity appeared to bind 2',5'-oligoadenylate through one ion pair, whereas the binding of a monoclonal antibody with a low degree of base specificity appeared to bind through two ion pairs. The results demonstrated that 2',5'-linked oligoadenylate-protein complexes possess at least three distinct oligonucleotide-related antigenic surfaces that can be recognized with high apparent affinity by monoclonal antibodies. A model for the three epitopes is presented.  相似文献   

19.
The activity of cAMP-dependent protein kinase was found to increase continuously in the NIH 3T3 cells, deepening into the resting state. The increase correlated with intracellular level of heat-stable protein inhibitor of the protein kinase rather than with the cAMP content. The elevation of 2',5'-oligo(A) synthetase activity and the decrease in 2'-phosphodiesterase activity were also observed in the cells sinking into the resting state. The variations in enzyme activities were similar to those caused by the increase in the intracellular cAMP content described elsewhere. These results agree with the idea that the cAMP-dependent protein kinase is involved in the regulation of the enzymes of 2',5'-oligo(A) metabolism.  相似文献   

20.
Interferons, in addition to their antiviral activity, induce a multiplicity of effects on different cell types. Interferon (IFN)-gamma exerts a unique regulatory effect on cells of the mononuclear phagocyte lineage. To investigate whether the antiviral and antiproliferative effects of IFN-gamma in macrophages can be genetically dissociated, and whether IFN-alpha and IFN-gamma use the same cellular signals and/or effector mechanisms to achieve their biologic effects, we have derived a series of somatic cell genetic variants resistant to the antiproliferative and/or antiviral activities of IFN-gamma. Two different classes of variants were found: those resistant to the antiproliferative and antiviral effects of IFN-gamma against vesicular stomatitis virus (VSV) and those resistant to the antiproliferative effect, but protected against VSV and encephalomyocarditis virus (EMCV) lysis by IFN-gamma. In addition, a third class of mutants was obtained that was susceptible to the growth inhibitory activity, but resistant to the antiviral activity of IFN-gamma. Analysis of these mutants has provided several insights regarding the regulatory mechanisms of IFN-gamma and IFN-alpha on the murine macrophage cell lines. The antiproliferative activity of IFN-gamma on these cells, in contrast to that of IFN-alpha, is mediated by a cAMP-independent pathway. The antiproliferative and antiviral activities of IFN-gamma were genetically dissociated. Variants were obtained that are growth resistant but antivirally protected, or are growth inhibited but not antivirally protected against VSV or EMCV. The genetic analysis indicated that IFN-alpha and IFN-gamma regulate the induction of the dsRNA-dependent P1/eIF-2 alpha protein kinase and 2',5'-oligoadenylate synthetase enzymatic activities via different pathways. Finally, a unique macrophage mutant was obtained that was protected by IFN-gamma against infection by VSV, but not EMCV, suggesting that antiviral mechanisms involved in protection against these different types of RNA viruses must be distinct at some level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号