首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report herein, first ever synthesis of series of novel differently substituted quinoxalinyl chalcones using Claisen Schmidt condensation, its molecular docking studies, and potential to be good anti-microbial, anti-tubercular and anti-cancer agents. The antimicrobial studies were carried out against Staphylococcus aureus, Escherichia coli and Candida albicans using disc diffusion procedure. The selected chalcones were tested for anti-cancer and cytotoxicity activity against MCF-7 cancer cell line using MTT assay method. All the synthesized compounds were screened for in vitro anti-tubercular screening against MtbH37RV strains by Alamar blue dye method. These results were compared with molecular docking studies carried out on Mycobacterium tuberculosis enzyme enoyl ACP reductase using Surflex-Dock program that is interfaced with Sybyl-X 2.0. SAR analysis for antimicrobial and antitubercular activity has also been proposed.  相似文献   

2.
Triclosan, a common antibacterial additive used in consumer products, is an inhibitor of FabI, the enoyl reductase enzyme from type II bacterial fatty acid biosynthesis. In agreement with previous studies [Ward, W. H., Holdgate, G. A., Rowsell, S., McLean, E. G., Pauptit, R. A., Clayton, E., Nichols, W. W., Colls, J. G., Minshull, C. A., Jude, D. A., Mistry, A., Timms, D., Camble, R., Hales, N. J., Britton, C. J., and Taylor, I. W. (1999) Biochemistry 38, 12514-12525], we report here that triclosan is a slow, reversible, tight binding inhibitor of the FabI from Escherichia coli. Triclosan binds preferentially to the E.NAD(+) form of the wild-type enzyme with a K(1) value of 23 pM. In agreement with genetic selection experiments [McMurry, L. M., Oethinger, M., and Levy, S. B. (1998) Nature 394, 531-532], the affinity of triclosan for the FabI mutants G93V, M159T, and F203L is substantially reduced, binding preferentially to the E.NAD(+) forms of G93V, M159T, and F203L with K(1) values of 0.2 microM, 4 nM, and 0.9 nM, respectively. Triclosan binding to the E.NADH form of F203L can also be detected and is defined by a K(2) value of 51 nM. We have also characterized the Y156F and A197M mutants to compare and contrast the binding of triclosan to InhA, the homologous enoyl reductase from Mycobacterium tuberculosis. As observed for InhA, Y156F FabI has a decreased affinity for triclosan and the inhibitor binds to both E.NAD(+) and E.NADH forms of the enzyme with K(1) and K(2) values of 3 and 30 nM, respectively. The replacement of A197 with Met has no impact on triclosan affinity, indicating that differences in the sequence of the conserved active site loop cannot explain the 10000-fold difference in affinities of FabI and InhA for triclosan.  相似文献   

3.
Enoyl acyl carrier protein reductase (ENR), which catalyzes the final and rate limiting step of fatty acid elongation, has been validated as a potential drug target. Triclosan is known to be an effective inhibitor for this enzyme. We mutated the substrate binding site residue Ala372 of the ENR of Plasmodium falciparum (PfENR) to Methionine and Valine which increased the affinity of the enzyme towards triclosan to almost double, close to that of Escherichia coli ENR (EcENR) which has a Methionine at the structurally similar position of Ala372 of PfENR. Kinetic studies of the mutants of PfENR and the crystal structure analysis of the A372M mutant revealed that a more hydrophobic environment enhances the affinity of the enzyme for the inhibitor. A triclosan derivative showed a threefold increase in the affinity towards the mutants compared to the wild type, due to additional interactions with the A372M mutant as revealed by the crystal structure. The enzyme has a conserved salt bridge which stabilizes the substrate binding loop and appears to be important for the active conformation of the enzyme. We generated a second set of mutants to check this hypothesis. These mutants showed loss of function, except in one case, where the crystal structure showed that the substrate binding loop is stabilized by a water bridge network.  相似文献   

4.
The malaria parasite Plasmodium falciparum is still a major threat to human health in the non-industrialised world mainly due to the increasing incidence of drug resistance. Therefore, there is an urgent need to identify and validate new potential drug targets in the parasite's metabolism that are suitable for the design of new anti-malarial drugs. It is known that infection with P. falciparum leads to increased oxidative stress in red blood cells, implying that the parasite requires efficient antioxidant and redox systems to prevent damage caused by reactive oxygen species. In recent years, it has been shown that P. falciparum possess functional thioredoxin and glutathione systems. Using genetic and chemical tools, it was demonstrated that thioredoxin reductase, the first step of the thioredoxin redox cycle, and gamma-glutamylcysteine synthetase (gamma-GCS), the rate-limiting step of glutathione synthesis, are essential for parasite survival. Indeed, the mRNA levels of gamma-GCS are elevated in parasites that are oxidatively stressed, indicating that glutathione plays an important antioxidant role in P. falciparum. In addition to this antioxidant function, glutathione is important for detoxification processes and is possibly involved in the development of resistance against drugs such as chloroquine.  相似文献   

5.
Enoyl‐acyl carrier protein reductase (ENR) is a crucial enzyme in the type II fatty acid synthesis pathway of many pathogens such as Plasmodium falciparum, the etiological agent of the most severe form of malaria. Because of its essential function of fatty acid double bond reduction and the absence of a human homologue, PfENR is an interesting drug target. Although extensive knowledge of the protein structure has been gathered over the last decade, comparatively little remains known about the dynamics of this crucial enzyme. Here, we perform extensive molecular dynamics simulations of tetrameric PfENR in different states of cofactor and ligand binding, and with a variety of different ligands bound. A pocket‐volume analysis is also performed, and virtual screening is used to identify potential druggable hotspots. The implications of the results for future drug‐discovery projects are discussed.  相似文献   

6.
The type II fatty acid pathway (FAS-II) is a validated target for antimicrobial drug discovery. An activity-guided isolation procedure based on Plasmodium falciparum enoyl-ACP reductase (PfFabI) enzyme inhibition assay on the n-hexane-, the CHCl(3-) and the aq MeOH extracts of the Turkish marine sponge Agelas oroides yielded six pure metabolites [24-ethyl-cholest-5alpha-7-en-3-beta-ol (1), 4,5-dibromopyrrole-2-carboxylic acid methyl ester (2), 4,5-dibromopyrrole-2-carboxylic acid (3), (E)-oroidin (4), 3-amino-1-(2-aminoimidazoyl)-prop-1-ene (5), taurine (6)] and some minor, complex fatty acid mixtures (FAMA-FAMG). FAMA, consisting of a 1:2 mixture of (5Z,9Z)-5,9-tricosadienoic (7) and (5Z,9Z)-5,9-tetracosadienoic (8) acids, and FAMB composed of 8, (5Z,9Z)-5,9-pentacosadienoic (9) and (5Z,9Z)-5,9-hexacosadienoic (10) acids in approximately 3:3:2 ratio were the most active PfFabI inhibitory principles of the hexane extract (IC(50) values 0.35 microg/ml). (E)-Oroidin isolated as free base (4a) was identified as the active component of the CHCl(3) extract. Compound 4a was a more potent PfFabI inhibitor (IC(50) 0.30 microg/ml=0.77 microM) than the (E)-oroidin TFA salt (4b), the active and major component of the aq MeOH extract (IC(50) 5.0 microg/ml). Enzyme kinetic studies showed 4a to be an uncompetitive PfFabI inhibitor (K(i): 0.4+/-0.2 and 0.8+/-0.2 microM with respect to substrate and cofactor). In addition, FAMA and FAMD (mainly consisting of methyl-branched fatty acids) inhibited FabI of Mycobacterium tuberculosis (MtFabI, IC(50)s 9.4 and 8.2 microg/ml, respectively) and Escherichia coli (EcFabI, IC(50)s 0.5 and 0.07 microg/ml, respectively). The majority of the compounds exhibited in vitro antiplasmodial, as well as trypanocidal and leishmanicidal activities without cytotoxicity towards mammalian cells. This study represents the first marine metabolites that inhibit FabI, a clinically relevant enzyme target from the FAS-II pathway of several pathogenic microorganisms.  相似文献   

7.
Acyl carrier proteins play a central role in metabolism by transporting substrates in a wide variety of pathways including the biosynthesis of fatty acids and polyketides. However, despite their importance, there is a paucity of direct structural information concerning the interaction of ACPs with enzymes in these pathways. Here we report the structure of an acyl-ACP substrate bound to the Escherichia coli fatty acid biosynthesis enoyl reductase enzyme (FabI), based on a combination of x-ray crystallography and molecular dynamics simulation. The structural data are in agreement with kinetic studies on wild-type and mutant FabIs, and reveal that the complex is primarily stabilized by interactions between acidic residues in the ACP helix alpha2 and a patch of basic residues adjacent to the FabI substrate-binding loop. Unexpectedly, the acyl-pantetheine thioester carbonyl is not hydrogen-bonded to Tyr(156), a conserved component of the short chain alcohol dehydrogenase/reductase superfamily active site triad. FabI is a proven target for drug discovery and the present structure provides insight into the molecular determinants that regulate the interaction of ACPs with target proteins.  相似文献   

8.
Approximately one-third of the world's population carries Staphylococcus aureus. The recent emergence of extreme drug resistant strains that are resistant to the "antibiotic of last resort", vancomycin, has caused a further increase in the pressing need to discover new drugs against this organism. The S. aureus enoyl reductase, saFabI, is a validated target for drug discovery. To drive the development of potent and selective saFabI inhibitors, we have studied the mechanism of the enzyme and analyzed the interaction of saFabI with triclosan and two related diphenyl ether inhibitors. Results from kinetic assays reveal that saFabI is NADPH-dependent, and prefers acyl carrier protein substrates carrying fatty acids with long acyl chains. On the basis of product inhibition studies, we propose that the reaction proceeds via an ordered sequential ternary complex, with the ACP substrate binding first, followed by NADPH. The interaction of NADPH with the enzyme has been further explored by site-directed mutagenesis, and residues R40 and K41 have been shown to be involved in determining the specificity of the enzyme for NADPH compared to NADH. Finally, in preliminary inhibition studies, we have shown that triclosan, 5-ethyl-2-phenoxyphenol (EPP), and 5-chloro-2-phenoxyphenol (CPP) are all nanomolar slow-onset inhibitors of saFabI. These compounds inhibit the growth of S. aureus with MIC values of 0.03-0.06 microg/mL. Upon selection for resistance, three novel safabI mutations, A95V, I193S, and F204S, were identified. Strains containing these mutations had MIC values approximately 100-fold larger than that of the wild-type strain, whereas the purified mutant enzymes had K i values 5-3000-fold larger than that of wild-type saFabI. The increase in both MIC and K i values caused by the mutations supports the proposal that saFabI is the intracellular target for the diphenyl ether-based inhibitors.  相似文献   

9.
The immunogenicity of Plasmodium falciparum recombinant circumsporozoite protein constructs R16tet32, R32tet32, and R48tet32 in mice was examined by measuring antibody responses by enzyme linked immunosorbent assay, immunofluorescence, circumsporozoite precipitation, and inhibition of sporozoite invasion. All three constructs were found to be immunogenic when administered alone, but antibody responses were greater for the larger constructs, R32tet32 and R48tet32. Increased dose, boosting, and the use of adjuvants further augmented antibody responses. R32tet32 was found to be the most immunogenic of the three constructs, and high levels of protective antibodies were found to persist for at least 44 weeks when the construct was given with alum. Clinical trials with alum adjuvanted R32tet32 have now begun.  相似文献   

10.
A library of cDNA clones expressing proteins of the asexual blood stages of a Papua New Guinean isolate of Plasmodium falciparum (isolate FCQ27/PNG (FC27] was constructed in the bacteriophage vector lambda gt11-Amp3. In an in situ colony immunoassay, human serum was used to identify colonies producing natural immunogens. Sera from donors of defined clinical status, or reactive to a defined subset of natural immunogens were used to identify clones of particular interest (for example, clones reacting with convalescent but not with acute serum or clones expressing the isolate specific S-antigen of FC27). Antisera raised by immunizing mice and rabbits with cloned antigens were used to characterize the P. falciparum proteins corresponding to the antigen-positive clones. Nucleotide sequence analysis of an antigen found on the surface of cells infected with ring stage parasites revealed an unusual sequence coding for eight, four and three amino acid repeats rich in acidic amino acids. The discussion centres on the use of cloned antigens as tools for the analysis of the host-protective immune response and selection of candidate vaccine molecules.  相似文献   

11.
Designer fluoropeptidomimetics as protease inhibitors are revealed. The key peptidomimetic region in the inhibitors contains a '-CHF-S-' moiety and is designed to mimic the tetrahedral oxyanion species during the hydrolysis of a peptide bond. Designed fluoropeptidomimetics in aqueous methanol slowly (in several hours to days) yielded the corresponding methyl ether and/or the oxazole derivatives after cyclization. Alkyl substitutions at the C-2 position exhibited enhanced aqueous stability. Nature of '-CHF-S-' moiety and the stabilities of various fluoropeptidomimetics in aqueous solution are disclosed in detail. Fluoropeptidomimetics containing bulky substitutions at P1 such as compounds 15 and 16 exhibited time-dependent loss of activities against chymotrypsin, upto [corrected] 67% and 79% with a Ki of 63 and 120 microM, respectively. Fluoropeptidomimetics are a novel class of protease inhibitors and the next generation of fluoropeptidomimetics should incorporate enhanced stability.  相似文献   

12.
Bacterial beta-ketoacyl-[acyl carrier protein] (beta-ketoacyl-ACP) reductase (FabG) is a highly conserved and ubiquitously expressed enzyme of the fatty-acid biosynthetic pathway of prokaryotic organisms that catalyzes NADPH-dependent reduction of beta-ketoacyl-ACP intermediates. Therefore, FabG represents an appealing target for the development of new antimicrobial agents. A number of trans-cinnamic acid derivatives were designed and screened for inhibitory activities against FabG from Escherichia coli. These inhibited FabG enzymatic activity with IC(50) values in the microM range, and were used as templates for the subsequent diversification of the chemotype. Introduction of an electron-withdrawing 4-cyano group to the phenol substituent showed improved inhibition over the non-substituted compound. The benzo-[1,3]-dioxol moiety also appeared to be essential for inhibitory activity of trans-cinnamic acid derivatives against FabG from E. coli. To explain the possible binding position, the best inhibitor from the present study was docked in the active site of FabG. The results for the best scoring conformers chosen by the docking programme revealed that cinnamic acid derivatives can be accommodated in the substrate-binding region of the active site, above the nicotinamide moiety of the NADPH cofactor. Additionally, a phage-displayed library of random linear 15-mer peptides was screened against FabG, to identify ligands with the common PPLTXY motif.  相似文献   

13.
Malaria continues to be a scourge in India and the situation has been compounded by the emergence of resistant strains of Plasmodium falciparum which is the primary cause of fatality in this disease. Therefore, there is an urgent need to develop newer drugs. Molecular modeling and pharmacophoric determination have become predominant methods today in the design and synthesis of newer and more effective drugs. Many Plasmodium specific enzymes and proteins involved in crucial biochemical pathways have been identified and their structures have been determined by X-ray crystallography. These enzymes and proteins are excellent targets for newer antimalarial agents. Bisphosphonates have shown potent inhibitory activity against Plasmodium farneysl diphosphate synthase (FPPS) enzyme, which is vital to the protein prenylation pathway of the organism. In this study, a set of 26 bisphosphonate inhibitors, synthesized by Oldfield et al [J Med Chem (2008) 51, 7827-7833] were subjected to rigorous 3D-QSAR studies using the PHASE computational package. In vitro Plasmodium growth inhibition rather than direct enzyme inhibition was considered in the study for a more realistic approach. Good statistical correlations were obtained for the pharmacophoric model as revealed by the regression values, indicating good stability of the model. Three hydrogen bond acceptors and a hydrogen bond donor defined the pharmacophore from the present study. This pharmacophore, AAAD (A = Hydrogen bond acceptor and D = Hydrogen bond donor) was put through a search-run for matching structures from the SPECS database yielding four matching structures, which could function as starting points for more novel and potent antimalarials.  相似文献   

14.
A new scaffold N-(9-(ortho/meta/para-(benzyloxy)phenyl)-3,3,6,6-tetramethyl-1,8-dioxo-1,2,3,4,5,6,7,8-octahydroacridin-10(9H)-yl) isonicotinamide (H1-3) was discovered as a hSIRT1 inhibitor through virtual screening of in-house database. Based on these hits, a library of compounds were designed, synthesized and tested for in vitro hSIRT1 activity. The most potent compound 4d in the series showed a significant inhibition of SIRT1 activity. Further antitumor studies of compound 4d, showed a dose dependent increase in acetylation of p53K382 and decrease in SIRT1 with an IC50 of 0.25 μM in MDA-MB231 breast cancer cell lines. Individual 3D-QSAR analysis using Schrödinger showed distribution of hydrophobic and non polar positive co-efficient at ortho position essential for bioactivity based on 4d.  相似文献   

15.
16.
In this paper, former studies on the interactions of the natural substrate and potential inhibitors of Plasmodium falciparum serine hydroxymethyltransferase (PfSHMT) were used to design five new potential selective inhibitors to this enzyme. Results of the docking energies calculations of these structures inside the active sites of PfSHMT and human SHMT were used to select a more suitable structure as a potential selective inhibitor to PfSHMT. Further molecular dynamics studies of this molecule and 5-formyl-6-hydrofolic acid (natural substrate) docked inside these enzymes' active sites revealed important features for additional refinements of this structure and also additional residues in the PfSHMT active site to be considered further for designing selective inhibitors.  相似文献   

17.
Twelve new derivatives of benzothiazole bearing benzenesulphonamide and carboxamide were synthesised and investigated for their in vivo anti-inflammatory, analgesic and ulcerogenic activities. Molecular docking showed an excellent binding interaction of the synthesised compounds with the receptors, with 17c showing the highest binding energy (–12.50?kcal/mol). Compounds 17c and 17i inhibited carrageenan-induced rat paw oedema at 72, 76, and 80% and 64, 73, and 78% at 1?h, 2?h, and 3?h, respectively. In the analgesic activity experiment, compounds 17c, 17?g, and 17i had ED50 (µM/kg) of 96, 127, and 84 after 0.5?h; 102, 134, and 72 after 1?h and 89, 156, and 69 µM/kg after 2?h, respectively, which were comparable with 156, 72, and 70 µM/kg for celecoxib. The ulcerogenic index of the most active derivatives 17c and 17i were 0.82 and 0.89, respectively, comparable to 0.92 for celecoxib. The physicochemical studies of the new derivatives showed that they will not have oral bioavailability problems.  相似文献   

18.
I Climent  B M Sj?berg  C Y Huang 《Biochemistry》1991,30(21):5164-5171
The active complex of Escherichia coli ribonucleotide reductase comprises two dissociable, nonidentical homodimeric proteins, B1 and B2. When B2 is the varied component, the reductase activity is competitively inhibited by synthetic peptides of varying lengths corresponding to the C-terminus of protein B2. This finding provides the first evidence that the C-terminal peptides and protein B2 share the same binding domain on protein B1. Our data also show that two molecules of peptide can bind to protein B1 with equal affinity. Similar inhibition constants (18 microM) were obtained for peptides containing the C-terminal 20, 30, and 37 residues. When the invariant residue Tyr 356 was omitted, a 2-fold decrease in peptide inhibitory ability was observed. A small peptide, lacking the last 11 residues, had virtually no inhibitory potency. These results, coupled with our previous observations that truncated protein B2, in which one or both polypeptide chains are missing approximately 24 C-terminal residues, had considerably lower or no affinity for B1, suggest that the C-terminal regions are the major determinants in the B1-B2 interaction. In the Appendix, two methods for treatment of kinetic situations pertinent to the ribonucleotide reductase system are presented. One method deals with the determination of kinetic parameters for two components present at comparable levels; the other is concerned with the differentiation of linear and nonlinear competitive inhibition involving the binding of two inhibitor molecules. Both methods should find application to other similar cases.  相似文献   

19.
The x-ray crystal structures of five triclosan analogs, in addition to that of the isoniazid-NAD adduct, are described in relation to their integral role in the design of potent inhibitors of the malarial enzyme Plasmodium falciparum enoyl acyl carrier protein reductase (PfENR). Many of the novel 5-substituted analogs exhibit low micromolar potency against in vitro cultures of drug-resistant and drug-sensitive strains of the P. falciparum parasite and inhibit purified PfENR enzyme with IC50 values of <200 nM. This study has significantly expanded the knowledge base with regard to the structure-activity relationship of triclosan while affording gains against cultured parasites and purified PfENR enzyme. In contrast to a recent report in the literature, these results demonstrate the ability to improve the in vitro potency of triclosan significantly by replacing the suboptimal 5-chloro group with larger hydrophobic moieties. The biological and x-ray crystallographic data thus demonstrate the flexibility of the active site and point to future rounds of optimization to improve compound potency against purified enzyme and intracellular Plasmodium parasites.  相似文献   

20.
Most parasitic protozoa lack the de novo purine biosynthetic pathway and rely exclusively on the salvage pathway for their purine nucleotide requirements. Enzymes of the salvage pathway are, therefore, candidate drug targets. We have cloned the Plasmodium falciparum adenylosuccinate synthetase gene. In the parasite, adenylosuccinate synthetase is involved in the synthesis of AMP from IMP formed during the salvage of the purine base, hypoxanthine. The gene was shown to code for a functionally active protein by functional complementation in a purA mutant strain of Escherichia coli, H1238. This paper reports the conditions for hyperexpression of the recombinant protein in E. coli BL21(DE3) and purification of the protein to homogeneity. The enzyme was found to require the presence of dithiothreitol during the entire course of the purification for activity. Glycerol and EDTA were found to stabilize enzyme activity during storage. The specific activity of the purified protein was 1143.6 +/- 36.8 mUnits/mg. The K(M)s for the three substrates, GTP, IMP, and aspartate, were found to be 4.8 microM, 22.8 microM, and 1.4 mM, respectively. The enzyme was a dimer on gel filtration in buffers of low ionic strength but equilibrated between a monomer and a dimer in buffers of increased ionic strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号