首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Euchromatic imbalances at the cytogenetic level are usually associated with phenotypic consequences. Among the exceptions are euchromatic variants of chromosomes 8, 9, 15 and 16, which have each been reported in multiple unrelated families. In this paper, we present a new family and an unrelated individual who have euchromatic variants of 16p. Enhanced hybridisation to the extra material was found by using fluorescence in situ hybridisation with cosmids for both the 16p11.2-specific non-functional immunoglobin heavy chain segments and the pseudogenetic 16p11.2 creatine transporter region. Computerised measurement of the fluorescent signals was consistent with amplification of a pseudogene cassette comprising both these paralogous domains, which were originally transposed from 14q32.3 and Xq28, respectively. Amplification of pseudogenetic sequences is consistent with the normal phenotype in 36/46 carriers from the 18 families reported to date. Inconsistent phenotypic anomalies in the remaining 10 carriers probably reflect bias of ascertainment. These results are analogous to the amplification of the 15q11.2-specific pseudogene cassette in euchromatic variants of chromosome 15. They also suggest that the majority of established euchromatic variants are associated with variation in the copy number of sequences that have been dispersed between pericentromeric and telomeric loci over recent evolutionary time. We propose that constitutional cytogenetic amplification of this kind is part of a more widespread continuum of genomic flux affecting regions in which heterochromatin and euchromatin interpose. Euchromatic sequences that vary in a heterochromatic manner might usefully be termed “hemichromatic”. Received: 16 October 1998 / Accepted: 20 January 1999  相似文献   

2.
Meiotic anomalies, as reviewed here, are synaptic chromosome abnormalities, limited to germ cells that cannot be detected through the study of the karyotype. Although the importance of synaptic errors has been underestimated for many years, their presence is related to many cases of human male infertility. Synaptic anomalies can be studied by immunostaining of synaptonemal complexes (SCs), but in this case their frequency is probably underestimated due to the phenomenon of synaptic adjustment. They can also be studied in classic meiotic preparations, which, from a clinical point of view, is still the best approach, especially if multiplex fluorescence in situ hybridization is at hand to solve difficult cases. Sperm chromosome FISH studies also provide indirect evidence of their presence. Synaptic anomalies can affect the rate of recombination of all bivalents, produce achiasmate small univalents, partially achiasmate medium-sized or large bivalents, or affect all bivalents in the cell. The frequency is variable, interindividually and intraindividually. The baseline incidence of synaptic anomalies is 6-8%, which may be increased to 17.6% in males with a severe oligozoospermia, and to 27% in normozoospermic males with one or more previous IVF failures. The clinical consequences are the production of abnormal spermatozoa that will produce a higher number of chromosomally abnormal embryos. The indications for a meiotic study in testicular biopsy are provided.  相似文献   

3.
Meiotic pairing constraints and the activity of sex chromosomes   总被引:5,自引:0,他引:5  
The state of activity and condensation of the sex chromosomes in gametocytes is frequently different from that found in somatic cells. For example, whereas the X chromosomes of XY males are euchromatic and active in somatic cells, they are usually condensed and inactive at the onset of meiosis; in the somatic cells of female mammals, one X chromosome is heterochromatic and inactive, but both X chromosomes are euchromatic and active early in meiosis. In species in which the female is the heterogametic sex (ZZ males and ZW females), the W chromosome, which is often seen as a condensed chromatin body in somatic cells, becomes euchromatic in early oocytes. We describe an hypothesis which can explain these changes in the activity and condensation of sex chromosomes in gametocytes. It is based on the fact that normal chromosome pairing seems to be essential for the survival of sex cells; chromosomal anomalies resulting in incomplete pairing during meiosis usually result in gametogenic loss. We argue that the changes seen in the sex chromosomes reflect the need to avoid pairing failure during meiosis. Pairing normally requires structural and conformational homology of the two chromosomes, but when the regions is avoided when these regions become heterochromatinized. This hypothesis provides an explanation for the changes found in gametocytes both in species with male heterogamety and those with female heterogamety. It also suggests possible reasons for the frequent origin of large supernumerary chromosomes from sex chromosomes, and for the reported lack of dosage compensation in species with female heterogamety.  相似文献   

4.
Smith-Magenis syndrome (SMS) is a complex neurobehavioral disorder characterized by multiple congenital anomalies. The syndrome is primarily ascribed to a ~3.7 Mb de novo deletion on chromosome 17p11.2. Haploinsufficiency of multiple genes likely underlies the complex clinical phenotype. RAI1 (Retinoic Acid Induced 1) is recognized as a major gene involved in the SMS phenotype. Extensive genetic and clinical analyses of 36 patients with SMS-like features, but without the 17p11.2 microdeletion, yielded 10 patients with RAI1 variants, including 4 with de novo deleterious mutations, and 6 with novel missense variants, 5 of which were familial. Haplotype analysis showed two major RAI1 haplotypes in our primarily Caucasian cohort; the novel RAI1 variants did not occur in a preferred haplotype. RNA analysis revealed that RAI1 mRNA expression was significantly decreased in cells of patients with the common 17p11.2 deletion, as well as in those with de novo RAI1 variants. Expression levels varied in patients with familial RAI1 variants and in non-17p11.2 deleted patients without identified RAI1 defects. No correlation between SNP haplotype and RAI1 expression was found. Two clinical features, ocular abnormalities and polyembolokoilomania (object insertion), were significantly correlated with decreased RAI1 expression. While not significantly correlated, the presence of hearing loss, seizures, hoarse voice, childhood onset of obesity and specific behavioral aspects and the absence of immunologic abnormalities and cardiovascular or renal structural anomalies, appeared to be specific for the de novo RAI1 subgroup. Recognition of the combination of these features will assist in referral for RAI1 analysis of patients with SMS-like features without detectable microdeletion of 17p11.2. Moreover, RAI1 expression emerged as a genetic target for development of therapeutic interventions for SMS.  相似文献   

5.
Summary A chromosome examination was made on 11,148 consecutively live-born children: 93 had a chromosome abnormality and 192 a chromosome variant. The physical aspects of the children with chromosome abnormalities and variants were compared with those of the children with normal karyotypes. Children with aneuploid or unbalanced chromosome abnormalities were more frequently immature or not fully developed at birth than those with normal karyotypes. Birth weight was lower in children with all types of chromosome abnormalities, including reciprocal translocations and chromosome variants. The low birth weight in children with chromosome variants was mainly due to the low birth weight of children with G variants. These children were also subject to a higher frequency of special delivery treatment. Heart disorders were increased in children with aneuploid or unbalanced chromosome abnormalities. The frequency of foetal erythroblastosis was increased in children with short Y as well as in children with acentric fragments. Neonatal mortality was higher in children with aneuploid or unbalanced chromosome abnormalities than in children with normal karyotypes.  相似文献   

6.
A large duplication involving the proximal euchromatic region of chromosome 9p was detected by conventional cytogenetics in a healthy 33-year-old woman and in two unrelated foetuses; both of them received the rearrangement from their healthy father. The duplicated segment was R(RBG) and C(CBG)-negative and G(GTG)-positive and was also positive for a 9-specific painting probe. It was preliminarily interpreted as a pathological quantitative change of the genome in the foetuses. FISH analyses allowed us to characterise the chromosome boundaries of this polymorphism, being identified by the RP11-15E1 BAC clone, proximally, and by the RP11-402N8 clone, distally, both probes falling within the 9p12 region. The contiguous, distally, RP11-916H19 probe was not included in the amplification, and may represent the discriminating genetic locus between chromosome polymorphism and chromosome mutation. The 9p12 amplification was approximately 12, 7 and 8 Mb in the three different families and was stable through generations. Our observations confirm the already provided evidence that proximal 9p duplications represent a benign euchromatic polymorphism. However, we demonstrated that these variants are not a simple duplication of the region 9p11.2-p13.1, as already suggested, but that they result from a many-fold amplification of a segment mapping within 9p12. These results provide important insights both in the genetic counselling and in the prenatal diagnosis of rare euchromatic chromosome variants and in understanding the architecture of the human genome.  相似文献   

7.
A miscarriage is the most frequent complication of a pregnancy. Poor chromosome preparations, culture failure, or maternal cell contamination may hamper conventional karyotyping. Techniques such as chromosomal comparative genomic hybridization (chromosomal‐CGH), array-comparative genomic hybridization (array-CGH), fluorescence in situ hybridization (FISH), multiplex ligation-dependent probe amplification (MLPA) and quantitative fluorescent polymerase chain reaction (QF-PCR) enable us to trace submicroscopic abnormalities. We found the prevalence of chromosome abnormalities in women facing a single sporadic miscarriage to be 45% (95% CI: 38–52; 13 studies, 7012 samples). The prevalence of chromosome abnormalities in women experiencing a subsequent miscarriage after preceding recurrent miscarriage proved to be comparable: 39% (95% CI: 29–50; 6 studies 1359 samples). More chromosome abnormalities are detected by conventional karyotyping compared to FISH or MLPA only (chromosome region specific techniques), and the same amount of abnormalities compared to QF-PCR (chromosome region specific techniques) and chromosomal‐CGH and array-CGH (whole genome techniques) only. Molecular techniques could play a role as an additional technique when culture failure or maternal contamination occurs: recent studies show that by using array-CGH, an additional 5% of submicroscopic chromosome variants can be detected. Because of the small sample size as well as the unknown clinical relevance of these molecular aberrations, more and larger studies should be performed of submicroscopic chromosome abnormalities among sporadic miscarriage samples. For recurrent miscarriage samples molecular technique studies are relatively new. It has often been suggested that miscarriages are due to chromosomal abnormalities in more than 50%, but the present review has determined that chromosomal and submicroscopic genetic abnormalities on average are prevalent in maximally half of the miscarriage samples. This article is part of a Special Issue entitled: Molecular Genetics of Human Reproductive Failure.  相似文献   

8.
David H. Carr 《CMAJ》1963,88(9):456-461
When human chromosome anomalies were first described in 1959, it appeared that specific abnormalities might be correlated with specific syndromes. Mongolism and the D and E syndromes are examples of specific syndromes associated with the presence of an extra autosome. Klinefelter''s syndrome may be associated with a variety of different sex chromosome anomalies including XXY, XXYY, XXXY and XXXXY. The lastnamed variant is the only one that frequently presents features distinguishing it from the others. An XO sex chromosome complex is found in many women with gonadal dysgenesis. However, a variety of mosaicisms have been described in association with this condition, including XO/XX, XO/XXX, XO/XX/XXX, XO/XY and XO/XYY. Extra X chromosomes in phenotypical females do not seem to impair fertility or be consistently associated with congenital anomalies. Two families are described in which chromosome anomalies were found, but the association with defects was irregular. In one family the abnormality involved one of the number 16 chromosomes and in the other it involved one of the small acrocentric chromosomes.  相似文献   

9.
Summary The Comstockiella chromosome system occurs in the armored scale insects and the closely allied palm scales. During development of the males, the paternal chromosome set becomes heterochromatic and remains so until spermatogenesis. With the exception of one chromosome, the heterochromatic complement loses its differential aspect during early spermatogenesis and its members pair with their euchromatic homologues There is but one division during which the two components of each bivalent separate to opposite poles. Both division products form sperm.One pair of chromosomes, the D pair, always shows differential behavior. The D pair usually does not form a bivalent. The heterochromatic homologue, DH, divides equationally and is eliminated by anaphase lagging or telophase ejection; its daughter halves remain as pycnotic residues during the early phases of spermiogenesis. The euchromatic homologue, DE, also divides equationally to contribute to both of the telophase nuclei. Compensation for the division of the DE univalent may occur during either the early or late phases of spermatogenesis.In some species the D pair is a fixed entity, analogous to the sex chromosomes in this regard. In other species, more than one pair may be elected to the D role, but only one at a time, and always the same one within each cyst.Taxonomic evidence indicates the Comstockiella system was derived from the lecanoid system, previously known from the work of the Schraders and others. In the lecanoid system, the paternally derived heterochromatic set divides equationally, along with the euchromatic set, during the first spermatogenic division. During the second spermatogenic division, the two sets are segregated from each other. The two euchromatic derivatives form sperm while the heterochromatic derivatives persist for a while as pycnotic residues. Both the lecanoid and Comstockiella systems occur in some species often in the same testis, but only one of the two systems within any one cyst.The discussion is devoted to an analysis of the mode of inheritance expected in the Comstockiella system and its evolutionary derivation. The Comstockiella system may have been derived in a step-by-step fashion from the lecanoid. The two systems differ by four processes which occur at spermatogenesis in the Comstockiella but not the lecanoid system; these are (1) deheterochromatization, (2) chromosome pairing, (3) compensation for the extra division of the DE chromosome, and (4) lagging or ejection to eliminate the DH chromosome.In addition, the residual genetic effects of the heterochromatic set may have undergone considerable change before the lecanoid system could evolve into a Comstockiella. Once the evolutionary step were otherwise possible, mechanistic features would aid and abet the emergence of the new system even though it lacked immediate selective advantage.The variable-D aspect of some examples of the Comstockiella system cannot be readily understood in terms of known examples of chromosome behavior; an admittedly highly speculative hypothesis is offered in an attempt to explain the situation.The diaspidid system, in which the paternal chromosomes are eliminated at late cleavage, is believed on taxonomic grounds to have stemmed from the Comstockiella, and forms the final stage of the four-step evolutionary sequence. Necessary changes for the derivation of the diaspidid system from the Comstockiella are discussed.This work was begun during the tenure of a Guggenheim Memorial Fellowship, 1956–57, and has subsequently been supported in part by grants from the National Science Foundation (G-4497 and G-9772).  相似文献   

10.
A boy with Down syndrome due to a free trisomy 21 also had a metacentric Y chromosome with an arm euchromatic and the other heterochromatic inherited from his phenotypically normal father. This chromosome was mitotically stable and hybridized with the DYZ3 probe precisely at its primary constriction; in addition, a subtelomeric Xp/Yp probe gave the expected signal near the end of the euchromatic arm. So, the proband's karyotype was 47,X,inv(Y)(p11q11.2),+21. Given the high frequency of both chromosome anomalies, we regard its concurrence as a mere coincidence. This observation, along with previous reports, allows us to classify the apparent pericentric inversions of the Y chromosome into two types: "true" inversions characterized by an alphoid single centromere and mitotic stability, and "false" inversions in which a nonalphoid centromere has taken over the usual alphoid centromere; indeed, these chromosomes are dicentric and mitotically unstable. Finally, the inv(Y) polymorphism in man compares with that documented in other mammal species, in which the rearranged Y chromosome neither impairs the fertility nor has other phenotypical consequences.  相似文献   

11.
Kabuki syndrome (KS) (MIM 147920) is a multiple congenital anomalies/mental retardation syndrome of unknown cause. There is multisystem involvement of anomalies, including 1) unique facial features, 2) postnatal growth retardation, 3) mild-to-moderate mental retardation, 4) skeletal anomalies and 5) dermatoglyphic abnormalities. Kabuki syndrome remains a clinical diagnosis despite significant research on detection of the genetic cause. We present 10 patients with Kabuki syndrome with a brief overview of the syndrome. An additional male patient and his affected aunt, both with trisomy 10p due to unbalanced segregation of a familial translocation, are also discussed for overlapping features and differential clinical diagnosis of the two conditions. Considering a significant overlap in clinical pictures of Kabuki syndrome and trisomy 10p in these two patients, as well as the previous patients with chromosomal abnormalities, we conclude that chromosome analysis is an important step in clinical work-up of patients with Kabuki syndrome.  相似文献   

12.
Extra euchromatic material was found within the major heterochromatic block of chromosome 16 (16qh) in one de novo case and seven members of two families. In contrast to the euchromatic variants of chromosome 9 (9qh), which are derived from pericentromeric euchromatin, molecular cytogenetics confirmed that these duplications were of 16q11.2-->q12.2 in the de novo case, of 16q11.2-->q13 in three members of family 1 and 16q11.2-->q12.1 in four members of family 2. The duplication had arisen as a post-zygotic mitotic event in the mother of family 1 and been transmitted paternally in family 2. An insertional mechanism of origin is proposed for the duplications in case 1 and family 1. Expression at the 16q13 matrix metalloproteinase-2 (MMP2)locus in families 1 and 2 was proportional to genomic copy number and not therefore consistent with position effect silencing due to the flanking blocks of heterochromatin. We conclude that proximal 16q duplications within 16qh are not novel euchromatic variants but associated with a variable phenotype including developmental delay, speech delay, learning difficulties and behavioural problems. The behavioural problems in families ascertained through affected children are much less severe than those encountered in previous patients ascertained as adults.  相似文献   

13.
Array-based comparative genomic hybridization (array CGH) genome scanning is a powerful method for the global detection of gains and losses of genetic material in both congenital and neoplastic disorders. When used as a clinical diagnostic test, array CGH combines the whole genome perspective of traditional G-banded cytogenetics with the targeted identification of cryptic chromosomal abnormalities characteristic of fluorescence in situ hybridization (FISH). However, the presence of structural variants in the human genome can complicate analysis of patient samples, and array CGH does not provide morphologic information about chromosome structure, balanced translocations, or the actual chromosomal location of segmental duplications. Identification of such anomalies has significant diagnostic and prognostic implications for the patient. We therefore propose that array CGH should be used as a guide to the presence of genomic structural rearrangements in germline and tumor genomes that can then be further characterized by FISH or G-banding, depending on the clinical scenario. In this article, we share some of our experiences with diagnostic array CGH and discuss recent progress and challenges involved with the integration of array CGH into clinical laboratory medicine.  相似文献   

14.
Summary In Part I of this communication, a technique (LBA) was described which used DNA replication in the evaluation of chromosome variants in man. It was shown that the method was very useful in the detection of variants in D-and G-group chromosomes. Results on pairs 3 and 4 were also presented.In Part II, the rest of chromosomes were examined. In the evaluation of qh variants in 1,9 and 16, the LBA technique proved itself to be a very effective implement. It was practically free of technical variables coherent with C-band technique and, therefore, it was possible to use the size of an euchromatic segment of a chromosome as a reference standard. LBA variants were observed in about 50% of the members of the remaining 12 pairs of chromosomes, i.e., 2, 5, 6, 7, 8, 10, 11, 12, 17, 18, 19, and 20.  相似文献   

15.
Incidence of chromosome aberrations among 11148 newborn children.   总被引:24,自引:0,他引:24  
Chromosome analysis has been made of 11148 children; 29 had sex chromosome abnormalities (2.60 per 1000) and 64 autosomal abnormalities (5.74 per 1000). The total incidence of major chromosome abnormalities was 8.34 per 1000. The incidence of chromosome variations was 16.8 per 1000. The most common variants were those with variation in size of short arms-satellites in D and G chromosomes and variations in Y chromosome size. So far, very little is known about the significance of such chromosome variations. The incidence of most chromosome abnormalities in liveborn children is well established by now from studies of a total of 54749 consecutively liveborn children in 6 studies as shown in Table 1. More chromosome studies of liveborn children are, however, needed for several purposes such as finding families with chromosome translocations, studying segregation rates and giving genetic advice to families with inheritable chromosome aberrations and an increased risk of getting children with unbalanced chromosome abnormalities, mental retardation and physical abnormalities. One of the main purposes in chromosome examination of newborn children is to study the development of children with different chromosome abnormalities, especially those with sex chromosome abnormalities, and compare then with controls, treat them when needed and give advice to the parents of such children.  相似文献   

16.
The majority of abnormal sex chromosome complexes in the male have been considered to be variants of Klinefelter''s syndrome but an exception should probably be made in the case of the XXXXY individual who has distinctive phenotypic features. Clinical, radiological and cytological data on three new cases of XXXXY syndrome are presented and 30 cases from the literature are reviewed. In many cases the published clinical and radiological data were supplemented and re-evaluated. Mental retardation, usually severe, was present in all cases. Typical facies was observed in many; clinodactyly of the fifth finger was seen in nearly all.Radiological examination revealed abnormalities in the elbows and wrists in all the 19 personally evaluated cases, and other skeletal anomalies were very frequent. Cryptorchism is very common and absence of Leydig''s cells may differentiate the XXXXY chromosome anomaly from polysomic variants of Klinefelter''s syndrome. The relationship of this syndrome to Klinefelter''s syndrome and to Down''s syndrome is discussed.  相似文献   

17.
Common Mechanisms of Y Chromosome Evolution   总被引:5,自引:0,他引:5  
Steinemann M  Steinemann S 《Genetica》2000,109(1-2):105-111
Y chromosome evolution is characterized by the expansion of genetic inertness along the Y chromosome and changes in the chromosome structure, especially the tendency of becoming heterochromatic. It is generally assumed that the sex chromosome pair has developed from a pair of homologues. In an evolutionary process the proto-Y-chromosome, with a very short differential segment, develops in its final stage into a completely heterochromatic and to a great extends genetically eroded Y chromosome. The constraints evolving the Y chromosome have been the objects of speculation since the discovery of sex chromosomes. Several models have been suggested. We use the exceptional situation of the in Drosophila mirandato analyze the molecular process in progress involved in Y chromosome evolution. We suggest that the first steps in the switch from a euchromatic proto-Y-chromosome into a completely heterochromatic Y chromosome are driven by the accumulation of transposable elements, especially retrotransposons inserted along the evolving nonrecombining part of the Y chromosome. In this evolutionary process trapping and accumulation of retrotransposons on the proto-Y-chromosome should lead to conformational changes that are responsible for successive silencing of euchromatic genes, both intact or already mutated ones and eventually transform functionally euchromatic domains into genetically inert heterochromatin. Accumulation of further mutations, deletions, and duplications followed by the evolution and expansion of tandem repetitive sequence motifs of high copy number (satellite sequences) together with a few vital genes for male fertility will then represent the final state of the degenerated Y chromosome. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Summary A cytogenetic study, done on randomized coded slides, of 90 patients with idiopathic mental retardation and at least 3 other developmentally independent congenital anomalies and of 90 normal subjects is reported. Audiatorography, Q-banding and C-staining were used in the analysis of chromosomally abnormal cases. Eight patients were found to have chromosome abnormalities. Four had substantial chromosome aberrations that would be expected to cause abnormal phenotype. These were CD165 (46,18q-); CD25 (46,18q+) (partial trisomy of 10q); CD175 (46,4q+) and CD95 (46,mar22). In addition, 4 patients were found to have chromosomal anomalies that could not account for their conditions. Three of these were considered to have heterochromatic variants. Patient CD167 had an 9qh+ chromosome which had been inherited from her mother. Case CD137 had a No. 19 chromosome with additional centric heterochromatin. A similar chromosome was found in her mother, maternal grandmother and 2 of 3 half sibs. In patient CD125 a telocentric No. 13 was found. In addition, CD80 was shown to have an XYY constitution.In the normal subjects, no unbalanced chromosome rearrangements were found. Four persons, however, had minor chromosome anomalies. Three were considered to have heterochromatic variants. These were CD54 (46,22p+); CD149 (46,21p+) and CD19 (46,tel22). One normal subject (CD51) was found to be a balanced t(13q14q) carrier. The translocation chromosome had been inherited from his father.  相似文献   

19.
In the males of lecanoid coccids, or mealybugs, an entire, paternally derived, haploid chromosome set becomes heterochromatic after the seventh embryonic mitotic cycle. In females, both haploid sets are euchromatic throughout the life cycle. In mealybugs, as in all homopteran species, chromosomes are holocentric. Holocentric chromosomes are characterized by the lack of a localized centromere and consequently of a localized kinetic activity. In monocentric species, sister chromatid cohesion and monopolar attachment play a pivotal role in regulating chromosome behavior during the two meiotic divisions. Both these processes rely upon the presence of a single, localized centromere and as such cannot be properly executed by holocentric chromosomes. Here we furnish further evidence that meiosis is inverted in both sexes of mealybugs and we suggest how this might represent an adaptation to chromosome holocentrism. Moreover, we reveal that at the second meiotic division in males a monopolar spindle is formed, to which only euchromatic chromosomes become attached. By this mechanism the paternally derived, heterochromatic, haploid chromosome set strictly segregates from the euchromatic one, and it is then excluded from the genetic continuum as a result of meiotic drive.Communicated by E.A. Nigg  相似文献   

20.
There are numerous examples of the regular segregation of achiasmate chromosomes at meiosis I in Drosophila melanogaster females. Classically, the choice of achiasmate segregational partners has been thought to be independent of homology, but rather made on the basis of availability or similarities in size and shape. To the contrary, we show here that heterochromatic homology plays a primary role in ensuring the proper segregation of achiasmate homologs. We observe that the heterochromatin of chromosome 4 functions as, or contains, a meiotic pairing site. We show that free duplications carrying the 4th chromosome pericentric heterochromatin induce high frequencies of 4th chromosome nondisjunction regardless of their size. Moreover, a duplication from which some of the 4th chromosome heterochromatin has been removed is unable to induce 4th chromosome nondisjunction. Similarly, in the absence of either euchromatic homology or a size similarity, duplications bearing the X chromosome heterochromatin also disrupt the segregation of two achiasmate X chromosome centromeres. Although heterochromatic regions are sufficient to conjoin nonexchange homologues, we confirm that the segregation of heterologous chromosomes is determined by size, shape, and availability. The meiotic mutation Axs differentiates between these two processes of achiasmate centromere coorientation by disrupting only the homology-dependent mechanism. Thus there are two different mechanisms by which achiasmate segregational partners are chosen. We propose that the absence of diplotene-diakinesis during female meiosis allows heterochromatic pairings to persist until prometaphase and thus to co-orient homologous centromeres. We also propose that heterologous disjunctions result from a separate and homology-independent process that likely occurs during prometaphase. The latter process, which may not require the physical association of segregational partners, is similar to those observed in many insects, in Saccharomyces cerevisiae and in C. elegans males. We also suggest that the physical basis of this process may reflect known properties of the Drosophila meiotic spindle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号