首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thauera aromatica T1 was isolated for its ability to use toluene as a sole carbon source under denitrifying conditions. A genetic approach was used to examine the roles of the tutF, tutD, and tutG gene products (part of a single operon) in the metabolism of toluene. The genes were individually deleted from the chromosome and each resulting mutant strain was unable to metabolize toluene. Plasmids carrying individual in-frame gene deletions failed to complement the corresponding chromosomal deletions but did complement chromosomal deletions downstream of the in-frame deletion. Hence, the tutF, tutD, and tutG genes are each essential for toluene metabolism in T. aromatica T1.  相似文献   

2.
3.
Expression of the tutE tutFDGH gene cluster of Thauera aromatica strain T1 was examined by Northern and Western analysis in a wild-type strain and chromosomally deleted strains with or without in-frame deletion plasmids. While expression was observed when the wild-type strain was induced with toluene, various chromosomally deleted strains exhibited little or no expression of the tut genes. In contrast, both wild-type and chromosomally deleted strains expressed the tut genes when induced with benzylsuccinate. We conclude that benzylsuccinate is required for the full induction of the tutE tutFDGH gene cluster of T. aromatica strain T1.  相似文献   

4.
5.
Synthesis of the Vibrio fischeri autoinducer, a signal involved in the cell density-dependent activation of bioluminescence, is directed by the luxI gene product. The LuxI protein catalyzes the synthesis of N-acyl-homoserine lactones from S-adenosylmethionine and acylated-acyl carrier protein. We have gained an appreciation of the LuxI regions and amino acid residues involved in autoinducer synthesis by isolating and analyzing mutations generated by random and site-specific mutagenesis of luxI. By random mutagenesis we isolated 13 different single amino acid substitutions in the LuxI polypeptide. Eleven of these substitutions resulted in no detectable autoinducer synthase activity, while the remaining two amino acid substitutions resulted in reduced but detectable activity. The substitutions that resulted in no detectable autoinducer synthase activity mapped to two small regions of LuxI. In Escherichia coli, wild-type luxI showed dominance over all of the mutations. Because autoinducer synthesis has been proposed to involve formation of a covalent bond between an acyl group and an active-site cysteine, we constructed site-directed mutations that altered each of the three cysteine residues in LuxI. All of the cysteine mutants retained substantial activity as an autoinducer synthase in E. coli. Based on the analysis of random mutations we propose a model in which there are two critical regions of LuxI, at least one of which is an intimate part of an active site, and based on the analysis of site-directed mutations we conclude that an active-site cysteine is not essential for autoinducer synthase activity.  相似文献   

6.
The cysteine proteinase 1 (CP1) and cysteine proteinase 2 (CP2) genes of Dictyostelium discoideum encode coordinately expressed mRNA sequences that are inducible by extracellular cAMP. Both genes form part of divergently transcribed gene pairs. The gene proximal to CP1 is coordinately regulated and encodes a protein containing several potential zinc binding domains of the kind found in DNA binding proteins. The gene proximal to CP2 is a constitutively transcribed gene of unknown function. There are multiple, short, G-rich sequence elements between both gene pairs, and deletion of the pair of elements 200 nucleotides upstream from the CP2 gene abolishes cAMP-inducibility. A synthetic oligonucleotide, containing two copies of the G-rich element from the CP1 gene, will reconstitute cAMP-inducibility in the deletion mutant of the CP2 gene. This shows that the elements in the two genes are functionally homologous. Efficient induction requires at least two copies of the CP1 element, but their relative orientation is unimportant. Two copies in an inverted orientation are, however, inactive when moved upstream of their normal position and are incapable of conferring cAMP-inducibility on a heterologous gene. These observations suggest that these sequences are either essential promoter elements, not themselves interacting with the inducer, or that their interaction with a separate class of control sequences is necessary for inducible expression.  相似文献   

7.
8.
9.
10.
The first step in anaerobic toluene degradation is the addition of a fumarate cosubstrate to the methyl group of toluene, as catalyzed by the glycyl radical enzyme benzylsuccinate synthase. The bssDCAB genes code for the subunits of benzylsuccinate synthase (BssA, B and C) and an additional enzyme implicated in activating the enzyme by introducing the glycyl radical (BssD). Quantitation of the amounts of benzylsuccinate synthase and activating enzyme showed that both proteins are only synthesized in toluene-grown cells, and that the activating enzyme is present in about 14-fold lower amounts. Two mRNA species of the bss gene cluster were identified, one beginning in front of bssD, and a second in front of bssC. Only the first mRNA 5'-end correlates with a toluene-induced promoter, which is similar to that preceding the bbs operon coding for the further enzymes of toluene catabolism of the same strain. The second mapped 5'-end appears to be generated by endonucleolytic processing. The mRNA segment containing the bssD gene is very short-lived, while that containing the bssCAB genes is more stable. The RNA stability data are consistent with the observed amounts of encoded gene products. Furthermore, the previously known bssDCAB genes are apparently cotranscribed with a fifth gene ( bssE) whose product may function as a putative ATP-dependent chaperone for assembly and/or activation of benzylsuccinate synthase.  相似文献   

11.
The cysteine proteinase 1 (CP1) and cysteine proteinase 2 (CP2) genes of Dictyostelium discoideum encode co-ordinately expressed mRNA sequences which are inducible by extracellular cAMP. There are short, G-rich sequence elements upstream of both genes and we have previously shown that deletion of these elements from the CP2 gene abolishes cAMP-inducibility. We show here that the G-rich element from the CP1 gene is functionally homologous to that in the CP2 gene by reconstituting cAMP-inducibility in a deletion mutant of the CP2 gene using CP1-derived sequences. Both the CP1 and CP2 genes contain multiple G-rich elements. We show that efficient induction requires at least two copies of the CP1 element and that their relative orientation is unimportant. Two copies of an inverted relative orientation are, however, inactive when moved upstream of their normal position and are incapable of conferring cAMP-inducibility on a heterologous gene. These observations suggest that these sequences are either essential promoter elements, not themselves interacting with the inducer, or that their interaction with a separate class of control sequences is necessary for inducible expression.  相似文献   

12.
Sulfhydryl-alkylating reagents are known to inactivate the NAD glycohydrolase and ADP-ribosyltransferase activities of the S1 subunit of pertussis toxin, a protein which contains two cysteines at positions 41 and 200. It has been proposed that NAD can retard alkylation of one of the two cysteines of this protein (Kaslow, H.R., and Lesikar, D.D. (1987) Biochemistry 26, 4397-4402). We now report that NAD retards the ability of these alkylating reagents to inactivate the S1 subunit. In order to determine which cysteine is protected by NAD, we used site-directed mutagenesis to construct analogs of the toxin with serines at positions 41 and/or 200. Sulfhydryl-alkylating reagents reduced the ADP-ribosyltransferase activity of the analog with a single cysteine at position 41; NAD retarded this inactivation. In contrast, sulfhydryl-alkylating reagents did not inactivate analogs with serine at position 41. An analog with alanine at position 41 possessed substantial ADP-ribosyltransferase activity. We conclude that alkylation of cysteine 41, and not cysteine 200, inactivates the S1 subunit of pertussis toxin, but that the sulfhydryl group of cysteine 41 is not essential for the ADP-ribosyltransferase activity of the toxin. These results suggest that the region near cysteine 41 contributes to features of the S1 subunit important for ADP-ribosyltransferase activity. Using site-directed mutagenesis, we found that changing aspartate 34 to asparagine, arginine 39 to lysine, and glutamine 42 to glutamate had little effect on ADP-ribosyltransferase activity. However, substituting an asparagine for the histidine at position 35 markedly decreased, but did not eliminate, ADP-ribosyltransferase activity. Chou-Fasman analysis predicted no significant modifications in secondary structure of the S1 peptide with the change of histidine 35 to asparagine. Thus, histidine 35 may interact with a substrate of the S1 subunit without being essential for catalysis.  相似文献   

13.
Rhodococcus sp. strain DK17 is known to metabolize o-xylene and toluene through the intermediates 3,4-dimethylcatechol and 3- and 4-methylcatechol, respectively, which are further cleaved by a common catechol 2,3-dioxygenase. A putative gene encoding this enzyme (akbC) was amplified by PCR, cloned, and expressed in Escherichia coli. Assessment of the enzyme activity expressed in E. coli combined with sequence analysis of a mutant gene demonstrated that the akbC gene encodes the bona fide catechol 2,3-dioxygenase (AkbC) for metabolism of o-xylene and alkylbenzenes such as toluene and ethylbenzene. Analysis of the deduced amino acid sequence indicates that AkbC consists of a new catechol 2,3-dioxygenase class specific for methyl-substituted catechols. A computer-aided molecular modeling studies suggest that amino acid residues (particularly Phe177) in the beta10-beta11 loop play an essential role in characterizing the substrate specificity of AkbC.  相似文献   

14.
In Aspergillus nidulans homocysteine can be metabolized both to cysteine and methionine. Mutants impaired in the main pathway of cysteine synthesis or in the sulphate assimilation pathway show a low pool of glutathione and elevated levels of homocysteine synthase and of the homocysteine-to-cysteine pathway enzymes. On the other hand, the level of methionine synthase and other enzymes of folate metabolism is depressed in these mutants. This anticoordinated regulation provides a mechanism controlling the partition of homocysteine between the two diverging pathways. Homocysteine synthase was found derepressed, along with folate enzymes, in a strain carrying a mutation which suppresses mutations in metA, metB and metG genes. These results indicate that homocysteine synthase can be regarded as the enzyme of an alternative pathway of methionine synthesis and strongly suggest that the regulatory mechanisms governing sulphur-containing amino acid and folate metabolisms are interrelated.  相似文献   

15.
16.
Pseudouridine (Ψ), the isomer of uridine, is commonly found at various positions of noncoding RNAs of all organisms. Ψ residues are formed by a number of single- or multisite specific Ψ synthases, which generally act as stand-alone proteins. In addition, in Eukarya and Archaea, specific ribonucleoprotein complexes, each containing a distinct box H/ACA guide RNA and four core proteins, can produce Ψ at many sites of different cellular RNAs. Cbf5 is the core Ψ synthase in these complexes. Using Haloferax volcanii as an archaeal model organism, we show that, contrary to eukaryotes, the Cbf5 homolog (HVO_2493) is not essential in this archaeon. The Cbf5-deleted strain of H. volcanii completely lacks Ψ at positions 1940, 1942, 2605, and 2591 (Escherichia coli positions 1915, 1917, 2572, and 2586) of its 23S rRNA, and contains reduced steady-state levels of some box H/ACA RNAs. Archaeal Cbf5 is known to have tRNA Ψ55 synthase activity in vitro but we could not confirm this activity in vivo in H. volcanii. Conversely, the Pus10 (previously PsuX) homolog (HVO_1979), which can produce tRNA Ψ55, as well as Ψ54 in vitro, is shown here to be essential in H. volcanii, whereas the corresponding tRNA Ψ55 synthases, Pus4 and TruB, are not essential in yeast and E. coli, respectively. Finally, we demonstrate that HVO_1852, the TruA/Pus3 homolog, is responsible for the pseudouridylation of position 39 in H. volcanii tRNAs and that the corresponding gene is not essential.  相似文献   

17.
Isopropylmalate synthase (IPMS) is a key enzyme in the biosynthesis of the essential amino acid leucine, and thus primary metabolism. In Arabidopsis, the functionally similar enzyme, methythiolalkylmalate synthase (MAM), is an important enzyme in the elongation of methionine prior to glucosinolate (GSL) biosynthesis, as part of secondary metabolism. We describe the cloning of an IPMS gene from Brassica, BatIMS, and its functional characterisation by heterologous expression in E. coli and Arabidopsis. Over expression of BatIMS in Arabidopsis resulted in plants with an aberrant phenotype, reminiscent of mutants in GSL biosynthesis. Metabolite analyses showed that these plants had both perturbed amino acid metabolism and enhanced levels of GSLs. Microarray profiling showed that BatIMS over expression caused up regulation of the genes for methionine-derived GSL biosynthesis, and down regulation of genes involved in leucine catabolism, in addition to perturbed expression of genes involved in auxin and ethylene metabolism. The results illustrate the cross talk that can occur between primary and secondary metabolism within transgenic plants. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

18.
Signals necessary for in vivo expression of Ti plasmid T-DNA-encoded octopine and nopaline synthase genes were studied in crown gall tumors by constructing mutated genes carrying various lengths of sequences upstream of the 5' initiation site of their mRNAs. Deletions upstream of position -294 did not interfere with expression of the octopine synthase gene while those extending upstream of position -170 greatly reduced the gene expression. The estimated size of the octopine synthase promoter is therefore 295 bp. The maximal length of 5' upstream sequences involved in the in vivo expression of the nopaline synthase gene is 261 bp. Our results also demonstrated that Ti plasmid-derived sequences contain all signals essential for expression of opine synthase genes in plants. Expression of these genes, therefore, is independent of the direct vicinity of the plant DNA sequences and is not activated by formation of plant DNA and T-DNA border junction.  相似文献   

19.
Jost R  Berkowitz O  Wirtz M  Hopkins L  Hawkesford MJ  Hell R 《Gene》2000,253(2):237-247
The final step of cysteine biosynthesis in plants is catalyzed by O-acetylserine (thiol) lyase (OAS-TL), which occurs as several isoforms found in the cytosol, the plastids and the mitochondria. Genomic DNA blot hybridization and isolation of genomic clones indicate single copy genes (oasA1, oasA2, oasB and oasC) that encode the activities of OAS-TL A, B and C found in separate subcellular compartments in the model plant Arabidopsis thaliana. Sequence analysis reveals that the newly discovered oasA2 gene represents a pseudogene that is still transcribed, but is not functionally translated. The comparison of gene structures suggests that oasA1/oasA2 and oasB/oasC are closely related and may be derived from a common ancestor by subsequent duplications. OAS-TL A, B and C were overexpressed in an Escherichia coli mutant lacking cysteine synthesis and exhibited bifunctional OAS-TL and beta-cyanoalanine synthase (CAS) activities. However, all three proteins represent true OAS-TLs according to kinetic analysis and are unlikely to function in cyanide detoxification or secondary metabolism. In addition, it was demonstrated that the mitochondrial OAS-TL C exhibits in vivo protein-protein interaction capabilities with respect to cysteine synthase complex formation similar to cytosolic OAS-TL A and plastid OAS-TL B. Multiple database accessions for each of the A. thaliana OAS-TL isoforms can thus be attributed to a specified number of oas genes to which functionally defined gene products are assigned, and which are responsible for compartment-specific cysteine synthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号