首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
During apoptosis induced by various stimuli, cytochrome c is released from mitochondria into the cytosol where it participates in caspase activation. This process has been proposed to be an irreversible consequence of mitochondrial permeability transition pore opening, which leads to mitochondrial swelling and rupture of the outer mitochondrial membrane. Here we present data demonstrating that NGF-deprived sympathetic neurons protected from apoptosis by caspase inhibitors possess mitochondria which, though depleted of cytochrome c and reduced in size, remained structurally intact as viewed by electron microscopy. After re-exposure of neurons to NGF, mitochondria recovered their normal size and their cytochrome c content, by a process requiring de novo protein synthesis. Altogether, these data suggest that depletion of cytochrome c from mitochondria is a controlled process compatible with function recovery. The ability of sympathetic neurons to recover fully from trophic factor deprivation provided irreversible caspase inhibitors have been present during the insult period, has therapeutical implications for a number of acute neuropathologies.  相似文献   

2.
Here we report that in staurosporine-induced apoptosis of HeLa cells, Bid, a BH3 domain containing protein, translocates from the cytosol to mitochondria. This event is associated with a change in conformation of Bax which leads to the unmasking of its NH2-terminal domain and is accompanied by the release of cytochrome c from mitochondria. A similar finding is reported for cerebellar granule cells undergoing apoptosis induced by serum and potassium deprivation. The Bax-conformational change is prevented by Bcl-2 and Bcl-xL but not by caspase inhibitors. Using isolated mitochondria and various BH3 mutants of Bid, we demonstrate that direct binding of Bid to Bax is a prerequisite for Bax structural change and cytochrome c release. Bcl-xL can inhibit the effect of Bid by interacting directly with Bax. Moreover, using mitochondria from Bax-deficient tumor cell lines, we show that Bid- induced release of cytochrome c is negligible when Bid is added alone, but dramatically increased when Bid and Bax are added together. Taken together, our results suggest that, during certain types of apoptosis, Bid translocates to mitochondria and binds to Bax, leading to a change in conformation of Bax and to cytochrome c release from mitochondria.  相似文献   

3.
bri3 was identified to be a novel gene up-regulated in TNF-treated cells with suppressed subtractive hybridization (SSH) in our laboratory. Previous studies showed that overexpression of BRI3 induced apoptosis in L929 cells. To further study the function of bri3, we disrupted its expression by expressing bri3 antisense RNA. The antisense RNA promoted resistance to TNF-induced cell death by more than 1000-fold in L929 cells, suggesting the involvement of BRI3 in TNF-induced cell death in this cell line. Analysis of cell death caused by other apoptotic inducers showed that the effect of BRI3 antisense RNA is highly specific to TNF-induced cell death. Taken together, bri3 appears to play an important role in TNF-induced cell death. Finally, we reported here that BRI3 may be localized to lysosome and function through lysosome.  相似文献   

4.
Nitric oxide (NO) from (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (NOC-18) induces apoptosis in human leukemia HL-60 cells. This effect was prevented by the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (Z-VAD-FMK), thereby implicating caspase activity in the process. NOC-18 treatment resulted in the activation of several caspases including caspase-3, -6, -8, and -9(-like) activities and the degradation of several caspase substrates such as nuclear lamins and SP120 (hnRNP-U/SAF-A). Moreover, release of cytochrome c from mitochondria was also observed during NOC-18-induced apoptosis. This change was substantially prevented by Z-VAD-FMK, thereby suggesting that the released cytochrome c might function not only as an initiator but also as an amplifier of the caspase cascade. Bid, a death agonist member of the Bcl-2 family, was processed by caspases following exposure of cells to NOC-18, supporting the above notion. Thus, NO-mediated apoptosis in HL-60 cells involves a caspase/cytochrome c-dependent mechanism.  相似文献   

5.
Crocus sativus L. is used in Chinese traditional medicine to treat some disorders of the central nervous system. Crocin is an ethanol-extractable component of Crocus sativus L.; it is reported to prevent ethanol-induced impairment of learning and memory in mice. In this study, we demonstrate that crocin suppresses the effect of tumor necrosis factor (TNF)-alpha on neuronally differentiated PC-12 cells. PC-12 cells dead from exposure to TNF-alpha show apoptotic morphological changes and DNA fragmentation. These hallmark features of cell death did not appear in cells treated in the co-presence of 10 microM crocin. Moreover, crocin suppressed the TNF-alpha-induced expression of Bcl-Xs and LICE mRNAs and simultaneously restored the cytokine-induced reduction of Bcl-X(L) mRNA expression. The modulating effects of crocin on the expression of Bcl-2 family proteins led to a marked reduction of a TNF-alpha-induced release of cytochrome c from the mitochondria. Crocin also blocked the cytochrome c-induced activation of caspase-3. To learn how crocin exhibits these anti-apoptotic actions in PC-12 cells, we tested the effect of crocin on PC-12 cell death induced by daunorubicin. We found that crocin inhibited the effect of daunorubicin as well. Our findings suggest that crocin inhibits neuronal cell death induced by both internal and external apoptotic stimuli.  相似文献   

6.
QLT0074 is a newly introduced, porphyrin-derivative for use in photodynamic therapy (PDT). In the current study, the intracellular distribution of QLT0074 and the mode of cell death induced by photosensitization with this compound in vitro were assessed for transformed human HaCaT keratinocytes. Fluorescence microscopy studies indicated a distribution of the drug to the cytoplasm, nuclear membrane and mitochondria of these cells. In the absence of light, QLT0074 produced no evidence of apoptosis-related biochemical changes or affected cell viability. When combined with blue light exposure, cytotoxicity was exerted in a QLT0074- and light-dose-related manner. Appearance of the mitochondrial protein cytochrome c in the cytosolic fraction and expression of the apoptosis-associated mitochondrial 7A6 antigen were demonstrable following photosensitization at nano-molar levels of QLT0074. Evidence of processing of the apoptosis-effector molecules caspase-3, -6, -7, -8 and -9 as well as cleavage of the caspase-3 substrate poly (ADP-ribose) polymerase (PARP) were demonstrable subsequent to cytochrome c release after PDT. Treatment with the anti-oxidant pyrrolidine dithiocarbamate (PDTC) inhibited cytochrome c release, caspase-3 activation and PARP cleavage associated with PDT thereby supporting the contention that QLT0074 induces apoptosis through the generation of reactive oxygen species upon light activation. QLT0074 is a potent photosensitizer with the capacity to directly initiate apoptosis by acting upon mitochondria.  相似文献   

7.
The key role for mitochondria in mammalian apoptosis, a form of programmed cell death (PCD), is well established, but a similar role for plant mitochondria is just emerging. In order to unravel the molecular mechanisms linking plant mitochondria to the downstream events of PCD, we have developed an Arabidopsis cell-free system that can be used to monitor biochemical and morphological changes in isolated nuclei that are associated with PCD. Using this system, two activities that resulted in nuclear DNA degradation could be distinguished, both of which were facilitated by the addition of mitochondria. One activity mediated the generation of 30 kb DNA fragments within 3 h and chromatin condensation within 6 h, when nuclei were incubated with mitochondria alone. The second activity required cytosolic extract in addition to mitochondria and resulted in oligonucleosome-sized DNA cleavage after >12 h. Submitochondrial fractionation and pharmacological studies suggested the presence of an Mg2+-dependent nuclease activity in the intermembrane space, which is responsible for the former in vitro activity. The evolutionary conservation of the role of mitochondria in PCD in animals and plants is discussed.  相似文献   

8.
Although accumulating evidence demonstrates that white matter degeneration contributes to pathology in Alzheimer's disease (AD), the underlying mechanisms are unknown. In order to study the roles of the amyloid-beta peptide in inducing oxidative stress damage in white matter of AD, we investigated the effects of amyloid-beta peptide 25-35 (Abeta) on proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha)-induced inducible nitric oxide synthase (iNOS) in cultured oligodendrocytes (OLGs). Although Abeta 25-35 by itself had little effect on iNOS mRNA, protein, and nitrite production, it enhanced TNF-alpha-induced iNOS expression and nitrite generation in OLGs. Abeta, TNF-alpha, or the combination of both, increased neutral sphingomyelinase (nSMase) activity, but not acidic sphingomyelinase (aSMase) activity, leading to ceramide accumulation. Cell permeable C2-ceramide enhanced TNF-alpha-induced iNOS expression and nitrite generation. Moreover, the specific nSMase inhibitor, 3-O-methyl-sphingomyelin (3-OMS), inhibited iNOS expression and nitrite production induced by TNF-alpha or by the combination of TNF-alpha and Abeta. Overexpression of a truncated mutant of nSMase with a dominant negative function inhibited iNOS mRNA production. 3-OMS also inhibited nuclear factor kappaB (NF-kappaB) binding activity induced by TNF-alpha or by the combination of TNF-alpha and Abeta. These results suggest that neutral sphingomyelinase/ceramide pathway is required but may not be sufficient for iNOS expression induced by TNF-alpha and the combination of TNF-alpha and Abeta.  相似文献   

9.
Cholangiopathies, such as primary biliary cirrhosis and primary sclerosis cholangitis, are characterized at the end stage by ductopenia due to increased cholangiocyte apoptosis and decreased cholangiocyte proliferation. Although cholangiocyte proliferation is associated with an increased number of intra-hepatic bile ducts and secretin-stimulated ductal secretion, ductopenia is coupled with decreased ductal mass and secretin-induced ductal secretory activity. We have shown that a single injection of actinomycin D + tumor necrosis factor-alpha (TNF-alpha ) to bile duct-ligated (BDL) rats induces cholangiocyte injury, which is characterized by loss of cholangiocyte proliferation, and secretory activity and by an increase in cholangiocyte apoptosis. We also have shown that taurocholic acid both in vivo and in vitro stimulates cholangiocyte proliferation. We hypothesize that taurocholic acid feeding protects cholangiocytes against TNF-alpha -induced apoptosis through a phosphatidylinositol-3-kinase (PI3K)-dependent pathway. Immediately after BDL, rats were fed taurocholic acid or control diet in the absence/presence of daily injections of wortmannin for 1 week. Seven days later, control-fed or taurocholic acid-fed rats were treated with a single intraperitoneal injection of actinomycin D + TNF-alpha . Twenty-four hours later we evaluated: (i) cholangiocyte apoptosis and proliferation in liver sections and (ii) basal and secretin-stimulated bile and bicarbonate secretion in bile fistula rats. Taurocholic acid feeding prevented TNF-alpha -induced increases in cholangiocyte apoptosis and decreases in growth and secretin-stimulated bile and bicarbonate secretion, changes that were blocked by PI3K inhibition. The PI3K survival pathway is important in bile acid protection against immune-mediated cholangiocyte injury in cholestatic liver diseases.  相似文献   

10.
In the present work we investigated the effect of selective stimulation of non-desensitizing alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors in the intracellular processes leading to hippocampal neuronal death and production of reactive oxygen species (ROS). Activation of AMPA receptors in the presence of cyclothiazide (CYZ), a blocker of AMPA receptor desensitization, resulted in the death of approximately 25% of neurones, which was prevented by 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(f)quinoxaline (NBQX), an AMPA-preferring receptor antagonist. (+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801) protected the neurones from necrotic death induced by AMPA or NMDA receptor activation. Neurodegeneration caused by selective activation of non-desensitizing AMPA receptors, in the presence of AMPA, CYZ and MK-801, significantly decreased the number of Co2+-positive neurones, used as a cytochemical marker of Ca2+-permeable AMPA receptors, but maintained intracellular ATP/ADP. The AMPA-mediated apoptotic cell death involved mitochondrial cytochrome c release and the activation of caspases-1 and -3, which was prevented by NBQX. Interestingly, although selective activation of AMPA receptors was not associated with production of intracellular peroxides, a moderate increase in superoxide production was observed upon exposure to antimycin A (AA). Furthermore, increased activity of Mn- superoxide dismutase (SOD) was observed on selective activation of non-desensitizing AMPA receptors. Taken together, these data make important contributions to the elucidation of the downstream pathways activated in AMPA receptor-mediated excitotoxicity in cultured rat hippocampal neurones.  相似文献   

11.
Tumor necrosis factor-alpha (TNF-alpha) and Fas ligand induce apoptosis by interacting with their corresponding membrane-bound death receptors and activating caspases. Since both systems share several components of the intracellular apoptotic cascade and are expressed by first trimester trophoblasts, it is unknown how these cells remain resistant to Fas ligand while sensitive to TNF-alpha. XAF1 (X-linked inhibitor of apoptosis (XIAP)-associated factor 1) is a proapoptotic protein that antagonizes the caspase-inhibitory activity of XIAP. Here, we demonstrated that XAF1 functions as an alternative pathway for TNF-alpha-induced apoptosis by translocating to the mitochondria and promoting XIAP inactivation. In addition, we showed that the overexpression of XAF1 sensitized first trimester trophoblast cells to Fas-mediated apoptosis. Furthermore, we also determined that the differential expression of XAF1 in first and third trimester trophoblast cells was due to changes in XAF1 gene methylation. Our results establish a novel regulatory pathway controlling trophoblast cell survival and provide a molecular mechanism to explain trophoblast sensitivity to TNF-alpha and the increased number of apoptotic trophoblast cells observed near term. Aberrant XAF1 expression and/or localization may have consequences for normal pregnancy outcome.  相似文献   

12.
Blockade of ionotropic glutamate receptors induces neuronal cell apoptosis. We investigated if mitochondria-mediated death signals would contribute to neuronal apoptosis following administration of glutamate antagonists. The administration of MK-801 and CNQX (MK-801/CNQX), the selective antagonists of N-methyl-d-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptors, produced widespread neuronal death in neonatal rat brain and cortical cell cultures. MK-801/CNQX-induced neuronal apoptosis was prevented by zVAD-fmk, a broad inhibitor of caspases, but insensitive to inhibitors of calpain or cathepsin D. Activation of caspase-3 was observed within 6-12 h and sustained over 36 h after exposure to MK-801/CNQX, which cleaved PHF-1 tau, the substrate for caspase-3. Activation of caspase-3 was blocked by high K+ and mimicked by BAPTA-AM, a selective Ca2+ chelator. Reducing extracellular Ca2+, but not Na+, activated caspase-3, suggesting an essential role of Ca2+ deficiency in MK-801/CNQX-induced activation of caspases. Cortical neurons treated with MK-801/CNQX triggered activation of caspase-9, release of cytochrome c from mitochondria, and translocation of Bax into mitochondria. The present study suggests that blockade of ionotropic glutamate receptors causes caspase-3-mediated neuronal apoptosis due to Ca2+ deficiency that is coupled to the sequential mitochondrial death pathway.  相似文献   

13.
Ultraviolet B (UVB) irradiation causes cell death by apoptosis in murine fibroblast cells. Tumor necrosis factor-alpha (TNF-alpha) is also a well known inducer of apoptosis, although the physiological significance of this activity is poorly understood. We investigated the effects of pretreatment with UVB (312 nm) on TNF-alpha-induced apoptosis in murine fibroblast cells. UVB enhanced susceptibility to cell death by TNF-alpha in a dose-dependent manner. UVB but not TNF-alpha induced the expression of TNF receptor type-1 (TNFR-1) and type-2 (TNFR-2) in a dose-dependent manner. Expression of Fas (CD95) and Fas-ligand (Fas-L), and significant DNA fragmentation were observed in the cells that died. These results suggest that UVB irradiation modulates susceptibility to TNF-alpha-induced apoptosis through the induction of TNFRs, Fas, and Fas-L in murine fibroblasts.  相似文献   

14.
Several studies have suggested that Bcl-2 phosphorylation, which occurs during mitotic arrest induced by paclitaxel, inhibits its antiapoptotic function. In the present study, we demonstrated that the level of phosphorylated Bcl-2 was threefold higher in mitochondria than in the nuclear membrane or endoplasmic reticulum. Our results show, in isolated mitochondria, that phosphorylation of Bcl-2 in mitosis does not modify either its integration into the mitochondrial membrane or the ability to release cytochrome c in response to Bid, a cytochrome c releasing agent. In HeLa cells, in which paclitaxel induces apoptosis, the nonphosphorylated form of Bcl-2 is degraded by a proteasome-dependent degradation pathway, whereas the phosphorylated forms of mitochondrial Bcl-2 appear to be resistant to proteasome-induced degradation. We found that low concentrations of recombinant Bid triggered a greater release of cytochrome c from mitochondria isolated from paclitaxel-treated HeLa cells than from mitochondria isolated from control HeLa cells. Taken together, these results show that Bcl-2 phosphorylation does not inhibit its function. On the contrary, Bcl-2 phosphorylation indirectly regulated its antiapoptotic action via protection against degradation. Indeed, in response to paclitaxel treatment, the level of Bcl-2 expression in mitochondria rather than its phosphorylation state could regulate the sensitivity of mitochondria to cytochrome c releasing agents in vitro.  相似文献   

15.
Apoptosis is a highly orchestrated cell suicidal program required to maintain a balance between cell proliferation and cell death. A defect in apoptotic machinery can cause cancer. Many anticancer drugs are known to kill tumor cells by inducing apoptosis, and a defect in apoptosis can lead to anticancer drug resistance. Apoptosis is regulated by a complex cellular signaling network. Several members of the protein kinase C (PKC) family serve as substrates for caspases and PKCδ isozyme has been intimately associated with DNA damage-induced apoptosis. It can act both upstream and downstream of caspases. In response to apoptotic stimuli, the full-length and the catalytic fragment of PKCδ may translocate to distinct cellular compartments, including mitochondria and the nucleus, to reach their targets. Both activation and intracellular distribution of PKCδ may have significant impact on apoptosis. This review intends to assimilate recent views regarding the involvement of PKCδ in DNA damage-induced apoptosis.  相似文献   

16.
Tian C  Gao P  Zheng Y  Yue W  Wang X  Jin H  Chen Q 《Cell research》2008,18(4):458-471
lntracellular redox homeostasis plays a critical role in determining tumor cells' sensitivity to drug-induced apoptosis. Here we investigated the role of thioredoxin-1 (TRX1), a key component of redox regulation, in arsenic trioxide (AS2O3)-induced apoptosis. Over-expression of wild-type TRX1 in HepG2 cells led to the inhibition of As2O3-induced cytochrome c (cyto c) release, caspase activation and apoptosis, and down-regulation of TRX1 expression by RNAi sensitized HepG2 cells to As2O3-induced apoptosis. Interestingly, mutation of the active site of TRX1 from Cys^32/35 to Ser^32/35 converted this molecule from an apoptotic protector to an apoptotic promoter. In an effort to understand the mechanisms of this conversion, we used isolated mitochondria from mouse liver and found that recombinant wild-type TRX1 could protect mitochondria from the apoptotic changes. In contrast, the mutant form of TRX1 alone elicited mitochondria-related apoptotic changes, including the mitochondrial permeability transition pore (mPTP) opening, loss of mitochondrial membrane potential, and cyto c release from mitochondria. These apoptotic effects were inhibited by cyclosporine A (CsA), indicating that mutant TRX1 targeted to mPTP. Alteration of TRX1 from its reduced form to oxidized form in vivo by 2,4-dinitrochlorobenzene (DNCB), a specific inhibitor ofTRX reductase, also sensitized HepG2 cells to As203-induced apoptosis. These data suggest that TRX1 plays a central role in regulating apoptosis by blocking cyto c release, and inactivation of TRX1 by either mutation or oxidization of the active site cysteines may sensitize tumor cells to As2O3-induced apoptosis.  相似文献   

17.
We investigated the mode of cell death induced by the anthracyclines, aclarubicin, doxorubicin and daunorubicin in the human leukemia cell lines, HL60 and Jurkat. The cells were incubated with drug concentrations up to 500 nM for periods between 3 and 24 hours, followed by morphological and biochemical analyses. All three substances induced DNA fragmentation, evident as DNA laddering and appearance of cells with hypodiploid DNA content, externalisation of phosphatidyl serine, activation of caspases and degradation of the apoptosis-specific endonuclease inhibitor DFF45. However, concentrations and times necessary for these effects to occur were different, aclarubicin being the quickest acting drug with a lag phase of 3 h, followed by daunorubicin with 6 h and doxorubicin with 24 h. More importantly, aclarubicin induced these effects while the cell membrane was intact, whereas doxorubicin and daunorubicin led to immediate loss of membrane integrity. Programmed cell death is characterised by preservation of membrane integrity in order to allow removal of apoptotic bodies, whereas cell rupture is an early event in necrosis. We therefore suggest that, in our experimental settings, doxorubicin- and daunorubicin-induced cell death occurs by necrosis, while aclarubicin induces programmed cell death.  相似文献   

18.
The ability of proteins of the Bcl-2 family to either induce or inhibit apoptosis is dependent on both cell type and the apoptotic stimulus. We have shown in the murine pro-B cell line FL5.12 that Bcl-2 is incapable of inhibiting tumor necrosis factor alpha (TNFalpha)-induced cell death and is cleaved during this process. One potential explanation for this observation is that caspase activation directly or indirectly inhibits Bcl-2 function. It has been suggested that caspase cleavage of Bcl-2 is responsible for its inability to block certain cell deaths. Consistent with Bcl-2 cleavage being a caspase-mediated event, this cleavage is inhibitable by 50 microM CBZ-Val-Ala-Asp-fluoromethylketone (zVAD-fmk). Furthermore, Bcl-2 can cooperate with the caspase inhibitor zVAD-fmk in a dose-dependent manner to block TNFalpha-induced cell death. Overexpression of Bcl-2 results in a 10-fold decrease in the amount of zVAD-fmk required to inhibit TNFalpha-induced apoptosis. However, cleavage-defective mutants (D31A and D34A) show no enhanced viability relative to wild-type Bcl-2 in response to TNFalpha-induced cell death and also show the same cooperativity with zVAD-fmk. These results suggest that Bcl-2 cleavage is not important for the inhibition of TNFalpha-induced cell death but do not preclude an involvement in a post-commitment phase of apoptosis.  相似文献   

19.
Akt regulates cell survival and apoptosis at a postmitochondrial level   总被引:26,自引:0,他引:26  
Phosphoinositide 3 kinase/Akt pathway plays an essential role in neuronal survival. However, the cellular mechanisms by which Akt suppresses cell death and protects neurons from apoptosis remain unclear. We previously showed that transient expression of constitutively active Akt inhibits ceramide-induced death of hybrid motor neuron 1 cells. Here we show that stable expression of either constitutively active Akt or Bcl-2 inhibits apoptosis, but only Bcl-2 prevents the release of cytochrome c from mitochondria, suggesting that Akt regulates apoptosis at a postmitochondrial level. Consistent with this, overexpressing active Akt rescues cells from apoptosis without altering expression levels of endogenous Bcl-2, Bcl-x, or Bax. Akt inhibits apoptosis induced by microinjection of cytochrome c and lysates from cells expressing active Akt inhibit cytochrome c induced caspase activation in a cell-free assay while lysates from Bcl-2-expressing cells have no effect. Addition of cytochrome c and dATP to lysates from cells expressing active Akt do not activate caspase-9 or -3 and immunoprecipitated Akt added to control lysates blocks cytochrome c-induced activation of the caspase cascade. Taken together, these data suggest that Akt inhibits activation of caspase-9 and -3 by posttranslational modification of a cytosolic factor downstream of cytochrome c and before activation of caspase-9.  相似文献   

20.
Background and Aims. H. pylori infection results in an increased epithelial apoptosis in gastritis and duodenal ulcer patients. We investigated the role and type of activation of caspases in H. pylori‐induced apoptosis in gastric epithelial cells. Methods. Differentiated human gastric cancer cells (AGS) and human gastric mucous cell primary cultures were incubated with H. pylori for 0.5–24 hours in RPMI 1640 medium, and the effects on cell viability, epithelial apoptosis, and activity of caspases were monitored. Apoptosis was analyzed by detection of DNA‐fragments by Hoechst stain®, DNA‐laddering, and Histone‐ELISA. Activities of caspases were determined in fluorogenic assays and by Western blotting. Cleavage of BID and release of cytochrome c were analyzed by Western blot. Significance of caspase activation was investigated by preincubation of gastric epithelial cells with cell permeable specific caspase inhibitors. Results. Incubation of gastric epithelial cells with H. pylori caused a time and concentration dependent induction of DNA fragmentation (3‐fold increase), cleavage of BID, release of cytochrome c and a concomittant sequential activation of caspase‐9 (4‐fold), caspase‐8 (2‐fold), caspase‐6 (2‐fold), and caspase‐3 (6‐fold). No effects on caspase‐1 and ‐7 were observed. Activation of caspases preceded the induction of DNA fragmentation. Apoptosis could be inhibited by prior incubation with the inhibitors of caspase‐3, ‐8, and ‐9, but not with that of caspase‐1. Conclusions. Activation of certain caspases and activation of the mitochondrial apoptotic pathway are essential for H. pylori induced apoptosis in gastric epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号