首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 26S proteasome is the most downstream element of the ubiquitin-proteasome pathway of protein degradation. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The RP consists of 6 AAA-ATPases and at least 13 non-ATPase subunits. Based on a cryo-EM map of the 26S proteasome, structures of homologs, and physical protein-protein interactions we derive an atomic model of the AAA-ATPase-CP sub-complex. The ATPase order in our model (Rpt1/Rpt2/Rpt6/Rpt3/Rpt4/Rpt5) is in excellent agreement with the recently identified base-precursor complexes formed during the assembly of the RP. Furthermore, the atomic CP-AAA-ATPase model suggests that the assembly chaperone Nas6 facilitates CP-RP association by enhancing the shape complementarity between Rpt3 and its binding CP alpha subunits partners.  相似文献   

2.
Gankyrin is a new oncoprotein with potent cell cycle and apoptotic properties that is overexpressed early in hepatocarcinogenesis and in hepatocellular carcinomas. Gankyrin regulates the phosphorylation of the retinoblastoma protein (pRb) by CDK4 and enhances the ubiquitylation of p53 by the RING ubiquitin ligase MDM2. Purified preparations of the 26S proteasome contain gankyrin, which specifically interacts with the S6b (Rpt3) ATPase of the 19S regulator. In conclusion, gankyrin is a small versatile cell cycle regulator that illustrates the essential interplay between the ubiquitin proteasome system and gene expression in the cell. Here, we discuss the activities of gankyrin and present a model for its function in the regulation of pRb and p53.  相似文献   

3.
4.
Gankyrin is an oncoprotein commonly overexpressed in most hepatocellular carcinomas. Gankyrin interacts with S6 ATPase of the 19S regulatory particle of the 26S proteasome and enhances the degradation of the tumor suppressors pRb and p53. Here, we report the structure of gankyrin in complex with the C-terminal domain of S6 ATPase. Almost all of the seven ankyrin repeats of gankyrin interact, through its concave region, with the C-terminal domain of S6 ATPase. The intermolecular interactions occur through the complementary charged residues between gankyrin and S6 ATPase. Biochemical studies based on the structure of the complex revealed that gankyrin interacts with pRb in both the presence and absence of S6 ATPase; however, the E182 residue in gankyrin is essential for the pRb interaction. These results provide a structural basis for the involvement of gankyrin in the pRb degradation pathway, through its association with S6 ATPase of the 26S proteasome.  相似文献   

5.
The proteasome is a large and complex protease formed by 66 polypeptides. The assembly of the proteasome is assisted by at least nine chaperones. One of these chaperones, Nas2/p27, binds to the C-terminal region of the AAA-ATPase Rpt5. We report here that the tail of Rpt5 provides two functions. First, it facilitates the previously reported interaction with the proteasome core particle (CP). Second, it is essential for the interaction with Nas2. Deletion of the C-terminal amino acid of Rpt5 disrupts the CP interaction, but not the binding to Nas2. The latter is surprising considering Nas2 contains a PDZ domain, which is often involved in binding to C termini. Interestingly, deletion of the last three amino acids interferes with both functions. The disruption of the Rpt5-CP interactions gave distinct phenotypes different from disruption of the Nas2-Rpt5 interaction. Additionally, proteasomes purified from a Saccharomyces cerevisiae rpt5-Δ3 strain show a strong enrichment of Ecm29. The function of Ecm29, a proteasome-associated protein, is not well understood. Our data show that Ecm29 can inhibit proteasomes, because our Ecm29-containing proteasomes have reduced suc-LLVY-AMC hydrolytic activity. Consistent with this apparent role as negative regulator, the deletion of ECM29 rescues the phenotypes of rpt5-Δ3 and nas2Δ in an hsm3Δ background. In sum, the interactions facilitated by the tail of Rpt5 act synergistically to minimize the formation of faulty proteasomes, thereby preventing recognition and inhibition by Ecm29.  相似文献   

6.
The mammalian Int-6 protein has been characterized as a subunit of the eIF3 translation initiation factor and also as a transforming protein when its C-terminal part is deleted. It includes a protein domain, which also exists in various subunits of eIF3, of the 26S proteasome and of the COP9 signalosome (CSN). By performing a two-hybrid screen with Int-6 as bait, we have isolated subunits belonging to all three complexes, namely eIF3-p110, Rpt4, CSN3 and CSN6. The results of transient expression experiments in COS7 cells confirmed the interaction of Int-6 with Rpt4, CSN3 and CSN6, but also showed that Int-6 is able to bind another subunit of the CSN: CSN7a. Immunoprecipitation experiments performed with the endogenous proteins showed that Int-6 binds the entire CSN, but in low amount, and also that Int-6 is associated with the 26S proteasome. Taken together these results show that the Int-6 protein can bind the three complexes with various efficiencies, possibly exerting a regulatory activity in both protein translation and degradation.  相似文献   

7.
The 26S proteasome is a chambered protease in which the majority of selective cellular protein degradation takes place. Throughout evolution, access of protein substrates to chambered proteases is restricted and depends on AAA-ATPases. Mechanical force generated through cycles of ATP binding and hydrolysis is used to unfold substrates, open the gated proteolytic chamber and translocate the substrate into the active proteases within the cavity. Six distinct AAA-ATPases (Rpt1-6) at the ring base of the 19S regulatory particle of the proteasome are responsible for these three functions while interacting with the 20S catalytic chamber. Although high resolution structures of the eukaryotic 26S proteasome are not yet available, exciting recent studies shed light on the assembly of the hetero-hexameric Rpt ring and its consequent spatial arrangement, on the role of Rpt C-termini in opening the 20S 'gate', and on the contribution of each individual Rpt subunit to various cellular processes. These studies are illuminated by paradigms generated through studying PAN, the simpler homo-hexameric AAA-ATPase of the archaeal proteasome. The similarities between PAN and Rpts highlight the evolutionary conserved role of AAA-ATPase in protein degradation, whereas unique properties of divergent Rpts reflect the increased complexity and tighter regulation attributed to the eukaryotic proteasome.  相似文献   

8.
The 26 S proteasome is an energy-dependent protease that degrades proteins modified with polyubiquitin chains. It is assembled from two multi-protein subcomplexes: a protease (20 S proteasome) and an ATPase regulatory complex (PA700 or 19 S regulatory particle) that contains six different AAA family subunits (Rpt1 to -6). Here we show that binding of PA700 to the 20 S proteasome is mediated by the COOH termini of two (Rpt2 and Rpt5) of the six Rpt subunits that constitute the interaction surface between the subcomplexes. COOH-terminal peptides of either Rpt2 or Rpt5 bind to the 20 S proteasome and activate hydrolysis of short peptide substrates. Simultaneous binding of both COOH-terminal peptides had additive effects on peptide substrate hydrolysis, suggesting that they bind to distinct sites on the proteasome. In contrast, only the Rpt5 peptide activated hydrolysis of protein substrates. Nevertheless, the COOH-terminal peptide of Rpt2 greatly enhanced this effect, suggesting that proteasome activation is a multistate process. Rpt2 and Rpt5 COOH-terminal peptides cross-linked to different but specific subunits of the 20 S proteasome. These results reveal critical roles of COOH termini of Rpt subunits of PA700 in the assembly and activation of eukaryotic 26 S proteasome. Moreover, they support a model in which Rpt subunits bind to dedicated sites on the proteasome and play specific, nonequivalent roles in the asymmetric assembly and activation of the 26 S proteasome.  相似文献   

9.
PA700, the 19 S regulatory subcomplex of the 26 S proteasome, contains a heterohexameric ring of AAA subunits (Rpt1 to -6) that forms the binding interface with a heteroheptameric ring of α subunits (α1 to -7) of the 20 S proteasome. Binding of these subcomplexes is mediated by interactions of C termini of certain Rpt subunits with cognate binding sites on the 20 S proteasome. Binding of two Rpt subunits (Rpt2 and Rpt5) depends on their last three residues, which share an HbYX motif (where Hb is a hydrophobic amino acid) and open substrate access gates in the center of the α ring. The relative roles of other Rpt subunits for proteasome binding and activation remain poorly understood. Here we demonstrate that the C-terminal HbYX motif of Rpt3 binds to the 20 S proteasome but does not promote proteasome gating. Binding requires the last three residues and occurs at a dedicated site on the proteasome. A C-terminal peptide of Rpt3 blocked ATP-dependent in vitro assembly of 26 S proteasome from PA700 and 20 S proteasome. In HEK293 cells, wild-type Rpt3, but not Rpt3 lacking the HbYX motif was incorporated into 26 S proteasome. These results indicate that the C terminus of Rpt3 was required for cellular assembly of this subunit into 26 S proteasome. Mutant Rpt3 was assembled into intact PA700. This result indicates that intact PA700 can be assembled independently of association with 20 S proteasome and thus may be a direct precursor for 26 S proteasome assembly under normal conditions. These results provide new insights to the non-equivalent roles of Rpt subunits in 26 S proteasome function and identify specific roles for Rpt3.  相似文献   

10.
The 26 S proteasome comprises two multisubunit subcomplexes as follows: 20 S proteasome and PA700/19 S regulatory particle. The cellular mechanisms by which these subcomplexes assemble into 26 S proteasome and the molecular determinants that govern the assembly process are poorly defined. Here, we demonstrate the nonequivalent roles of the C termini of six AAA subunits (Rpt1-Rpt6) of PA700 in 26 S proteasome assembly in mammalian cells. The C-terminal HbYX motif (where Hb is a hydrophobic residue, Y is tyrosine, and X is any amino acid) of each of two subunits, Rpt3 and Rpt5, but not that of a third subunit Rpt2, was essential for assembly of 26 S proteasome. The C termini of none of the three non-HbYX motif Rpt subunits were essential for cellular 26 S proteasome assembly, although deletion of the last three residues of Rpt6 destabilized the 20 S-PA700 interaction. Rpt subunits defective for assembly into 26 S proteasome due to C-terminal truncations were incorporated into intact PA700. Moreover, intact PA700 accumulated as an isolated subcomplex when cellular 20 S proteasome content was reduced by RNAi. These results indicate that 20 S proteasome is not an obligatory template for assembly of PA700. Collectively, these results identify specific structural elements of two Rpt subunits required for 26 S proteasome assembly, demonstrate that PA700 can be assembled independently of the 20 S proteasome, and suggest that intact PA700 is a direct intermediate in the cellular pathway of 26 S proteasome assembly.  相似文献   

11.
The 26 S proteasome, a complex between the 20 S proteasome and 19 S regulatory units, catalyzes ATP-dependent degradation of unfolded and ubiquitinated proteins in eukaryotes. We have identified previously 20 S and activated 20 S proteasomes in Trypanosoma brucei, but not 26 S proteasome. However, the presence of 26 S proteasome in T. brucei was suggested by the hydrolysis of casein by cell lysate, a process that requires ATP but is inhibited by lactacystin, and the lactacystin-sensitive turnover of ubiquitinated proteins in the intact cells. T. brucei cDNAs encoding the six proteasome ATPase homologues (Rpt) were cloned and expressed. Five of the six T. brucei Rpt cDNAs, except for Rpt2, were capable of functionally complementing the corresponding rpt deletion mutants of Saccharomyces cerevisiae. Immunoblots showed the presence in T. brucei lysate of the Rpt proteins, which co-fractionated with the yeast 19 S proteasome complex by gel filtration and localized in the 19 S fraction of a glycerol gradient. All the Rpt and putative 19 S non-ATPase (Rpn) proteins were co-immunoprecipitated from T. brucei lysate by individual anti-Rpt antibodies. Treatment of T. brucei cells with a chemical cross-linker resulted in co-immunoprecipitation of 20 S proteasome with all the Rpt and Rpn proteins that sedimented in a glycerol gradient to the position of 26 S proteasome. These data demonstrate the presence of 26 S proteasome in T. brucei cells, which apparently dissociate into 19 S and 20 S complexes upon cell lysis. RNA interference to block selectively the expression of proteasome 20 S core and Rpt subunits resulted in significant accumulation of ubiquitinated proteins accompanied by cessation of cell growth. Expression of yeast RPT2 gene in T. brucei Rpt2-deficient cells could not rescue the lethal phenotype, thus confirming the incompatibility between the two Rpt2s. The T. brucei 11 S regulator (PA26)-deficient RNA interference cells grew normally, suggesting the dispensability of activated 20 S proteasome in T. brucei.  相似文献   

12.
The 26S proteasome plays a fundamental role in almost all eukaryotic cells, including vascular endothelial cells. However, it remains largely unknown how proteasome functionality is regulated in the vasculature. Endothelial nitric oxide (NO) synthase (eNOS)-derived NO is known to be essential to maintain endothelial homeostasis. The aim of the present study was to establish the connection between endothelial NO and 26S proteasome functionality in vascular endothelial cells. The 26S proteasome reporter protein levels, 26S proteasome activity, and the O-GlcNAcylation of Rpt2, a key subunit of the proteasome regulatory complex, were assayed in 26S proteasome reporter cells, human umbilical vein endothelial cells (HUVEC), and mouse aortic tissues isolated from 26S proteasome reporter and eNOS knockout mice. Like the other selective NO donors, NO derived from activated eNOS (by pharmacological and genetic approach) increased O-GlcNAc modification of Rpt2, reduced proteasome chymotrypsin-like activity, and caused 26S proteasome reporter protein accumulation. Conversely, inactivation of eNOS reversed all the effects. SiRNA knockdown of O-GlcNAc transferase (OGT), the key enzyme that catalyzes protein O-GlcNAcylation, abolished NO-induced effects. Consistently, adenoviral overexpression of O-GlcNAcase (OGA), the enzyme catalyzing the removal of the O-GlcNAc group, mimicked the effects of OGT knockdown. Finally, compared to eNOS wild type aortic tissues, 26S proteasome reporter mice lacking eNOS exhibited elevated 26S proteasome functionality in parallel with decreased Rpt2 O-GlcNAcylation, without changing the levels of Rpt2 protein. In conclusion, the eNOS-derived NO functions as a physiological suppressor of the 26S proteasome in vascular endothelial cells.  相似文献   

13.
The 26 S proteasome is a 2.5-MDa molecular machine that degrades ubiquitinated proteins in eukaryotic cells. It consists of a proteolytic core particle and two 19 S regulatory particles (RPs) composed of 6 ATPase (Rpt) and 13 non-ATPase (Rpn) subunits. Multiple proteasome-dedicated chaperones facilitate the assembly of the proteasome, but little is known about the detailed mechanisms. Hsm3, a 19 S RP dedicated chaperone, transiently binds to the C-terminal domain of the Rpt1 subunit and forms a tetrameric complex, Hsm3-Rpt1-Rpt2-Rpn1, during maturation of the ATPase ring of 19 S RP. To elucidate the structural basis of Hsm3 function, we determined the crystal structures of Hsm3 and its complex with the C-terminal domain of the Rpt1 subunit (Rpt1C). Hsm3 has a C-shaped structure that consists of 11 HEAT repeats. The structure of the Hsm3-Rpt1C complex revealed that the interacting surface between Hsm3 and Rpt1 is a hydrophobic core and a complementary charged surface. Mutations in the Hsm3-Rpt1 surface resulted in the assembly defect of the 26 S proteasome. Furthermore, a structural model of the Hsm3-Rpt ring complex and an in vitro binding assay suggest that Hsm3 can bind Rpt2 in addition to Rpt1. Collectively, our results provide the structural basis of the molecular functions of Hsm3 for the RP assembly.  相似文献   

14.
15.
16.
The yeast (Saccharomyces cerevisiae) contains three N-acetyltransferases, NatA, NatB, and NatC, each of which acetylates proteins with different N-terminal regions. The 19S regulatory particle of the yeast 26S proteasome consists of 17 subunits, 12 of which are N-terminally modified. By using nat1, nat3, and mak3 deletion mutants, we found that 8 subunits, Rpt4, Rpt5, Rpt6, Rpn2, Rpn3, Rpn5, Rpn6, and Rpn8, were NatA substrates, and that 2 subunits, Rpt3 and Rpn11, were NatB substrates. Mass spectrometric analysis revealed that the initiator Met of Rpt2 precursor polypeptide was processed and a part of the mature Rpt2 was N-myristoylated. The crude extracts from the normal strain and the nat1 deletion mutant were similar in chymotrypsin-like activity in the presence of ATP in vitro and in the accumulation level of the 26S proteasome. These characteristics were different from those of the 20S proteasome: the chymotrypsin-like activity and accumulation level of 20S proteasome were appreciably higher from the nat1 deletion mutant than from the normal strain.  相似文献   

17.
The oncoprotein gankyrin plays a central role in tumorigenesis and cell proliferation. Gankyrin interacts with the retinoblastoma tumor suppressor (Rb) and cyclin-dependent kinase 4/6 (CDK4/6), increases phosphorylation at specific residues of Rb by CDK4/6 in vivo, and promotes tumorigenesis. The phosphorylation of Rb by CDK4/6 leads to the deregulation of the cell cycle during G1/S transition. Although how phosphorylation occurs on Rb has been studied extensively, the mechanism of site-specific phosphorylation of Rb remains unclear due to a lack of information on the structural arrangement of Rb and CDK4/6. Here, we have determined and refined to 2.3-A resolution the crystal structure of a gankyrin homolog, the non-ATPase subunit 6 (Nas6p) of the proteasome from yeast. The crystal structure reveals that Nas6p contains seven ankyrin repeats. The number of the repeats is different from that predicted from the primary structure. Nas6p also possesses an unusual curved structure with two acidic regions at the N- and C-terminal regions separated by one basic region, suggesting that it has at least two functional surfaces. The tertiary structure of Nas6p, together with the previous biochemical studies, indicates that the CDK4/6 and Rb binding surfaces of gankyrin are located at the N- and C-terminal regions, respectively, and face the same side of gankyrin. These observations suggest that gankyrin brings Rb and CDK4/6 together through gankyrin-Rb and gankyrin-CDK4/6 interactions and determines the relative positioning of the substrate (Rb) and the enzyme (CDK4/6). Our findings provide mechanistic insight into site-specific phosphorylation of Rb caused by CDK4/6.  相似文献   

18.
Ubiquitin (Ub)-mediated proteasome-dependent proteolysis is critical in regulating multiple biological processes including apoptosis. We show that the unstructured BH3-only protein, NOXA, is degraded by an Ub-independent mechanism requiring 19S regulatory particle (RP) subunits of the 26S proteasome, highlighting the possibility that other unstructured proteins reported to be degraded by 20S proteasomes in vitro may be bona fide 26S proteasome substrates in vivo. A lysine-less NOXA (NOXA-LL) mutant, which is not ubiquitinated, is degraded at a similar rate to wild-type NOXA. Myeloid cell leukemia 1, but not other anti-apoptotic BCL-2 family proteins, stabilizes NOXA by interaction with the NOXA BH3 domain. Depletion of 19S RP subunits, but not alternate proteasome activator REG subunits, increases NOXA half-life in vivo. A NOXA-LL mutant, which is not ubiquitinated, also requires an intact 26S proteasome for degradation. Depletion of the 19S non-ATPase subunit, PSMD1 induces NOXA-dependent apoptosis. Thus, disruption of 26S proteasome function by various mechanisms triggers the rapid accumulation of NOXA and subsequent cell death strongly implicating NOXA as a sensor of 26S proteasome integrity.  相似文献   

19.
We investigated whether the assembly/disassembly of the 26S proteasome is regulated by phosphorylation/dephosphorylation. The regulatory complex disassembled from the 26S proteasome was capable of phosphorylating the p45/Sug1/Rpt6 subunit, suggesting that the protein kinase is activated upon dissociation of the 26S proteasome or that the phosphorylation site of p45 becomes susceptible to the protein kinase. In addition, the p45-phosphorylated regulatory complex was found to be incorporated into the 26S proteasome. When the 26S proteasome was treated with alkaline phosphatase, it was dissociated into the 20S proteasome and the regulatory complex. Furthermore, the p45 subunit and the C3/alpha2 subunit were cross-linked with DTBP, whereas these subunits were not cross-linked by dephosphorylating the 26S proteasome. These results indicate that the 26S proteasome is disassembled into the constituent subcomplexes by dephosphorylation and that it is assembled by phosphorylation of p45 by a protein kinase, which is tightly associated with the regulatory complex. It was also revealed that the p45 subunit is directly associated with the 20S proteasome alpha-subunit C3 in a phosphorylation-dependent manner.  相似文献   

20.
A yeast two-hybrid screen with the human S6 (TBP7, RPT3) ATPase of the 26 S proteasome has identified gankyrin, a liver oncoprotein, as an interacting protein. Gankyrin interacts with both free and regulatory complex-associated S6 ATPase and is not stably associated with the 26 S particle. Deletional mutagenesis shows that the C-terminal 78 amino acids of the S6 ATPase are necessary and sufficient to mediate the interaction with gankyrin. Deletion of an orthologous gene in Saccharomyces cerevisiae suggests that it is dispensable for cell growth and viability. Overexpression and precipitation of tagged gankyrin from cultured cells detects a complex containing co-transfected tagged S6 ATPase (or endogenous S6) and endogenous cyclin D-dependent kinase CDK4. The proteasomal ATPases are part of the AAA (ATPases associated with diverse cellular activities) family, members of which are molecular chaperones; gankyrin complexes may therefore influence CDK4 function during oncogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号