首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was conducted to investigate the ecotoxicological effects of exposure to copper oxide nanoparticles (CuO NPs) on the gill of the swan mussel Anodonta cygnea using several approaches including qualitative and quantitative histopathology, ultra-morphology (scanning electron microscopy [SEM]) and measures of clearance rate (CR) and bioaccumulation of CuO NPs. Histological alterations in mussels exposed to 0.25 (T1), 2.5 (T2) and 25.0?µg L?1 (T3) CuO NPs for 12 days include changes in the length and form of gill lamellae, changes in inter-lamellar spaces, epithelial hyperplasia, atrophy and tissue rupture. Ultra-morphological changes following CuO NP exposure included epithelial hyperplasia and hypertrophy, epithelial lifting, tissue rupture (water channel fusion) and extensive necrosis of the gill surfaces. IGill (gill damage severity) index values for both histopathological and ultra-morphological data were significantly (P?0.05) higher in T3. The CR of mussels was significantly (P??1 g?1 dry weight]) in comparison to controls (CR?=?108?±?47.14 [L min?1 g?1 dry weight]). CuO NPs accumulated in exposed mussels at all exposure concentrations until day 4, but there was no further change in accumulation levels by the end of the exposure period. The accumulated content of CuO NPs was significantly (P??1 exposure concentration. Based on these results, significant accumulation of CuO NPs in the gills of swan mussel could affect histological and ultra-structural characteristics of this organ and consequently have deleterious impacts on its filtration activity.  相似文献   

2.
In order to test whether histopathological changes of gills demonstrated a good dose–response relationship with water copper levels, juvenile Nile tilapia Oreochromis niloticus, of both sexes and similar mass (36·3 + 7·7 g), were kept in dechlorinated tap water (temperature 25° C, range ±1° C; pH 6·5–7·5; hardness 74·5 mg l?1 CaCO3) and exposed to 40 and 400 μg l?1 of copper. Gill samples were collected after 3, 7, 14 and 21 days. Six major histopathological changes (oedema, lifting, changes in filament epithelium thickness, lamellar fusion, vasodilatation and aneurisms) and three minor ones (proliferation of the lamellar epithelium, necrosis and adjacent lamellar fusion) were found and their prevalence estimated. The extent and severity of each histopathological change were used to develop a severity gradation scale (SGS). Semi‐quantitative analysis of the histopathological changes and measurements of gill copper deposition levels revealed a good dose– and time–response relationship. Oedemas and aneurisms were significantly correlated with acute exposure periods and lamellar fusion with chronic exposure. Epithelial lifting and changes in filament epithelial thickness were seen at lower and higher metal concentrations, respectively. The data also revealed that the SGS profile of each lesion was dependent of gill copper burden.  相似文献   

3.
Copper (Cu) is one of the most commonly reported metal pollutants in African water bodies, but there are few studies on African freshwater fish species of copper accumulation and copper toxicity. Adult O. mossambicus were exposed to 0mg l?1 (control) and 0.75mg l?1 Cu for 96h and 0 (control), 0.11, 0.29 and 0.47mg l?1 copper for 64 days. Samples of liver and gills were collected after 96h, and after 1, 32 and 64 days, respectively. There were significant differences in the mean Cu accumulation values in the liver and gills between the control and the Cu-exposed fish after the 96-h exposure. In fish exposed to 0.11 and 0.29mg l?1 Cu for 64 days there was an increase in copper level in the tissues. In fish exposed to 0.47mg l?1 Cu the concentration in the gill and liver tissue did not increase between Day 1 and Day 32. At this time, Cu accumulation in the liver was higher than for fish exposed to 0.11 and 0.29mg l?1 Cu for 64 days. Exposure to approximately 0.47mg l?1 Cu for more than 32 days induced mortality.  相似文献   

4.
The aim of the research was to estimate the effect of different doses and combinations of iron and copper consumption with drinking water on lipid profile and oxidative stress biomarkers in albino Wistar rats serum. Rats were given drinking water containing 3 mg L?1 and 6 mg L?1 iron; copper 4.88 and 9.76 mg L?1; a mixture of 3 mg L?1 iron and 4.88 mg L?1 copper. Control group obtained pure drinking water. Total cholesterol, lipoprotein spectrum and markers of lipid and protein oxidation were analyzed. It has been seen that administration of iron in concentration of 6 mg L?1 induces lipid peroxidation and protein oxidation, while copper given in the maximal doses leads only to protein oxidation. Free radical oxidation in rats obtaining combination of iron and copper with drinking water was more expressed than in case of administration of single metals in the same doses. Consumption of maximal doses of isolated metals leads to more expressed atherogenic changes, while combination of both metals in lower doses did not affect serum lipoprotein significantly. The data obtained show that chemical interaction of iron and copper in the organism has an additive effect on some vital parameters in comparison to isolated metal administration.  相似文献   

5.
A deltamethrin containing insecticide formulation (Decis®) was evaluated for its toxic potential in developing chick embryos. For the present study, three water emulsified concentrations of Decis® (12.5 mg L?1, 25 mg L?1, and 50 mg L?1) were used. Fertilized eggs of Gallus domesticus were immersed in these three concentrations of the insecticide for 60 min at 37°C on day 0 of incubation and kept for incubation till embryonic day 7. Recovered embryos were evaluated for teratogenic and biochemical changes. The results revealed that administration of Decis® at its lower concentrations (12.5 mg L?1 and 25 mg L?1) did not show any significant teratological changes but the significant number of abnormal survivors was observed at 50 mg L?1 of dose concentration when compared with vehicle-treated control. Among biochemical changes, total glycogen and RNA contents of embryos was significantly decreased at 25 mg L?1 and 50 mg L?1 of Decis® concentrations. Similarly, significant alteration (p ≤ .05) was observed in alanine transaminase activity at 50 mg L?1 concentration of Decis®. Thus, the present study concluded that the no-effect-level for developmental toxicity for Decis® is below the concentration of 25 mg L?1 under standard laboratory conditions.  相似文献   

6.
This study verified the effects of CaSO4 on physiological responses of the tropical fish matrinxãBrycon amazonicus (200.2 ± 51.1 g) in water containing CaSO4 after a 4‐h transportation at concentrations of: 0, 75, 150, and 300 mg L?1. Blood samples were collected prior to transportation (initial levels), immediately after packaging, at arrival, and 24 h and 96 h after transportation (recovery). Cortisol levels increased after packaging (118.2 ± 14.2 ng ml?1), and decreased slightly after transportation in water containing CaSO4 (106.8 ± 14.1), but remained higher than initial levels (21.0 ± 2.6 ng ml?1). Fish kept at 150 mg L?1 CaSO4 reached the pre‐transportation levels at 24 h of recovery. Blood glucose increased after transportation in all treatments (8.2 ± 0.2 mmol L?1) and declined after full recovery to values below initial levels (4.8 ± 0.1 mmol L?1). Chloride levels did not change in CaSO4 treatments; serum sodium concentrations decreased after packaging and after transportation. Serum calcium levels did not differ among treatments, but decreased after packaging and increased at 96 h of recovery. Hematocrit and the number of red blood cells were higher in all treatments after packaging and arrival, except in fish exposed to 300 mg L?1 CaSO4. Mean corpuscular volume increased in 75 mg L?1 CaSO4, which reached the higher VCM after transportation. Hemoglobin levels increased only after transportation, regardless of calcium sulfate levels. Handling before transportation and transportation itself were both stressful to fish; calcium sulfate at concentrations tested in the present work had a moderate influence in the reduction of stress responses.  相似文献   

7.
We investigated the uptake, transport, storage and defence mechanisms in the freshwater crab, Potamonautes warreni, harbouring microbial gill infestations and exposed to increasing chronic (0.2, 0.5, 1.0 mg l–1) and acute (2.0 mg l–1) cadmium (Cd) concentrations under controlled laboratory conditions over a period of 21 days. Transmission electron microscopy and X-ray microanalysis revealed that the microbial gill fauna was eliminated on exposure to 0.2 mg Cd2+ l–1 and that Cd became increasingly adsorbed and incorporated into lamellar crystal deposits and permeated the cuticle of the gills of P. warreni. Degeneration of the apical membrane infoldings and vacuolation of epithelial cells occurred concurrently with pinocytosis, endocytosis and pronounced phagocytotic activity in the epithelia and haemal canal of the gills. Elevated Cd exposures (0.5 or 1.0 mg l–1) resulted in the swelling and dissociation of mitochondrial outer membranes together with an increase in transport of Cu, Cl and S by haemocytes in the haemal canal to epithelial tissues depleted in these elements. Cd also accumulated in tightly coiled concentric membrane whorls in the haemal canal, whereas the highest concentrations of Cd were found within aggregates of lysosome-like bodies in cuticulin-secreting cells of the gill stem. Chronic exposure to Cd induced increased fatigue and mild uncoordinated motor activity. In contrast, at an acute exposure of 2.0 mg l–1 over 48 h, P. warreni showed a time-specific rapid loss of motor function, although only mild cellular lesions occurred in the gill tissues. The significance of cellular changes in the gill epithelia and altered motor activity of P. warreni with increased waterborne Cd are discussed as potential biomarker responses in monitoring aquatic pollution.  相似文献   

8.
Erythrina fusca is an important legume used for shade cover in cacao plantations in Brazil. Cacao plantations receive large quantities of copper (Cu)-containing agrochemicals, mainly for control of diseases. Therefore, Cu toxicity was investigated in seedlings grown in hydroponics with increasing concentrations of Cu (0.005–32 mg L?1) in a greenhouse. Ultrastructural analyses showed cell plasmolysis in the root cortical area and changes in thylakoid membranes at 8 mg Cu L?1 and higher. There were changes in epicuticular wax deposition on the leaf surface at the 16 and 32 mg Cu L?1 treatments. Leaf gas exchanges were highly affected 24 hours after application of treatments beginning at 8 mg Cu L?1 and higher Cu concentrations. Chemical analyses showed that Cu content in E. fusca roots increased as Cu concentration in the nutrient solution increased, whereas the shoot did not show significant changes. It is also observed that excess Cu interfered with Zn, Fe, Mn, Mg, K, P, and Ca content in the different E. fusca organs. Investigation of Cu toxicity symptoms focusing on morphophysiological, ultrastructural, gas exchange, and nutritional changes would be useful to alleviate Cu toxicity in E. fusca under field conditions, an important agroforestry species in cacao plantation.  相似文献   

9.
The tissue damage induced by various organic pollutants in aquatic animals is well documented, but there is a dearth of information relating to the histological alterations induced by copper in the spiny lobster. In the present study, intermoult juveniles of the spiny lobster Panulirus homarus (average weight 150–200 g) were exposed to two sublethal concentrations of the copper (9.55 and 19.1 μg/l) for a period of 28 days. The muscle, hepatopancreas, midgut, gills, thoracic ganglion and heart of the lobsters were then dissected out and processed for light microscopic studies. Exposure to copper was found to result in several alterations in the histoarchitecture of the muscle, hepatopancreas, midgut, gills, thoracic ganglion and heart of P. homarus. The alterations included disruption and congestion of muscle bundle in muscle tissue; blackened haemocytes; distended lumen and F cell; necrosis of the tubules of the hepatopancreas; disarrangement of circular muscle of the midgut; accumulation of haemocytes in the haemocoelic space; swelling and fusion of lamellae; abnormal gill tips; hyperplastic, necrotic, and blackened secondary gill lamellae of the gills; damaged neurosecretory cell and sensory and motor fibre; necrotic of the thoracic ganglion; dispersedly arranged muscle bands; clumped satellite cells and nucleus of the heart. The results obtained suggest that the muscle, hepatopancreas, midgut, gills, thoracic ganglion and heart of lobsters exposed to copper were structurally altered. Such alterations could affect vital physiological functions, such as absorption, storage and secretion of the hepatopancreas, digestion of gut and respiration, osmotic and ionic regulations of the gills, which in turn could ultimately affect the survival and growth of P. homarus. Thus, all possible remedial measures should be adopted to prevent the occurrence of copper contamination in the aquatic environment.  相似文献   

10.
The concentrations of Fe, Mn, Ni, Pb and V in water, sediment and the gill, liver and muscle tissues of Synodontis resupinatus, Heterotis niloticus and Clarias gariepinus, all commercially important fish species of the lower Niger River, were investigated in 2015. Water, sediment and fish samples were collected for six months and heavy metals were determined using an Atomic Absorption Spectrometer. Fe ranked highest in water and sediment, with concentrations of 2.74 mg l?1 and 61.60 mg kg?1, respectively. Metals followed the magnitude of Fe > Mn > Ni > V > Pb in the water and Fe > Mn > V > Ni > Pb in the sediments. Metal concentrations were higher in the tissues of S. resupinatus compared with H. niloticus and C. gariepinus. Fe was also highest in the gills, liver and muscle of the three fish species. Its highest concentration of 132.97 mg kg?1 dry weight was recorded in the gills of S. resupinatus. Bioconcentration factors of metals ranged from 8.79 for Mn in H. niloticus muscle to 67.99 for Ni in S. resupinatus gills. The fish species studied pose no health risk for all metals studied, because the target hazard quotient was less than 1 and the estimated daily intakes of the metals were below the reference doses.  相似文献   

11.
Our knowledge of the effects of copper on microalgal physiology is largely based on studies conducted with high copper concentrations; much less is known when environmentally relevant copper levels come into question. Here, we evaluated the physiology of Chlorolobion braunii exposed to free copper ion concentrations between 5.7 × 10?9 and 5.0 × 10?6 mol · L?1, thus including environmentally relevant values. Population growth and maximum photosynthetic quantum yield of PSII were determined daily during the 96 h laboratory controlled experiment. Exponentially‐growing cells (48 h) were analyzed for effective quantum yield and rapid light curves (RLC), and total lipids, proteins, carbohydrates, chlorophyll a and carotenoids were determined. The results showed that growth rates and population density decreased gradually as copper increased in experiment, but the photosynthetic parameters (maximum and effective quantum yields) and photochemical quenching (qP) decreased only at the highest free copper concentration tested (5.0 × 10?6 mol · L?1); nonphotochemical quenching (NPQ) increased gradually with copper increase. The RLC parameters Ek and rETRmax were inversely proportional to copper concentration, while α and Im decreased only at 5.0 × 10?6 mol · L?1. The effects of copper in biomolecules yield (mg · L?1) varied depending on the biomolecule. Lipid yield increased at free copper concentration as low as 2.5 × 10?8 mol · L?1, but proteins and carbohydrates were constant throughout.  相似文献   

12.
The effects of gill abrasion and experimental infection with Tenacibaculum maritimum were assessed in Atlantic salmon Salmo salar with underlying amoebic gill disease. The respiratory and acid-base parameters arterial oxygen tension (P(a)O2), arterial whole blood oxygen content (C(a)O2), arterial pH (pHa), haematocrit and haemoglobin concentrations were measured at intervals over a 48 h recovery period following surgical cannulation of the dorsal aorta. Mortality rates over the recovery period were variable, with gill abrasion and inoculation with T. maritimum causing the highest initial mortality rate and unabraded, uninoculated controls showing the lowest overall mortality rate. Fish with abraded gills tended to show reduced P(a)O2 and lower C(a)O2 compared with unabraded fish. Infection with T. maritimum had no effect on P(a)O2 or C(a)O2. All fish showed an initial alkalosis at 24 h post-surgery/inoculation which was more pronounced in fish inoculated with T. maritimum. There were no significant effects of gill abrasion or infection upon the ratio of oxygen specifically bound to haemoglobin or mean cellular haemoglobin concentration. Histologically, 48 h following surgery, abraded gills showed multifocal hyperplastic lesions with pronounced branchial congestion and telangiectasis, and those inoculated with T. maritimum exhibited focal areas of branchial necrosis and erosion associated with filamentous bacterial mats. All fish examined showed signs of amoebic gill disease with multifocal hyperplastic and spongious lesions with parasome-containing amoeba associated with the gill epithelium. The results suggest that respiratory compromise occurred as a consequence of gill abrasion rather than infection with T. maritimum.  相似文献   

13.
This study reports the 96-h LC50 value and tissue copper (Cu) levels and biochemical changes in juvenile fish (Acipenser persicus) exposed to 0.026?mg/l ambient Cu for 1, 7 and 14?days. It then examined the recovery of the same parameters after placing the juvenile fish in clean water for a further period of 28?days. The intestine, kidney and gill Cu levels, plasma glucose, total protein, triglyceride, cortisol, triiodothyronine and thyroxine concentrations, liver protein contents, liver catalase, superoxide dismutase (SOD) and glutathione S-transferase activities were studied. The 96-h LC50 value of Cu was 0.502?mg/l for juvenile A. persicus. The results indicate that Cu exposure produced significant accumulations of Cu in gills and kidney over the treatment time. Sublethal dose of Cu resulted in a short-term increase in plasma glucose, total protein and cortisol levels that decreased with time. After the 28-day recovery phase, there were significant differences in kidney Cu levels and triglyceride concentrations as well as SOD activities between recovery fish treatments and their control groups on day 42. The 28-day recovery phase caused significant decreases in total protein levels and SOD activities of Cu-exposed fish on day 42 compared to day 14. The results suggest that 28?days are insufficient for complete recovery to Cu exposure by juveniles and a longer period would be required for full recovery. Moreover, the study showed that the recovery phase following Cu exposure could change biochemical parameters to levels that are not close to those seen during exposure or control levels.  相似文献   

14.
Alterations in the liver histology of Labeo rohita were examined after exposure to different concentrations of carbofuran (0.06 and 0.15 mg L?1) and cypermethrin (0.16 and 0.40 μl L?1) for 28 days. Histological recovery was also studied by maintaining the intoxicated fish in a freshwater system for an additional 28 days. Major damages caused by carbofuran toxicity were diffuse necrosis, cordal disarrangement, individualization of hepatocytes, etc.; significant changes induced by cypermethrin were hyperplasia, disintegration of hepatic mass, focal coagulative necrosis, etc. In both cases, damages were dose‐dependent, with cypermethrin exhibiting more sensitivity than carbofuran. In all cases, recovery was prominent and rate of recovery was faster with carbofuran than when using cypermethrin.  相似文献   

15.
The aim of this study is to investigate the toxic effect of PCZ, a triazole fungicide commonly present in surface and ground water, on the ROS defense system and Na+-K+-ATPase in gills of rainbow trout exposed to sublethal concentrations (0.2, 50 and 500 μg L−1) for 7, 20 and 30 days. After prolonged exposure of PCZ at higher test concentrations (50 and 500 μg L−1), oxidative stress was apparent as reflected by the significant higher ROS levels in fish gill, as well as the significant inhibition of SOD and CAT activities. In addition, Na+-K+-ATPase activities were significantly lower than those of the control with increasing PCZ concentration and prolonged exposure period. The results of this study indicate that chronic exposure to PCZ has altered multiple physiological indices in fish gill; however, before these parameters are used as unique biomarkers for monitoring residual pharmaceuticals in aquatic environments, more detailed laboratory experiments need to be performed.  相似文献   

16.
Atlantic salmon smolts (Salmo salar L) were exposed to periodic (6 hourly) sub-lethal levels of hydrogen sulphide over 20 weeks. Histological examination of gill tissues showed that after an initial period (6 weeks), during which the condition of the gills deteriorated, there was a gradual recovery. By the end of the experiment (20 weeks) gill tissues appeared normal. Fish growth was not significantly affected except during the period of maximum gill damage (6–8 weeks) when there was a small but significant decrease in growth rate with respect to the control group.  相似文献   

17.
This study examined the ability of the aquatic plant Lemna minor (duckweed) to remove soluble lead under various laboratory conditions. In a batch process L. minor was exposed to different pH values (4.5–8.0) and temperature (15–35°C) in presence of different lead concentrations (0.1–10.0 mg L?1) for 168 h. The amount of biomass obtained in the study period on a dry weight basis, the concentrations of lead in tissue and in medium and net uptake of lead by Lemna all have been determined in each condition. The percentages of lead uptake ratios (PMU) and bioconcentration factors (BCF) were also calculated for these conditions. Bioaccumulated lead concentrations and the PMU were obtained at lowest pH of 4.5, and at 30°C. The highest accumulated lead concentration was found at pH 4.5 as 3.599 mg Pb g?1 in 10.0 mg L?1. It decreased to pH 6.0, but it did not change at pH 6.0–8.0 range. The maximum lead accumulation was obtained at 30°C as 8.622 mg Pb g?1 in 10 mg L?1 at pH 5.0, and the minimum was at 15°C as 0.291 mg g?1 in 0.1 mg L?1. Lead accumulation gradually increased with increasing lead in medium, but the opposite trend was observed for PMU. Lead accumulation increased up to 50 mg L?1, but did not change significantly in the 50.0–100.0 mg L?1 range. The lead uptake from water was modeled and the equation fit the experimental data very well.  相似文献   

18.
Cells of Chlamydomonas acidophila Negoro, isolated from three soils with different available copper contents (74, 80, and 87 μg·g?1), were assayed for their responses to copper. Soil pH ranged from 3.3–3.9. Responses were evaluated using algistatic assays involving five day exposure to copper concentrations from 0.1–100 mg·L?1 at pH 3.8 and 6.6 in defined liquid media. Interspecies and intraspecies comparisons were made between the soil isolates and laboratory strains of C. reinhardtii and C. acidophila, respectively. Algistatic copper concentrations of soil isolates were 20–125 times greater than those of the laboratory strain of C. reinhardtii. Concentrations of 0.1 mg Cu·L?1, or greater, killed the laboratory strain of C. acidophila. Soil isolates of C. acidophila appeared to be copper tolerant; however, there was no conclusive evidence to indicate that the level of copper tolerance in the soil isolates was positively correlated with the level of available copper in the soil.  相似文献   

19.
This study was performed to evaluate the effective concentration of the anaesthetic 2‐phenoxyethanol (2‐PE) on juvenile (1.3 ± 0.03 g) meagre (Argyrosomus regius, Asso, 1801) and establish the LC50 (through a series of exposure concentrations) and LT50 of 2‐PE at 20 ± 0.5°C, salinity 38 g × L?1, pH 8.2–8.4 and dissolved oxygen >7 mg × L?1. The induction time decreased and the recovery time increased with increasing concentrations. Conflicting results were found only in recovery time and there were no significant differences among the recovery times from all concentrations. The most suitable concentration of 2‐PE was 0.3 ml × L?1 for about or over 15 min exposure time. The LC50 and LT50 for the 3–60 min exposure periods were estimated for juvenile meagre. The toxic effect of 2‐PE on survival rates of A. regius juveniles increased depending on the exposure period. In addition, 2‐phenoxyethanol LT50 (median survival time) values, slope function (S) and lower and upper 95% confidence limits were estimated.  相似文献   

20.
Abstract

Sublethal concentrations of copper in water cause the degeneration of olfactory receptors in rainbow trout (Oncorhynchus mykiss). Receptor cell loss has been correlated to the loss of olfaction in fish and may cause difficulties in olfactory mediated behaviors such as migration. This study investigated the effects of three levels of copper (100, 75 and 50 mg L?1) on the olfactory epithelium of rainbow trout. Twenty fish randomly allocated between three exposure groups and one control were exposed for 24 hours under static renewal conditions. Light and scanning electron microscopic observations of olfactory tissue were taken to determine the extent of degeneration of receptors. In addition, levels of copper and zinc in the brain tissues were analyzed to determine if the olfactory route was a significant route of copper exposure and transfer to fish brain tissue. Results indicate that degeneration of receptors is related to the concentration of copper. Levels of copper in brain were found to be below detection of the instrument. Levels of zinc were extremely variable ranging from 52 to 132 ng zinc g?1 brain tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号