首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rice lesion mimic mutant, lm3, was obtained by the mutagenesis of an indica cultivar, 93-11, using γ-ray radiation. Brownish lesions appeared on the leaves of lm3 at the young seedling stage and persisted until the ripening stage. The lm3 mutant was characterised by a shorter plant height and delayed heading compared with the wild-type 93-11. A genetic analysis indicated that the lesion mimic phenotype was controlled by a single recessive gene. Using simple sequence repeat (SSR) markers, the target gene LM3 was first located between marker RM5748 and RM14906 on chromosome 3. We then developed Insertion-Deletion (InDel) markers to fine-map LM3, and the locus was localised to a 29 kb region defined by two InDel markers, In12571 and In12600. Five ORFs were predicted in the candidate region, and DNA sequencing detected a single-nucleotide polymorphism (SNP) in the coding region of LOC Os03g21900. The SNP in the fourth exon (C in 93-11; T in lm3) of LOC_Os03g21900 results in the substitution of a proline (P) with a serine (S) at the 140th amino acid of the deduced uroporphyrinogen decarboxylase protein. We did not detect polymorphisms in the other predicted ORF regions between lm3 and 93-11. These results suggest that LOC_Os03g21900 is the most likely candidate gene for LM3.  相似文献   

2.
3.
4.
This study investigated the cellular location and the contribution of individual β-glucosidase (BGL) to total BGL activity in Neurospora crassa. Among the seven bgl genes, bgl3, bgl5, and bgl7 were transcribed at basal levels, whereas bgl1, bgl2, bgl4, and bgl6 were significantly up-regulated when the wild-type strain was induced with cellulose (Avicel). BGL1 and BGL4 were found to be contributors to intracellular BGL activity, whereas the activities of BGL2 and BGL6 were mainly extracellular. Sextuple bgl deletion strains expressing one of the three basally transcribed bgls did not produce any detectable BGL activity when they were grown on Avicel. BGL6 is the major contributor to overall BGL activity, and most of its activity resides cell-bound. The sextuple bgl deletion strain containing only bgl6 utilized cellobiose at a rate similar to that of the wild type, while the strain with only bgl6 deleted utilized cellobiose much slower than that of the wild type.  相似文献   

5.
A dense panicle mutant (dp2) derived from the Oryza sativa ssp. japonica cultivar Nipponbare through ethyl methane sulfonate mutagenesis was used in present study. Compared to the wild type, the panicle of dp2 mutant exhibited more branches and denser grains. Further more, the number of spikelets per panicle, number of primary branches and secondary branches of dp2 mutant were significantly increased while the panicle length, and 1,000-grain weight were significantly decreased. The results from the genetic analysis indicated that the dense panicle phenotype was controlled by a single dominance nuclear gene. Polymorphic analysis of SSR and InDel markers demonstrated that the DP2 gene was located at the long arm of chromosome 2, which was further mapped between SSR markers RM341 and RM13356 in a physical region of 398 kb. Within this region, the RCN2 (LOC_Os02g32950) gene which was annotated relating to the development of rice panicle was found. Compared to the wild type, the sequence of RCN2 gene in the dp2 mutant showed that two SNPs replacement had taken place in the promoter region (G–A) and the intron region (A–T), respectively. The dp2 mutant could be a novel mutant of RCN2 gene and this novel mutant might be useful for further studies on this gene.  相似文献   

6.
The efficiency of hybrid seed production can be improved by increasing the percentage of exserted stigma, which is closely related to the stigma length in rice. In the chromosome segment substitute line (CSSL) population derived from Nipponbare (recipient) and Kasalath (donor), a single CSSL (SSSL14) was found to show a longer stigma length than that of Nipponbare. The difference in stigma length between Nipponbare and SSSL14 was controlled by one locus (qSTL3). Using 7,917 individuals from the SSSL14/Nipponbare F2 population, the qSTL3 locus was delimited to a 19.8-kb region in the middle of the short arm of chromosome 3. Within the 19.8-kb chromosome region, three annotated genes (LOC_Os03g14850, LOC_Os03g14860 and LOC_Os03g14880) were found in the rice genome annotation database. According to gene sequence alignments in LOC_Os03g14850, a transition of G (Nipponbare) to A (Kasalath) was detected at the 474-bp site in CDS. The transition created a stop codon, leading to a deletion of 28 amino acids in the deduced peptide sequence in Kasalath. A T-DNA insertion mutant (05Z11CN28) of LOC_Os03g14850 showed a longer stigma length than that of wild type (Zhonghua 11), validating that LOC_Os03g14850 is the gene controlling stigma length. However, the Kasalath allele of LOC_Os03g14850 is unique because all of the alleles were the same as that of Nipponbare at the 474-bp site in the CDS of LOC_Os03g14850 among the investigated accessions with different stigma lengths. A gene-specific InDel marker LQ30 was developed for improving stigma length during rice hybrid breeding by marker-assisted selection.  相似文献   

7.
Plant height is one of the most important agronomic traits of plant architecture, and also affects grain yield in rice. In this study, we obtained a novel dwarf rice mutant of japonica variety Shennong9816, designated Shennong9816d. Compared with wild-type, the Shennong9816d plant height was significantly reduced, and the tiller number significantly increased. Additionally, the mutant yield component, and the number of large and small vascular bundles were significantly decreased compared with wild-type. Genetic analysis indicated that the Shennong9816d dwarf phenotype was controlled by a recessive nuclear gene, while the plant was shown to be sensitive to gibberellic acid. Using a large F2 population derived from a cross between Shennong9816d and the indica rice variety Habataki, the osh15(t) gene was fine mapped between RM20891 and RM20898, within a physical distance of 73.78 kb. Sequencing analysis showed that Shennong9816d carries a 1 bp mutation and a 30 bp insertion in the OSH15 region. These results suggest that osh15(t) is a novel allelic mutant originally derived from japonica variety Shennong9816, which may be useful for introducing the semi-dwarf phenotype to improve plant architecture in rice breeding practice.  相似文献   

8.
9.
Increasing the rice productivity from the current 10 to 12 tons/ha to meet the demand of estimated 8.8 billion people in 2035 is posing a major challenge. Wild relatives of rice contain some novel genes which can help in improving rice yield. Spikelet per panicle (SPP) is a valuable trait for determining yield potential in rice. In this study, a major QTL for increasing SPP has been identified, mapped, and transferred from African wild rice O. longistaminata to O. sativa (L.). The QTL was mapped on the long arm of chromosome 2 in a 167.1 kb region flanked by SSR markers RM13743 and RM13750, which are 1.0 cM apart, and is designated as qSPP2.2. The QTL explained up to 30% of phenotypic variance in different generations/seasons and showed positive additive effect of allele contributed by O. longistaminata. In addition, O. longistaminata allele in qSPP2.2 contributed to increase in grains per panicle, but decrease in the tillers per plant. The 167.1 kb region contains 23 predicted genes. Based on the functional annotation, three genes, LOC_Os02g44860, LOC_Os02g44990, and LOC_Os02g45010, were selected as putative candidates for characterization. Sequence analysis of the three genes revealed functional variations between the parental lines for LOC_Os02g44990 and a variation in 5′UTR for LOC_Os02g45010 which will help further to identify putative candidate gene(s). This is the first yield component QTL to be identified, mapped, and transferred from O. longistaminata.  相似文献   

10.
11.
A semi-narrow and adaxially rolled leaf mutant, rl15(t), was induced from Korean japonica rice cultivar Ilpum by chemical mutagenesis using ethyl methanesulfonate. We characterized the mutant and identified the novel gene causing the mutant phenotype. Cytological analysis of mutant leaves indicated that the adaxial leaf-rolling phenotype is due to the reduced size and number of bulliform cells in the mutant. Genetic analysis showed that the rolled leaf trait is controlled by a single recessive gene, designated rl15(t). Using an F2 mapping population generated from a cross between Milyang23 and the mutant, we mapped the candidate region to a 174 kb interval on the long arm of chromosome 1 near the centromeric region. Through whole genome sequencing in bulk and MutMap analysis, we identified the causal SNP within the candidate region. The results of RT-PCR analysis indicated that a splicing error occurred due to a base change from G to A at the beginning of the fifth intron of LOC_Os01g37837, which encodes a putative seryl-tRNA synthetase, resulting in the mutant phenotype. Further study of the rl15(t) gene will facilitate analysis of leaf architecture and morphogenesis in rice plants.  相似文献   

12.
Map-based cloning of the ERECT PANICLE 3 gene in rice   总被引:1,自引:0,他引:1  
Panicle architecture in rice can have a strong influence on yield. Using N-methyl-N-nitrosourea mutagenesis, we isolated an erect panicle mutant, Hep, from Hwasunchalbyeo, a glutinous japonica rice cultivar. Genetic analysis revealed that the erect panicle phenotype was controlled by a single recessive mutation designated erect panicle 3 (ep3). Genetic mapping revealed that the ep3 mutation was located on the short arm of chromosome 2 in a 0.1 cM region delimited by the STS markers STS5803-5 and STS5803-7. The ep3 locus corresponded to 46.8 kb region and contained six candidate genes. Comparison of the DNA sequences of the candidate genes from wild-type and erect panicle plants revealed a single base-pair change in the second exon of LOC_Os02g15950, which is predicted to result in a nonsense mutation. LOC_Os02g15950 encodes a putative F-box protein containing 515 amino acids and is expressed throughout the plant during all growth stages. A line carrying a T-DNA insertion in LOC_ Os02g15950 was obtained and shown to have the same phenotype as the ep3 mutant, thus confirming the identification of LOC_Os02g15950 as the ERECT PANICLE 3 (EP3) gene. The ep3 mutation causes a significant increase in the number of small vascular bundles as well as the thickness of parenchyma in the peduncle, which results in the erect panicle phenotype.  相似文献   

13.
Liu W  Fu Y  Hu G  Si H  Zhu L  Wu C  Sun Z 《Planta》2007,226(3):785-795
A thermo-sensitive chlorophyll deficient mutant was isolated from more than 15,000 transgenic rice lines. The mutant displayed normal phenotype at 23°C or lower temperature (permissive temperature). However, when grown at 26°C or higher (nonpermissive temperature) the plant exhibited an abnormal phenotype characterized by yellow green leaves. Genetic analysis revealed that a single nuclear-encoded recessive gene is responsible for the mutation, which is tentatively designed as cde1(t) (chlorophyll deficient 1, temporally). PCR analysis and hygromycin resistance assay indicated the mutation was not caused by T-DNA insertion. To isolate the cde1(t) gene, a map-based cloning strategy was employed and 15 new markers (five SSR and ten InDels markers) were developed. A high-resolution physical map of the chromosomal region around the cde1(t) gene was made using F2 and F3 population consisting of 1,858 mutant individuals. Finally, the cde1(t) gene was mapped in 7.5 kb region between marker ID10 and marker ID11 on chromosome 2. Sequence analysis revealed only one candidate gene, OsGluRS, in the 7.5 kb region. Cloning and sequencing of the target region from the cde1(t) mutant showed that a missense mutation occurred in the mutant. So the OsGluRS gene (TIGR locus Os02 g02860) which encode glutamyl-tRNA synthetase was identified as the Cde1(t) gene.  相似文献   

14.
An extracellular β-glucosidase (BGL) from Fusarium oxysporum was purified to homogeneity by a single chromatography step on a gel filtration column. The optimum activity of BGL on cellobiose was observed at pH 5.0 and 60 °C. Under the same conditions, the K m and V max values for p-nitrophenyl β-d-glucopyranoside and cellobiose were 2.53 mM, 268 U?mg protein?1 and 20.3 mM, 193 U?mg protein?1, respectively. The F. oxysporum BGL enzyme was highly stable at acidic pH (t 1/2?=?470 min at pH 3). A commercial BGL Novo188 (Novozymes) and F. oxysporum BGL were compared in their ability to supplement Celluclast 1.5 L (Novozymes). In comparison with the commercial Novo188 (267 mg?g substrate?1), F. oxysporum BGL supplementation released more reducing sugars (330 mg?g substrate?1) from cellulose under simulated gastric conditions. These properties make F. oxysporum BGL a good candidate as a new commercial BGL to improve the nutrient bioavailability of animal feed.  相似文献   

15.
Saccharomyces cerevisiae Y5 is a newly developed wild-type strain demonstrating a strong bioethanol fermentation capacity. In the present study, we attempted to construct an а-agglutinin-displaying expression system for genetic immobilization β-glucosidase1 (BGL1) on a yeast cell surface in its active form. The AGA1 gene of native а-agglutinin under the control of a GAL1 promoter was integrated into the genomes of S. cerevisiae Y5. A cDNA-encoding BGL1 from the fungus Aspergillus aculeatus was fused with the gene encoding the C-terminal half of Aga2p. The multicopy plasmid containing this fusion gene was introduced into S. cerevisiae and expressed under the control of the GAL1 promoter as was the AGA1 gene. The display of the BGL1 protein on the cell surface was confirmed by immunofluorescence microscopy and Western blotting. The cells displaying BGL1 could produce 5.07 g/l ethanol from 20 g/l cellobiose as the sole carbon source. These results demonstrated that BGL1 was anchored on the cell wall in its active form.  相似文献   

16.
Hybrid weakness (HW) is an important postzygotic isolation which occurs in both intra- and inter-specific crosses. In this study, we described a novel low temperature-dependent intrasubspecific hybrid weakness in the F1 plants derived from the cross between two indica rice varieties Taifeng A and V1134. HW plants showed growth retardation, reduced panicle number and pale green leaves with chlorotic spots. Cytological assay showed that there were reduced cell numbers, larger intercellular spaces, thicker cell walls, and abnormal development of chloroplast and mitochondria in the mature leaves from HW F1 plants in comparison with that from both of the parental lines. Genetic analysis revealed that HW was controlled by two complementary dominant genes Hw3 from V1134 and Hw4 from Taifeng A. Hw3 was mapped in a 136 kb interval between the markers Indel1118 and Indel1117 on chromosome 11, and Hw4 was mapped in the region of about 15 cM between RM182 and RM505 on chromosome 7, respectively. RT-PCR analysis revealed that only LOC_Os11g44310, encoding a putative calmodulin-binding protein (OsCaMBP), differentially expressed among Taifeng A, V1134 and their HW F1. No recombinant was detected using the markers designed based on the sequence of LOC_Os11g44310 in the BC1F2 (Taifeng A//Taifeng A/V1134) population. Hence, LOC_Os11g44310 was probably the candidate gene of Hw3. Gene amplification suggested that LOC_Os11g44310 was present in V1134 and absent in Taifeng A. BLAST search revealed that LOC_Os11g44310 had one copy in the japonica genomic sequence of Nipponbare, and no homologous sequence in the indica reference sequence of 9311. Our results indicate that Hw3 is a novel gene for inducing hybrid weakness in rice.  相似文献   

17.
The nuclear genes involved in chloroplast development and chlorophyll biosynthesis must be investigated to understand their functions in plant growth and development. In this study, we isolated and identified a unique leaf-color mutant of rice with a green-yellow phenotype before the four-leaf stage and named the mutation green-revertible chlorina 1 (grc1). The mutants had significantly lower plant height, number of tillers, and panicle length and headed significantly earlier than the wild type. The levels of chlorophylls, carotenoids, and chlorophyll precursors were also lower. The mutation in grc1 affected chloroplast ultrastructure, particularly thylakoid development. Genetic analysis indicated that the green-yellow phenotype was controlled by a single recessive gene. We mapped the grc1 gene to a 32.4-kb region on the long arm of chromosome 6. Through map-based cloning, we identified a 45-bp insertion in the genomic region of LOC_Os06g40080, which encoded a heme oxygenase. Expression of LOC_Os06g40080 was significantly down-regulated in the grc1 mutant. Subcellular localization showed that this heme oxygenase was localized in the chloroplast. In summary, we isolated and identified the gene for grc1, which plays an important role in chlorophyll biosynthesis and chloroplast development in rice.  相似文献   

18.
To obtain more information about the cell wall organization of Saccharomyces cerevisiae, we have developed a novel screening system to obtain cell wall-defective mutants, using a density gradient centrifugation method. Nine hypo-osmolarity-sensitive mutants were classified into two complementation groups, hpo1 and hpo2. Phase contrast microscopic observation showed that mutant cells bearing lesions at either locus became abnormally large. A gene that complemented the mutant phenotype of hpo2 was cloned and sequenced. This gene turned out to be identical to PKC1, which encodes the yeast homologue of mammalian protein kinase C. Complementation tests with pkc1Δ showed that hpo2 is allelic to pkc1. To study the reason for the fragility of hpo2 cells, cell wall was isolated and the glucan was analyzed. The amount of alkali, acid-insoluble glucan, which is responsible for the rigidity of the cell wall, was reduced to about 30% that of the wild-type cell and this may be the major cause of the fragility of the hpo2 mutant cell. Analysis of total wall proteins in hpo2 mutant cells on SDS-polyacrylamide gels revealed that a 33 kDa protein was overproduced two- to threefold relative to the wild-type level. This 33 kDa protein was identified as a β-glucanase, encoded by BGL2. Disruption of BGL2 in the hpo2 mutant partially rescued the growth rate defect. This suggests that the PKC1 kinase cascade regulates BGL2 expression negatively and overproduction of the β-glucanase is partially responsible for the growth defect. Since the bgl2 disruption did not rescue the hypo-osmolarty-sensitive phenotype of the hpo2 mutant, PKC1 must negatively regulate other enzymes involved in the biosynthesis and metabolism of the cell wall.  相似文献   

19.
Leaf-color mutants play an important role in the study of chlorophyll metabolism, chloroplast development, and photosynthesis system. In this study, the yellow leaf 1 (yl1) rice mutant was identified from the ethyl methane sulfonate-treated mutant progeny of Lailong, a glutinous japonica rice landrace cultivated in Guizhou Province, China. Results showed that yl1 exhibited yellow leaves with decreased chlorophyll content throughout the growth period. Chloroplast development in the yl1 mutant was disrupted, and the grana lamellae was loosely packed and disordered. RNA sequencing and real-time quantitative polymerase chain reaction (qRT-PCR) analysis revealed that the chlorophyll synthesis-related genes OsCHLH, OsCHLM, OsCHLG, PORB, and YGL8, as well as the chloroplast development-related genes FtsZ, OsRpoTp, and RbcL, were down-regulated in the yl1 mutant. Genetic analysis revealed that the yellow leaf phenotype of yl1 was controlled by recessive nuclear gene. By employing the MutMap method, the mutation responsible for the phenotype was mapped to a 6.17 Mb region between 17.34 and 23.51 Mb on chromosome 3. Two non-synonymous single-nucleotide polymorphisms (SNPs) located in the gene locus LOC_Os03g31210 and LOC_Os03g36760 were detected in this region. The two SNPs were further confirmed by PCR and Sanger sequencing. The expression patterns of the two candidate genes indicated that LOC_Os03g36760 showed greater potential for functional verification. Subcellular protein localization revealed that the encoded product of LOC_Os03g36760 was localized in the nucleus, cytoplasm, and plasma membrane. These results will be useful for further characterization and cloning of the yl1 gene, and for research on the molecular mechanisms controlling biogenesis and chloroplast biochemical processes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号