首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Liu Q  Cai H  Xu Y  Li Y  Li R  Wang P 《Biosensors & bioelectronics》2006,22(2):318-322
Human olfactory system can distinguish thousands of odors. In order to realize the biomimetic design of electronic nose on the principle of mammalian olfactory system, this article reports an olfactory cell-based biosensor as a real bionic technique for odorants detection. Effective cultures of olfactory receptor neurons and olfactory bulb cells have been achieved on the semiconductor chip. Using light-addressable potentiometric sensor (LAPS) as sensing chip to monitor extracellular potential of the neurons, the response under stimulations of the odorants or neurotransmitters, such as acetic acid and glutamic acid, was tested. The results demonstrate that this kind of hybrid system of LAPS and olfactory neurons, which is sensitive to odorous changes, has great potential and is promising to be used as a novel neurochip of bioelectronic nose for detecting odors.  相似文献   

2.
Application of positron emission tomography and magnetic resonance imaging has provided several new insights into various olfactory functions. One is that sniffing and smelling engage separate subsystems in the human olfactory cortex. Another is that perception of odorous compounds (odorants) is mediated by a set of core regions, which are partly different for pure olfactory than for olfactory plus trigeminal odorants. Depending on the task associated with odor perception, the core regions are recruited together with other circuits, in a parallel and hierarchical manner. The sense of smell seems, therefore, to be organized similarly to other sensory modalities, and the specific psychophysical characteristics of olfaction should be attributed to an early involvement of the limbic system rather than to a conceptually different mode of processing.  相似文献   

3.
We have characterized odorant-stimulated adenylate cyclase activity in isolated chemosensory cilia prepared from frog and rat olfactory epithelium. Cilia from both species exhibit high levels of adenylate cyclase activity. Basal activity is stimulated approximately 2-fold by GTP and approximately 5-fold by guanosine 5'-(3-O-thio)triphosphate and forskolin. Odorants augment enzyme activity 30-65% above the basal level in a tissue-specific and GTP-dependent manner. Calcium reduces GTP-stimulated activity with a 50% effective concentration at 10 microM. Odorants vary in their influence upon olfactory adenylate cyclase activity. Most fruity, floral, minty, and herbaceous odorants stimulate the enzyme. 3,7-Dimethyl-2,6-octadienenitrile (citralva), menthone, D-carvone, L-carvone, and 2-isobutyl-3-methoxypyrazine display similar potencies in activating the adenylate cyclase upto concentrations of 100 microM. Putrid odorants, such as isovaleric acid, triethylamine, pyridine, thiazole, and methoxypyrazine, and odorous chemical solvents, do not stimulate enzyme activity. In homologous series of pyrazine, thiazole, and pyridine odorants, compounds with the longest hydrocarbon side chains are best able to enhance enzyme activity. The failure of certain odorants to affect adenylate cyclase activity suggests that additional transduction mechanisms besides the formation of cAMP are involved in olfaction.  相似文献   

4.
L Buck  R Axel 《Cell》1991,65(1):175-187
The mammalian olfactory system can recognize and discriminate a large number of different odorant molecules. The detection of chemically distinct odorants presumably results from the association of odorous ligands with specific receptors on olfactory sensory neurons. To address the problem of olfactory perception at a molecular level, we have cloned and characterized 18 different members of an extremely large multigene family that encodes seven transmembrane domain proteins whose expression is restricted to the olfactory epithelium. The members of this novel gene family are likely to encode a diverse family of odorant receptors.  相似文献   

5.
The fractionation of frog olfactory preparation by ion-exchange chromatography and gel filtration permitted to obtain fractions capable of making artificial lipid membranes sensitive to odorants, such as camphora, musc ambrette and linalool. The sensitizing agent present in active fractions is a high-molecular-weight (m.w. 100,000) protein containing substance. It is suggested that this agent is a component of a special transport system which may carry the odorous molecules to olfactory receptor cells or to remove them from olfactory tissues.  相似文献   

6.
The detection of odorants in vertebrates is mediated by chemosensory neurons that reside in the olfactory epithelium of the nose. In land-living species, the hydrophobic odorous compounds inhaled by the airstream are dissolved in the nasal mucus by means of specialized globular proteins, the odorant-binding proteins (OBPs). To assure the responsiveness to odors of each inhalation, a rapid removal of odorants from the microenvironment of the receptor is essential. In order to follow the fate of OBP/odorant complexes, a recombinant OBP was fluorescently labeled, loaded with odorous compounds, and applied to the nose of a mouse. Very quickly, labeled OBP appeared inside the sustentacular cells of the epithelium. This uptake occurred only when the OBP was loaded with appropriate odorant compounds. A search for candidate transporters that could mediate such an uptake process led to the identification of the low density lipoprotein receptor Lrp2/Megalin. In the olfactory epithelium, megalin was found to be specifically expressed in sustentacular cells and the Megalin protein was located in their microvilli. In vitro studies using a cell line that expresses megalin revealed a rapid internalization of OBP/odorant complexes into lysosomes. The uptake was blocked by a Megalin inhibitor, as was the internalization of OBPs into the sustentacular cells of the olfactory epithelium. The results suggest that a Megalin-mediated internalization of OBP/odorant complexes into the sustentacular cells may represent an important mechanism for a rapid and local clearance of odorants.  相似文献   

7.
The aim of the present study was to determine, whether there are differences in the topographical distribution of chemosensory evoked potentials (CSEPs) due to stimulation with different odous substances. The odorants used in the study which mainly excited the olfactory nerve were vanillin and acetaldehyde; those which additionally excited the trigeminal nerve were sulphur dioxide and ammonia. Twelve subjects participated in the study. The subjects separately estimated the intensity of the odorous and of the painful/pricking sensation caused by the stimuli, and described the odorous qualities in their own words. CSEPs were recorded from 7 positions.After stimulation with “olfactory” subsances maximum CSEP amplitudes were recorded at parietol-central sites, and after stimulation with “trigeminal” substances maximum amplitudes were obtained at the vertex. Following stimulation with ammonia and sulphur dioxide amplitudes were largest contralateral to the stimulated nostril. In contrast, little difference in CSEP amplitudes was observed between hemispheres after stimulation with vanillin or acetyldehyde.Thus, the topographical distribution of CSEP amplitudes may provide information with regard to the sensory system (olfactory or trigeminal) activated by the presentation of an odorous stimulus.  相似文献   

8.
Surface plasmon resonance (SPR) is a powerful technique for measuring molecular interaction in real-time. SPR can be used to detect molecule to cell interactions as well as molecule to molecule interactions. In this study, the SPR-based biosensing technique was applied to real-time monitoring of odorant-induced cellular reactions. An olfactory receptor, OR I7, was fused with a rho-tag import sequence at the N-terminus of OR I7, and expressed on the surface of human embryonic kidney (HEK)-293 cells. These cells were then immobilized on a SPR sensor chip. The intensity of the SPR response was linearly dependent on the amount of injected odorant. Among all the aldehyde containing odorants tested, the SPR response was specifically high for octanal, which is the known cognate odorant for the OR I7. This SPR response is believed to have resulted from intracellular signaling triggered by the binding of odorant molecules to the olfactory receptors expressed on the cell surface. This SPR system combined with olfactory receptor-expressed cells provides a new olfactory biosensor system for selective and quantitative detection of volatile compounds.  相似文献   

9.
The properties of artificial lipid membranes modified by frog offactory preparation obtained by ultrasonic treatment of frog olfactory tissues were investigated. Out of the 24 odorous substances which were tested five active stimulants were identified each inducing a resistance drop of the modified membrane when added to the cell. The studies of this effect in solutions with different salt content demonstrated that the decrease in resistance resulted most probably from an increased membrane permeability to Na+ ions. The dyes did not affect the resistance of modified membranes. Mercury bichloride at the concentration of 5 . 10(-4) M was shown to block the responce of the membrane when added to the cell prior to stimulants. At the same time mercury biochloride did not practically affect the membrane resistance after its response to the odorants. The possible ways of increasing the sensitivity of modified membranes to odorants are discussed.  相似文献   

10.
Previously reported electrophysiological responses recordedfrom individual neurons in the olfactory bulb of frogs stimulatedwith odorous compounds were further analyzed using statisticalmethods. Five of the odorants were delivered at two concentrations.The pattern of discrimination among these odorants was investigatedwith the aid of the Pearson's correlation test and Benzecri's‘analyse des correspondances’. Special attentionwas paid to the incidence of odour concentration on this discriminationpattern. The results were compared with those of a similar studyperformed on receptor cells in the same experimental conditions.The comparison indicated that the information processing inthe olfactory bulb seems to improve discrimination between chemicallydifferent stimuli, especially those poorly discriminated byreceptor cell responses, whereas it protects this discriminationagainst a massive influence of the intensity of the stimuli.  相似文献   

11.
Individual turbinals from the right and left sides of dog olfactory tissue were removed and nerve-ending-particle preparations were prepared. (Na+ + K+)-dependent ATPase activities of the individual preparations, and the effect of several odorous compounds [including (+)- and (-)-carvone] on the (Na+ + K+)-dependent ATPase activities, were determined. The maximally stimulatory odorant concentration in the reaction mixture for the majority of odorants was found to be 1.0 mM. Matched pairs of left/right turbinals showed a lack of bilateral symmetry of response. (Na+ + K+)-dependent ATPase activities of various dog brain nerve-ending particle preparations responded only slightly to 1.0 mM odorants. The role of phospholipids in the (Na+ + K+)-dependent ATPase activity was found to be critical. Partial replacement of endogenous lipid with either synthetic phospholipids or extracted lipids resulted in changes in stimulation obtained with endogenous lipids alone.  相似文献   

12.
EVALUATION OF OLFACTORY INTENSITY: COMPARATIVE STUDY OF TWO METHODS   总被引:1,自引:0,他引:1  
Two experimental procedures recommended for the evaluation of the psychophysical characteristics of odorous compounds, olfactory matching with the 1-butanol scale and cross-modality matching with the finger span are compared. The intensity of ethyl butyrate and guaiacol solutions presented at four different concentration levels was evaluated by a panel of sixteen subjects over five repetitions using the two methods. Each stimulus was delivered to the subject from a Teflon bag through a nose-shaped glass sniffing port.
The discrimination ability, repeatability, panel homogeneity and within-subject variability of the methods were assessed. Results indicate that with both methods, subjects were able to highly discriminate the presented concentration levels of the odorants. There were no great difference in repeatability and the same individual variability was observed between both methods. However, the smaller within-subject variability highlighted for the 1-butanol scale method suggested that this method is potentially more powerful than finger-span method.  相似文献   

13.
The effect of color on orthonasal and retronasal odor intensities was investigated. When odorants were smelled orthonasally (i.e., through the nostrils), color enhanced odor intensity ratings, consistent with previous reports. However, when odorants were smelled retronasally (i.e., the odorous solution was put in the mouth), color reduced odor intensity ratings. These different effects of color on odor intensity (i.e., enhancement orthonasally and suppression retronasally) appear to be the result of route of olfactory stimulation rather than of any procedural artifact. This supports previous reports that retronasal and orthonasal odors are perceived differently.  相似文献   

14.
The detection of thousands of volatile odorants is mediated by several hundreds of different G protein-coupled olfactory receptors (ORs). The main strategy in encoding odorant identities is a combinatorial receptor code scheme in that different odorants are recognized by different sets of ORs. Despite increasing information on agonist-OR combinations, little is known about the antagonism of ORs in the mammalian olfactory system. Here we show that odorants inhibit odorant responses of OR(s), evidence of antagonism between odorants at the receptor level. The antagonism was demonstrated in a heterologous OR-expression system and in single olfactory neurons that expressed a given OR, and was also visualized at the level of the olfactory epithelium. Dual functions of odorants as an agonist and an antagonist to ORs indicate a new aspect in the receptor code determination for odorant mixtures that often give rise to novel perceptual qualities that are not present in each component. The current study also provides insight into strategies to modulate perceived odorant quality.  相似文献   

15.
Intensive swine production generates odorous emissions which flow from the buildings housing the animals. High ventilation rates bring in fresh air, remove heat and moisture and enhance pork productivity. Numerous compounds contribute to the uniquely offensive odors from swine facilities, including fatty acids, amines, aromatics and sulfur compounds. Dust particles, which originate predominantly from feces and feed, can adsorb and concentrate odorants in swine facilities. In addition, organic particles can decay and generate odorous compounds. Odorants can exist in much higher concentrations in the dust particles than in equivalent volumes of air. Thus, inhalation of odorous dust and deposition of the dust particles in the mucus overlying the olfactory mucosa are likely responsible for some odor-related complaints by swine farm neighbors. Accurate prediction of odor transport and dispersion downwind from swine farms may require models of dust dispersion and correlation between dust and odorant levels. Unfortunately, many approaches to estimating odor impact currently incorporate filtering of air to remove particulate matter before sensing by humans or electronic sensors. Accelerated progress in understanding this and other 'real world' odor control problems will require methodological innovations that allow quantification of odor in response to air streams containing vapor and particulate phases.  相似文献   

16.
It has long been believed that vertebrate olfactory signal transduction is mediated by independent multiple pathways (using cAMP and InsP3 as second messengers). However, the dual presence of parallel pathways in the olfactory receptor cell is still controversial, mainly because of the lack of information regarding the single-cell response induced by odorants that have been shown to produce InsP3 exclusively (but not cAMP) in the olfactory cilia. In this study, we recorded activities of transduction channels of single olfactory receptor cells to InsP3-producing odorants. When the membrane potential was held at -54 mV, application of InsP3-producing odorants to the ciliary region caused an inward current. The reversal potential was 0 +/- 7 mV (mean +/- SD, n = 10). Actually, InsP3-producing odorants generated responses in a smaller fraction of cells (lilial, 3.4%; lyral, 1.7%) than the cAMP-producing odorant (cineole, 26%). But, fundamental properties of responses were surprisingly homologous; namely, spatial distribution of the sensitivity, waveforms, I-V relation, and reversal potential, dose dependence, time integration of stimulus period, adaptation, and recovery. By applying both types of odorants alternatively to the same cell, furthermore, we observed cells to exhibit symmetrical cross-adaptation. It seems likely that even with odorants with different modalities adaptation occurs completely depending on the amount of current flow. The data will also provide evidence showing that olfactory response generation and adaptation are regulated by a uniform mechanism for a wide variety of odorants.  相似文献   

17.
Mammals are able to perceive and differentiate a great number of structurally diverse odorants through the odorant's interaction with odorant receptors (ORs), proteins found within the cell membrane of olfactory sensory neurons. The natural gas industry has used human olfactory sensitivity to sulfur compounds (thiols, sulfides, etc.) to increase the safety of fuel gas transport, storage, and use through the odorization of this product. In the United States, mixtures of sulfur compounds are used, but the major constituent of odorant packages is 2-methylpropane-2-thiol, also known as tert-butyl mercaptan. It has been fundamentally challenging to understand olfaction and odorization due to the low affinity of odorous ligands to the ORs and the difficulty in expressing a sufficient number of OR proteins. Here, we directly observed the binding of tert-butyl mercaptan and another odiferous compound, cis-cyclooctene, to mouse OR MOR244-3 on living cells by saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy. This effort lays the groundwork for resolving molecular mechanisms responsible for ligand binding and resulting signaling, which in turn will lead to a clearer understanding of odorant recognition and competition.  相似文献   

18.
Moths possess highly tuned olfactory capabilities, which can detect very low concentrations of pheromonal odorants. Much is known about the structure and function of the moth olfactory system with respect to detection of pheromones. However, we lack an understanding of the broader olfactory system, in particular, to what degree are moths capable of detecting and discriminating odorants that are not components of pheromone blends. Here we describe a methodology used to investigate the discriminability of nonpheromonal odors in moths. In a series of experiments we show that the moth Manduca sexta can (1) discriminate a number of different odors but (2) that methyl jasmonate, neither readily conditions to a food reward nor is it readily discriminated from another odor. The lack of a response to methyl jasmonate may be related to its role in host plant defense. This work provides a basis for future mapping of physiological and pharmacological studies of nonpheromonal coding in insects onto learned behavioral responses to those odorants.  相似文献   

19.
Moths of the subfamily Heliothinae are suitable models for comparative studies of plant odour information encoded by the olfactory system. Here we identify and functionally classify types of olfactory receptor neurons by means of electrophysiological recordings from single receptor neurons linked to gas chromatography and to mass spectrometry. The molecular receptive ranges of 14 types in the two polyphagous species Heliothis virescens and Helicoverpa armigera are presented. The receptor neurons are characterized by a narrow tuning, showing the best response to one primary odorant and weak responses to a few chemically related compounds. The most frequently occurring of the 14 types constituted the receptor neurons tuned to (+)-linalool, the enantioselectivity of which was shown by testing two samples with opposite enantiomeric ratios. These neurons, also responding to dihydrolinalool, were found to be functionally similar in the two related species. The primary odorants for 10 other receptor neuron types were identified as (3Z)-hexenyl acetate, (+)-3-carene, trans-pinocarveol, trans-verbenol, vinylbenzaldehyde, 2-phenylethanol, methyl benzoate, alpha-caryophyllene and caryophyllene oxide, respectively. Most odorants were present in several host and non-host plant species, often in trace amounts. The specificity as well as the co-localization of particular neuron types so far recorded in both species showed similarities of the olfactory systems receiving plant odour information in these two species of heliothine moths.  相似文献   

20.
Social communication by means of odor signals is widespread among mammals. In pigs, for example, the C19-steroids 5-alpha-androst-16-en-3-one and 5-alpha-androst-16-en-3-ol are secreted by the boar and induce the mating stance in the sow. In humans, the same substances have been shown to be compounds of body odor and are presumed to affect human behavior. Using an instrumental conditioning paradigm, we here show that squirrel monkeys, spider monkeys and pigtail macaques are able to detect androstenone at concentrations in the micromolar range and thus at concentrations at least as low as those reported in pigs and humans. All three species of nonhuman primates were considerably less sensitive to androstenol, which was detected at concentrations in the millimolar range. Additional tests, using a habituation-dishabituation paradigm, showed that none of the 10 animals tested per species was anosmic to the two odorous steroids. These results suggest that androstenone and androstenol may be involved in olfactory communication in the primate species tested and that the specific anosmia to these odorants found in approximately 30% of human subjects may be due to their reduced number of functional olfactory receptor genes compared with nonhuman primates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号