首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
黑曲霉A3木聚糖酶固体发酵研究   总被引:19,自引:3,他引:19  
筛选了一株高产木聚糖酶的黑曲霉A3菌株,研究了其在固体培养基中的发酵条件。该菌最适培养条件为:起始pH4.6。28℃,1ml孢子悬液接种量,蔗渣粉:麸皮为1.5:1,发酵3天,木聚糖酶活力可达5147IU/g培养基干重。氮源组成,温度、pH及发酵时间对曲中木聚糖酶和纤维素酶的比例有较大影响。与液体发酵相比,粗酶的最适反应温度均为55℃,最适反应pH值分别为4.6和4.2,在不同温度下保温1h,测得  相似文献   

2.
针对葛根原料富含纤维和黄酮等特点, 选用低压汽爆处理代替糊化直接固态同步糖化发酵乙醇, 而后提取发酵剩余物的葛根黄酮。实验结果表明鲜葛根在0.8 MPa压力下维持3.5 min汽爆处理后, 直接加入糖化酶(65 u/g)、纤维素酶(1.5 u/g), 0.1%(NH4)2SO4、0.1%KH2PO4和活化后的酵母, 35~37oC下, 固态同步糖化发酵60 h, 100 g干葛根可生产的乙醇与葛根黄酮分别为27.47 g、4.43 g, 淀粉利用率达到95%。该方法实现了葛根分层多级转化清洁利用, 为非粮食类淀粉资源发酵乙醇提供了一条新途径。  相似文献   

3.
针对葛根原料富含纤维和黄酮等特点, 选用低压汽爆处理代替糊化直接固态同步糖化发酵乙醇, 而后提取发酵剩余物的葛根黄酮。实验结果表明鲜葛根在0.8 MPa压力下维持3.5 min汽爆处理后, 直接加入糖化酶(65 u/g)、纤维素酶(1.5 u/g), 0.1%(NH4)2SO4、0.1%KH2PO4和活化后的酵母, 35~37oC下, 固态同步糖化发酵60 h, 100 g干葛根可生产的乙醇与葛根黄酮分别为27.47 g、4.43 g, 淀粉利用率达到95%。该方法实现了葛根分层多级转化清洁利用, 为非粮食类淀粉资源发酵乙醇提供了一条新途径。  相似文献   

4.
Production of bioethanol from brewers spent grains (BSG) using consolidated bioprocessing (CBP) is reported. Each CBP system consists of a primary filamentous fungal species, which secretes the enzymes required to deconstruct biomass, paired with a secondary yeast species to ferment liberated sugars to ethanol. Interestingly, although several pairings of fungi were investigated, the sake fermentation system (A. oryzae and S. cerevisiae NCYC479) was found to yield the highest concentrations of ethanol (37 g/L of ethanol within 10 days). On this basis, 1 t of BSG (dry weight) would yield 94 kg of ethanol using 36 hL of water in the process. QRT-PCR analysis of selected carbohydrate degrading (CAZy) genes expressed by A. oryzae in the BSG sake system showed that hemicellulose was deconstructed first, followed by cellulose. One drawback of the CBP approach is lower ethanol productivity rates; however, it requires low energy and water inputs, and hence is worthy of further investigation and optimisation.  相似文献   

5.
利用废弃物发酵法生产聚羟基烷酸PHAs   总被引:1,自引:0,他引:1  
聚羟基烷酸(PHAs)是一种可降解聚合物,与石化塑料相比它具有生物降解性及生物相容性等优点,在不久的将来必然有广阔的应用前景。生产PHAs的主要方法是发酵法,在过去的几十年里传统的深层发酵法生产PHAs的工艺已经得到深入的研究,近些年固态发酵法生产PHAs也吸引了越来越多研究者的关注。  相似文献   

6.
7.
对草酸青霉菌(Penixillium oxalicum)BZH-2002菌株固体发酵果胶酶的主要影响因子温度、初始pH值、含水量及接种量进行了实验探讨,确定了最佳培养条件:温度为30℃,初始pH值为4.8,固体培养基含水量控制在30~35ml/10g甜菜渣,接种量3~4%。同时对该菌株固体发酵提取液中果胶酶的酶学特性进行了初步研究,结果表明,该酶最适反应温度和pH分别为55℃和pH4.8,在40℃温度下和pH3.5~5.5范围内,酶活性较稳定。  相似文献   

8.
以稻草粉和麸皮为主要原料,对白腐菌(White-rot fungi) NS75、黑曲霉(Aspergillus niger)NS83和絮凝酵母(Saccharomyces cerevisiae)SP5混合菌固态发酵产纤维素酶进行研究.实验结果显示,在白腐菌和黑曲霉双菌混合培养2d后接入絮凝酵母,培养到第7d产酶达到峰值;三菌混合发酵产纤维素酶酶活明显高于白腐菌和黑曲霉双菌混合培养,其β-葡萄糖苷酶(β-G)和羧甲基纤维素酶(CMCase)酶活比白腐菌(White-rot fungi) NS75和黑曲霉(Aspergillus niger)NS83双菌发酵产酶分别提高了143.3%和68.2%.单因素实验和正交实验结果表明,当稻草粉麸皮质量比为8∶2,料水比为1∶2,白腐菌NS75、黑曲霉NS83和絮凝酵母SP5的接种比例为1:2∶1.5 (v/v/v)时,于30℃培养7d,固态发酵基中β-G和CMCase酶活分别达到62305 U/g和30241 U/g.  相似文献   

9.
研究了酒色着色菌(Chromatium vinosum DSM185)利用产酸克雷伯氏菌(Klebsiella oxytoca HP1)发酵产氢废液进行光发酵和暗发酵产氢的可行性,以达到对产氢底物的充分利用和对产氢废液的进一步处理。研究结果表明C.vinosum可以利用K.oxytoca的发酵废液进行光发酵产氢和暗发酵产氢。C.vinosum发酵产氢后废液中残余还原糖和主要有机酸(丁酸)的含量明显降低,发酵产氢的最佳pH为6.5,添加0.1%(W/W)NH4Cl能促进产氢。在光照条件下丁酸利用率可达54.38%,产氢量达36.97 mL/mg;在黑暗条件下丁酸利用率可达36.01%,产氢量达37.50mL/mg。  相似文献   

10.
研究了酒色着色菌(Chromatiumvinosum DSM185)利用产酸克雷伯氏菌(Klebsiellaoxytoca HP1)发酵产氢废液进行光发酵和暗发酵产氢的可行性,以达到对产氢底物的充分利用和对产氢废液的进一步处理。研究结果表明C.vinosum可以利用K.oxytoca的发酵废液进行光发酵产氢和暗发酵产氢。C.vinosum发酵产氢后废液中残余还原糖和主要有机酸(丁酸)的含量明显降低,发酵产氢的最佳pH为6.5,添加0.1%(W/W)NH4Cl能促进产氢。在光照条件下丁酸利用率可达54.38%,产氢量达36.97mL/mg;在黑暗条件下丁酸利用率可达36.01%,产氢量达37.50mL/mg。  相似文献   

11.
嗜热拟青霉固体发酵产木聚糖酶条件的优化*   总被引:4,自引:0,他引:4  
从土壤中筛选出一株高产木聚糖酶的嗜热真菌J18,经鉴定为一种新的拟青霉,暂定为嗜热拟青霉。该菌能够利用几种天然纤维质材料固体发酵产木聚糖酶,小麦秸杆为最佳碳源。单因素优化试验表明:小麦秸杆粒度为0.3mm-0.45mm,初始水分含量83%,初始pH7.0,温度为50℃为最佳产酶条件。在优化后的条件下,培养8d产木聚糖酶的水平高达18,580U/g干基碳源。因此,嗜热拟青霉固体发酵产木聚糖酶将具有很大的工业化应用前景。  相似文献   

12.
枯草芽孢杆菌产β-甘露聚糖酶固体发酵条件的优化   总被引:1,自引:0,他引:1  
芽孢杆菌是产甘露聚糖酶的优良菌株,首次研究芽孢杆菌固体发酵条件的优化。以天然麸皮作为基本原料,研究利用枯草芽孢杆菌WY34固体发酵生产β-片露聚糖酶的发酵条件。最佳固体发酵培养条件为:麸皮5g,初始水分含量71%,初始pH7.0,接种量为2mL,1%Tween-80,0.4g魔芋粉,培养温度50℃。在最适条件下培养5d,甘露聚糖酶酶活高达7,650U/g干基,是未优化前酶活的2.78倍。  相似文献   

13.
纤维素酶固态发酵过程中菌体生长量的测定   总被引:6,自引:0,他引:6  
高修功  章克昌 《工业微生物》1994,24(3):26-30,34
纤维素酶在植物再生资源的利用中占有重要地位,目前世界各地均在进行广泛而深入的研究。纤维素酶的生产有固态发酵和液体深层发酵两种方法,由于前者与后者相比具有许多优点,因此纤维素酶的生产主要采用固态发酵法。 根据Durand等给出的固态发酵定义,在固态发酵中微生物的菌丝体紧密地结合于固体基质上,这种情况给菌体生长量的测定带来了极大的困难。与液体深层发酵不同,其菌丝体无法定量地与固体基质相分  相似文献   

14.
Xylanase production from B. megaterium was enhanced using solid state fermentation with respect to the use of solid substrate, moistening solution, moisture content, inoculum, sugars, soyabean meal, amino acids, and extraction with surfactant. An increase of ≈423-fold in xylanase production and complete suppression of CMCase production was achieved over submerged liquid fermentation. Biobleaching using this cellulase-free xylanase, 8 U/g of oven dried pulp of 10% consistency, showed 8.12% and 1.16% increase in brightness and viscosity, 13.67% decrease in kappa number, and 31% decrease in chlorine consumption at the CD stage.  相似文献   

15.
赫荣乔 《微生物学通报》2009,36(8):1268-1268
毛壳属真菌大多数具有较强的纤维素降解能力地,其中球毛菌所产生的木聚糖酶活性较强.木聚糖酶通过水解木糖分子间的β-1,4-糖苷键,将木聚糖水解成低聚木糖及少量木糖和阿拉伯糖.  相似文献   

16.
The present work was aimed to investigate the impact of the solid substrates mixture on Fructosyltransferases (FTase) and Fructo-oligosaccharides (FOS) production. An augmented simplex lattice design was used to optimize a three component mixture for FTase production. Among selected substrates corn cobs has highest impact on FTase production followed by wheat bran and rice bran. All two substrates and three substrate combinations showed the highest enzyme production than their individual levels. Among the tested various models quadratic model was found to be the best suitable model to explain mixture design. Corncobs, wheat bran and rice bran in a ratio of approximately 45:29:26 is best suitable for the FTase production by isolated Aspergillus awamori GHRTS. This study signifies mixture design could be effective utilize for selection of best combination of multi substrate for improved production of high value products under solid state fermentation.  相似文献   

17.
废弃食用油脂生物合成鼠李糖脂研究进展   总被引:5,自引:0,他引:5  
碳源的成本过高限制了鼠李糖脂的工业化生产及应用,废弃食用油脂作为一种廉价易得的碳源,越来越多的研究者开始关注用它发酵生产鼠李糖脂.废弃食用油脂的种类、投加量对鼠李糖脂的产量、结构、性质均会产生影响,目前研究中用废弃食用油脂作碳源,鼠李糖脂产量最高可达24.61g/L、表面张力最低达到24mN/m、产物CMC最低可达40.19mg/L.此外,本文还总结了菌株、氮源、微量元素、pH、溶氧及培养方式等因素对废弃食用油脂生产鼠李糖脂的影响,并展望了利用废弃食用油脂生产鼠李糖脂实现产业化的重点研究方向.  相似文献   

18.
A cellulolytic, thermophilic actinomycete (previously isolated from municipal refuse compost samples) was identified as Thermomonospora curvata. A determination was made of the optimal conditions for cellulase production by T. curvata when grown at 55 C in a medium containing mineral salts, cellulose, and yeast extract. The pH and temperature optima (pH 6.0 and 65 C) for the cellulase produced by T. curvata were identical to those previously observed for the cellulase extracted from crude compost samples. Such similarities, together with the prevalence of T. curvata in compost samples and its ability to grow at composting temperatures, indicate that this actinomycete could possibly be considered as a major cellulose decomposer in the municipal refuse composting process.  相似文献   

19.
目的:采用价格低廉的农业废弃物苹果渣为主要原料生产果胶酶,优化其生产工艺,并对果胶酶的部分酶学性质进行研究。方法:以黑曲霉HG-1为生产菌种,采用单因子实验和正交试验进行固态发酵。结果:最适培养基为苹果渣10g、棉粕10g、(NH4)2SO40.2g、K2HPO40.06g、初始水分含量60%;最适发酵条件为装料量为20g干料/250ml三角瓶,30℃恒温培养48h,果胶酶酶活力可达22248U/g。果胶酶酶促反应最适温度为45℃,最适pH为5.0;在50℃以下,pH3.0~6.0时稳定性良好;Ca^2+、Mg^2+、Fe^2+对该酶有激活作用,而Ba^2+、Mn^2+、Zn^2+有抑制作用。结论:以苹果渣代替麸皮作为黑曲霉HG-1固态发酵生产果胶酶的主要原料在技术上具有可行性,可大幅度降低生产成本;同时还可以部分解决苹果渣的综合利用问题。  相似文献   

20.
The objective of this study was to examine the ethanol yield potential of three barley varieties (Xena, Bold, and Fibar) in comparison to two benchmarks, corn and wheat. Very high gravity (VHG; 30% solids) fermentations using both conventional and Stargen 001 enzymes for starch hydrolysis were carried out as simultaneous saccharification and fermentation. The grains and their corresponding dried distiller''s grain with solubles (DDGS) were also analyzed for nutritional and value-added characteristics. A VHG traditional fermentation approach utilizing jet-cooking fermentation revealed that both dehulled Bold and Xena barley produced ethanol concentrations higher than that produced by wheat (12.3, 12.2, and 11.9%, respectively) but lower than that produced by corn (13.8%). VHG-modified Stargen-based fermentation of dehulled Bold barley demonstrated comparable performance (14.3% ethanol) relative to that of corn (14.5%) and wheat (13.3%). Several important components were found to survive fermentation and were concentrated in DDGS. The highest yield of phenolics was detected in the DDGS (modified Stargen 001, 20% solids) of Xena (14.6 mg of gallic acid/g) and Bold (15.0 mg of gallic acid/g) when the hull was not removed before fermentation. The highest concentration of sterols in DDGS from barley was found in Xena (3.9 mg/g) when the hull was included. The DDGS recovered from corn had the highest concentration of fatty acids (72.6 and 77.5 mg/g). The DDGS recovered from VHG jet-cooking fermentations of Fibar, dehulled Bold, and corn demonstrated similar levels of tocopherols and tocotrienols. Corn DDGS was highest in crude fat but was lowest in crude protein and in vitro energy digestibility. Wheat DDGS was highest in crude protein content, similar to previous studies. The barley DDGS was the highest in in vitro energy digestibility.The growing need for energy independence and proposed renewable fuels has led recently to a major expansion of fuel ethanol production. In North America, this activity primarily uses corn as a feedstock. The need to find other cost-effective and efficient grains for ethanol production has increased in significance. Cereal grains are high in starch and are currently being utilized for ethanol production (26, 41). To ensure long-term viability of the industry, fermentation strategies that focus on holistic utilization of the feedstock that maximize value addition will increase in importance. The focus of industry is slowly moving from biorefineries that anticipate subsidy and government policy to integrated biorefineries that produce multiple products. Multiple product streams and integrated by-product management are thought to ensure better financial stability and opportunities for diversified income streams.Barley is a potential candidate for industrial ethanol production (10) since its ethanol yield is comparable to that of wheat but below that of American corn, which is currently the preferred industrial feedstock. Barley contains on average 63 to 65% starch, 8 to 13% protein, 2 to 3% fat, 1 to 1.5% soluble gums, 8 to 10% hemicellulose, ca. 2.9% lignin, and 2 to 2.5% ash (15, 27). Barley also contains a hull that could be fermented using cellulolytic enzymes, providing opportunities for integrated biorefineries that utilize more feedstocks than corn. Potential coproducts of ethanol production from barley include protein, fiber, fatty acids, tocopherols, and tocotrienols (40). The nutritional value of barley, based on amino acid content, is greater than that for corn and is not significantly affected by the fermentation process (40). A range of nutraceutical and functional food products, as well as amylase, amylase inhibitors, β-amylase, and oxalate oxidase, are found in barley grains and may have potential for extraction and commercial applications (6, 22, 33). Hull-less barley lines, high in both protein (particularly lysine) and starch, and low in fiber, have recently been developed (11, 14, 32). Since starch recovery and thus ethanol yields are lower for barley than corn, coproduct recovery becomes even more essential for profitability (43).Enzymes used for the pretreatment of grains prior to fermentation have traditionally been α-amylases and glucoamylases. The α-amylase decreases the viscosity of the mash (25) and performs the liquefaction of the pretreatment process. The liquefaction step is typically done at high temperatures of 100 to 120°C (38) with direct steam injection (jet-cooking). The α-amylase action serves to break starch at α-(1,4)-glucosidic bonds, producing smaller dextrin chains. During the saccharification step of the pretreatment, the dextrins produced by α-amylase are then acted on by glucoamylase. This conventional method has a considerable economic drawback, because the mash must undergo a cooking step prior to fermentation. Many industrial ethanol producers use jet-cooking to raise the mash temperature to 100 to 120°C. Because of this temperature requirement, the conventional process uses a large amount of energy to produce ethanol.Recently, a new line of cold starch hydrolyzing enzymes was developed. An example of these enzymes is Stargen 001, which is referred to as a raw starch hydrolyzing enzyme because starch is hydrolyzed to fermentable sugars while the temperature remains at or below a temperature of 48°C (38). Stargen 001 replaces the liquefaction and saccharification steps performed by conventional digestion enzymes (i.e., α-amylase and glucoamylase) and releases free glucose and other fermentable sugars for use by yeast cells. Stargen 001 is a cocktail of modified α-amylase and glucoamylase enzymes that work together to convert starch into dextrins, followed by the hydrolysis of dextrins to fermentable sugars (37, 38). With the absence of a cooking stage in the cold hydrolysis method, the potential exists that the dried distiller''s grain plus solubles (DDGS) produced by fermentation would have less damage so that the proteins contained in the DDGS could be of more value (18).The objectives of the present study were to examine the ethanol yield potentials of three barley varieties (Xena, Bold, and Fibar) and two benchmark grains (Pioneer Hi-Bred corn and CPS wheat) using conventional (jet-cooking) and cold starch hydrolysis with Stargen 001. In addition, dehulling was tested for the potential to increase ethanol yields, because hull does not contain fermentable starch; both hulled and dehulled mashes were studied where possible. The grains and their corresponding DDGS were analyzed for nutritional value and the presence of potential value-added products such as fatty acids, tocopherols, tocotrienols, sterols, and polyphenols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号