首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
《Cell》2023,186(17):3674-3685.e14
  1. Download : Download high-res image (140KB)
  2. Download : Download full-size image
  相似文献   

4.
Genetic and epigenetic regulators of pluripotency   总被引:14,自引:0,他引:14  
Surani MA  Hayashi K  Hajkova P 《Cell》2007,128(4):747-762
Genetic and epigenetic mechanisms regulate the transition from the totipotent zygote to pluripotent primitive ectoderm cells in the inner cell mass of mouse blastocysts. These pluripotent cells can be propagated indefinitely in vitro, underpinned by a unique epigenetic state. Following implantation of the blastocyst, diverse epigenetic modifiers control differentiation of pluripotent epiblast cells into somatic cells, while specification of germ cells requires repression of the somatic program. Regenerating totipotency during development of germ cells entails re-expression of pluripotency-specific genes and extensive erasure of epigenetic modifications. Increasing knowledge of key underlying mechanisms heightens prospects for creating pluripotent cells directly from adult somatic cells.  相似文献   

5.
Genetic and epigenetic alterations in carcinogenesis   总被引:10,自引:0,他引:10  
  相似文献   

6.
7.
8.
Environmental arsenic compounds and their methylated metabolites do not form adducts with DNA, but do cause oxidative DNA damage. Chromosome aberrations are seen at toxic concentrations. Genetic effects that occur at non-toxic concentrations include aneuploidy, comutagenesis (resulting from indirect effects on DNA repair), and delayed mutagenesis (probably secondary to aneuploidy and/or epigenetic effects). Effects of trivalent arsenicals on poly(ADP ribose) polymerase and P53 activation may mediate effects on DNA repair and aneuploidy. A growing literature points to the epigenetic effects of arsenic compounds in cells and in vivo. A review of the current literature on DNA methylation, histone modifications and microRNA effects is presented.  相似文献   

9.
Genetic and epigenetic aspects of bladder cancer   总被引:2,自引:0,他引:2  
Transitional cell carcinoma of the urinary bladder has a diverse collection of biologic and functional characteristics. This is reflected in differing clinical courses. The diagnosis of bladder cancer is based on the information provided by cystoscopy, the gold standard in combination with urinary cytology findings. Many tumor markers have been evaluated for detecting and monitoring the disease in serum, bladder washes, and urinary specimens. However, none of these biomarkers reported to date has shown sufficient sensitivity and specificity for the detection of the whole spectrum of bladder cancer diseases in routine clinical practice. The limited value of established prognostic markers requires the analysis of new molecular parameters of interest in predicting the prognosis of bladder cancer patients; in particular, the high-risk patient groups at risk of progression and recurrence. Over the past decade, there has been major progress elucidating of the molecular genetic and epigenetic changes leading to the development of transitional cell carcinoma. This review focuses on the recent advances of genetic and epigenetic aspects in bladder cancer, and emphasizes how molecular biology would be likely to affect the future therapies.  相似文献   

10.
Postmortem brain tissue has been reported to be suitable to delineate regional pattern of possible disturbances underlying epigenetic functionality. However, from many parameters that have been detected in postmortem brain regions it is noteworthy that an effect of postmortem interval (PMI), storage time and premortem parameters should not be underestimated. Our previous investigation revealed that tryptophan (TRP) levels in postmortem brain tissue is affected by PMI and storage time. Since, alteration in TRP levels are assumed to be due to protein degradation, we further investigated whether TRP correlates to variables such as RNA, proteins and DNA modulators. In addition, we aimed to elucidate whether established postmortem variables may influence epigenetic parameters. These were investigated in well characterized postmortem human brain tissue originating from the European Brain Bank consortium II (BNEII). We could confirm previous findings, in which some protein levels alter because of prolonged PMI. Similarly, we demonstrated an influence of increased storage period on TRP levels, which might indicate degradation of proteins. Still not all proteins degrade in a similar manner, therefore a specific analysis for the protein of interest would be recommended. We found that methyltransferase- and acetyltransferase-activities were relatively preserved with PMI and storage duration. In conclusion, preservation of acetyltransferase- and methyltransferase-activities provides possible evidence of stability for epigenetic studies using postmortem tissue.  相似文献   

11.
12.
13.
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers worldwide. Despite significant progresses in the last decades, the origin of this cancer remains unclear and no efficient therapy exists. PDAC does not arise de novo: three remarkable different types of pancreatic lesions can evolve towards pancreatic cancer. These precursor lesions include: Pancreatic intraepithelial neoplasia (PanIN) that are microscopic lesions of the pancreas, Intraductal Papillary Mucinous Neoplasms (IPMN) and Mucinous Cystic Neoplasms (MCN) that are both macroscopic lesions. However, the cellular origin of these lesions is still a matter of debate. Classically, neoplasm initiation or progression is driven by several genetic and epigenetic alterations. The aim of this review is to assemble the current information on genetic mutations and epigenetic disorders that affect genes during pancreatic carcinogenesis. We will further discuss the interest of the genetic and epigenetic alterations for the diagnosis and prognosis of PDAC. Large genetic alterations (chromosomal deletion/amplification) and single point mutations are well described for carcinogenesis inducers. Mutations classically occur within key regions of the genome. Consequences are various and include activation of mitogenic pathways or silencing of apoptotic processes. Alterations of K-RAS, P16 and DPC4 genes are frequently observed in PDAC samples and have been described to arise gradually during carcinogenesis. DNA methylation is an epigenetic process involved in imprinting and X chromosome inactivation. Alteration of DNA methylation patterns leads to deregulation of gene expression, in the absence of mutation. Both genetic and epigenetic events influence genes and non-coding RNA expression, with dramatic effects on proliferation, survival and invasion. Besides improvement in our fundamental understanding of PDAC development, highlighting the molecular alterations that occur in pancreatic carcinogenesis could provide new clinical tools for early diagnosis of PDAC and the molecular basis for the development of new effective therapies.  相似文献   

14.
Sex determination is a complex and dynamic process with multiple genetic and environmental causes, in which germ and somatic cells receive various sex‐specific features. During the fifth week of fetal life, the bipotential embryonic gonad starts to develop in humans. In the bipotential gonadal tissue, certain cell groups start to differentiate to form the ovaries or testes. Despite considerable efforts and advances in identifying the mechanisms playing a role in sex determination and differentiation, the underlying mechanisms of the exact functions of many genes, gene–gene interactions, and epigenetic modifications that are involved in different stages of this cascade are not completely understood. This review aims at discussing current data on the genetic effects via genes and epigenetic mechanisms that affect the regulation of sex determination. Birth Defects Research (Part C) 108:321–336, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
16.
Genetic and epigenetic interactions in allopolyploid plants   总被引:34,自引:0,他引:34  
Allopolyploid plants are hybrids that contain two copies of the genome from each parent. Whereas wild and cultivated allopolyploids are well adapted, man-made allopolyploids are typically unstable, displaying homeotic transformation and lethality as well as chromosomal rearrangements and changes in the number and distribution of repeated DNA sequences within heterochromatin. Large increases in the length of some chromosomes has been documented in allopolyploid hybrids and could be caused by the activation of dormant retrotransposons, as shown to be the case in marsupial hybrids. Synthetic (man-made) allotetraploids of Arabidopsis exhibit rapid changes in gene regulation, including gene silencing. These regulatory abnormalities could derive from ploidy changes and/or incompatible interactions between parental genomes, although comparison of auto- and allopolyploids suggests that intergenomic incompatibilities play the major role. Models to explain intergenomic incompatibilities incorporate both genetic and epigenetic mechanisms. In one model, the activation of heterochromatic transposons (McClintock's genomic shock) may lead to widespread perturbation of gene expression, perhaps by a silencing interaction between activated transposons and euchromatic genes. Qualitatively similar responses, of lesser intensity, may occur in intraspecific hybrids. Therefore, insight into genome function gained from the study of allopolyploidy may be applicable to hybrids of any type and may even elucidate positive interactions, such as those responsible for hybrid vigor.  相似文献   

17.
Ling  Yick Hin  Lin  Zhongyang  Yuen  Karen Wing Yee 《Chromosoma》2020,129(1):1-24
Chromosoma - Endogenous chromosomes contain centromeres to direct equal chromosomal segregation in mitosis and meiosis. The location and function of existing centromeres is usually maintained...  相似文献   

18.
Gastric cancer (GC) is an important cause of morbidity and mortality worldwide. In addition to environmental factors, genetic factors also play an important role in GC etiology, as demonstrated by the fact that only a small proportion of individuals exposed to the known environmental risk factors develop GC. Molecular studies have provided evidence that GC arises not only from the combined effects of environmental factors and susceptible genetic variants but also from the accumulation of genetic and epigenetic alterations that play crucial roles in the process of cellular immortalization and tumorigenesis. This review is intended to focus on the recently described basic aspects that play key roles in the process of gastric carcinogenesis. Genetic variation in the genes DNMT3A, PSCA, VEGF, and XRCC1 has been reported to modify the risk of developing gastric carcinoma. Several genes have been newly associated with gastric carcinogenesis, both through oncogenic activation (MYC, SEMA5A, BCL2L12, RBP2 and BUBR1) and tumor suppressor gene inactivation mechanisms (KLF6, RELN, PTCH1A, CLDN11, and SFRP5). At the level of gastric carcinoma treatment, the HER-2 tyrosine kinase receptor has been demonstrated to be a molecular target of therapy.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号