首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP   总被引:19,自引:0,他引:19  
Neurological disorders in humans can be modeled in animals using standardized procedures that recreate specific pathogenic events and their behavioral outcomes. The development of animal models of Parkinsons disease (PD) is important to test new neuroprotective agents and strategies. Such animal models of PD have to mimic, at least partially, a Parkinson-like pathology and should reproduce specific features of the human disease. PD is characterized by massive degeneration of dopaminergic neurons in the substantia nigra, the loss of striatal dopaminergic fibers and a dramatic reduction of the striatal dopamine levels. The formation of cytoplasmic inclusion bodies (Lewy bodies) in surviving dopaminergic neurons represents the most important neuropathological feature of PD. Furthermore, the massive striatal dopamine deficiency causes easily detectable motor deficits in PD patients, including bradykinesia, rigidity, and resting tremor, which are the cardinal symptoms of PD. Over the years, a broad variety of experimental models of PD were developed and applied in diverse species. This review focuses on the two most common classical toxin-induced PD models, the 6-hydroxy-dopamine (6-OHDA model) and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model. Both neurotoxins selectively and rapidly destroy catecholaminergic neurons, whereas in humans the PD pathogenesis follows a progressive course over decades. This discrepancy reflects one important and principal point of weakness related to most animal models. This review discusses the most important properties of 6-OHDA and MPTP, their modes of administration, and critically examines advantages and limitations of selected animal models. The new genetic and environmental toxin models of PD (e.g. rotenone, paraquat, maneb) are discussed elsewhere in this special issue.This work was supported by grants from the Deutsche Forschungsgemeinschaft.  相似文献   

2.
Summary. The pathogenesis of several neurodegenerative diseases, including Alzheimer’s disease, has been linked to a condition of oxidative and nitrosative stress, arising from the imbalance between increased reactive oxygen species (ROS) and reactive nitrogen species (RNS) production and antioxidant defences or efficiency of repair or removal systems. The effects of free radicals are expressed by the accumulation of oxidative damage to biomolecules: nucleic acids, lipids and proteins. In this review we focused our attention on the large body of evidence of oxidative damage to protein in Alzheimer’s disease brain and peripheral cells as well as in their role in signalling pathways. The progress in the understanding of the molecular alterations underlying Alzheimer’s disease will be useful in developing successful preventive and therapeutic strategies, since available drugs can only temporarily stabilize the disease, but are not able to block the neurodegenerative process.  相似文献   

3.
Single-cell analysis is gaining popularity in the field of mass spectrometry as a method for analyzing protein and peptide content in cells. The spatial resolution of MALDI mass spectrometry (MS) imaging is by a large extent limited by the laser focal diameter and the displacement of analytes during matrix deposition. Owing to recent advancements in both laser optics and matrix deposition methods, spatial resolution on the order of a single eukaryotic cell is now achievable by MALDI MS imaging. Provided adequate instrument sensitivity, a lateral resolution of ?10 µm is currently attainable with commercial instruments. As a result of these advances, MALDI MS imaging is poised to become a transformative clinical technology. In this article, the crucial steps needed to obtain single-cell resolution are discussed, as well as potential applications to disease research.  相似文献   

4.
Introduction: Neuroinflammation is a crucial mechanism in the pathophysiology of neurodegenerative diseases pathophysiology. Cerebrospinal fluid (CSF) YKL-40 – an indicator of microglial activation ? has recently been identified by proteomic studies as a candidate biomarker for Alzheimer’s disease (AD).

Areas covered: We review the impact of CSF YKL-40 as a pathophysiological biomarker for AD and other neurodegenerative diseases. CSF YKL-40 concentrations have been shown to predict progression from prodromal mild cognitive impairment to AD dementia. Moreover, a positive association between CSF YKL-40 and other biomarkers of neurodegeneration – particularly total tau protein ? has been reported during the asymptomatic preclinical stage of AD and other neurodegenerative diseases. Albeit preliminary, current data do not support an association between APOE-ε4 status and CSF YKL-40 concentrations. When interpreting the diagnostic/prognostic significance of CSF YKL-40 concentrations in neurodegenerative diseases, potential confounders – including age, metabolic and cardiovascular risk factors, diagnostic criteria for selecting cases/controls – need to be considered.

Expert opinion/commentary: CSF YKL-40 represents a pathophysiological biomarker reflecting immune/inflammatory mechanisms in neurodegenerative diseases, associated with tau protein pathology. Besides being associated with tau pathology, CSF YKL-40 adds to the growing array of biomarkers reflecting distinct molecular brain mechanisms potentially useful for stratifying individuals for biomarker-guided, targeted anti-inflammatory therapies emerging from precision medicine.  相似文献   

5.
Chasing genes in Alzheimer’s and Parkinson’s disease   总被引:4,自引:0,他引:4  
Alzheimers disease (AD), the most common type of dementia, and Parkinsons disease (PD), the most common movement disorder, are both neurodegenerative adult-onset diseases characterized by the progressive loss of specific neuronal populations and the accumulation of intraneuronal inclusions. The search for genetic and environmental factors that determine the fate of neurons during the ageing process has been a widespread approach in the battle against neurodegenerative disorders. Genetic studies of AD and PD initially focused on the search for genes involved in the aetiological mechanisms of monogenic forms of these diseases. They later expanded to study hundreds of patients, affected relative-pairs and population-based studies, sometimes performed on special isolated populations. A growing number of genes (and pathogenic mutations) is being identified that cause or increase susceptibility to AD and PD. This review discusses the way in which strategies of gene hunting have evolved during the last few years and the significance of finding genes such as the presenilins, -synuclein, parkin and DJ-1. In addition, we discuss possible links between these two neurodegenerative disorders. The clinical, pathological and genetic presentation of AD and PD suggests the involvement of a few overlapping interrelated pathways. Their imbricate features point to a spectrum of neurodegeneration (tauopathies, synucleinopathies, amyloidopathies) that need further intense investigation to find the missing links.  相似文献   

6.
7.
Disbalance of zinc (Zn2+) and copper (Cu2+) ions in the central nervous system is involved in the pathogenesis of numerous neurodegenerative disorders such as multisystem atrophy, amyotrophic lateral sclerosis, Creutzfeldt-Jakob disease, Wilson-Konovalov disease, Alzheimer’s disease, and Parkinson’s disease. Among these, Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the most frequent age-related neurodegenerative pathologies with disorders in Zn2+ and Cu2+ homeostasis playing a pivotal role in the mechanisms of pathogenesis. In this review we generalized and systematized current literature data concerning this problem. The interactions of Zn2+ and Cu2+ with amyloid precursor protein (APP), β-amyloid (Abeta), tau-protein, metallothioneins, and GSK3β are considered, as well as the role of these interactions in the generation of free radicals in AD and PD. Analysis of the literature suggests that the main factors of AD and PD pathogenesis (oxidative stress, structural disorders and aggregation of proteins, mitochondrial dysfunction, energy deficiency) that initiate a cascade of events resulting finally in the dysfunction of neuronal networks are mediated by the disbalance of Zn2+ and Cu2+.  相似文献   

8.
Neurodegenerative diseases, Alzheimer’s disease (AD) and Parkinson’s disease (PD), constitute a major worldwide health problem. Several hypothesis have been put forth to elucidate the basis of onset and pathogenesis of AD and PD; however, till date, none of these seems to clearly elucidate the complex pathoetiology of these disorders. Notably, copper dyshomeostasis has been shown to underlie the pathophysiology of several neurodegenerative diseases including AD and PD. Numerous studies have concluded beyond doubt that imbalance in copper homeostatic mechanisms in conjunction with aging causes an acceleration in the copper toxicity elicited oxidative stress, which is detrimental to the central nervous system. Amyloid precursor protein and α-synuclein protein involved in AD and PD are copper binding proteins, respectively. In this review, we have discussed the possible association of copper metabolism proteins with AD and PD along with briefly outlining the expanding proportion of “copper interactome” in human biology. Using network biology, we found that copper metabolism proteins, superoxide dismutase 1 and ceruloplasmin may represent direct and indirect link with AD and PD, respectively.  相似文献   

9.
10.
Retinal neurodegeneration and visual dysfunctions have been reported in a majority of Alzheimer’s and Parkinson’s patients, and, in light of the quest for novel biomarkers for these neurodegenerative proteinopathies, the retina has been receiving increasing attention as an organ for diagnosing, monitoring, and understanding disease. Thinning of retinal layers, abnormalities in vasculature, and protein deposition can be imaged at unprecedented resolution, which offers a unique systems biology view on the cellular and molecular changes underlying these pathologies. It makes the retina not only a promising target for biomarker development, but it also suggests that novel fundamental insights into the pathophysiology of Alzheimer’s and Parkinson’s disease can be obtained by studying the retina–brain axis.  相似文献   

11.
Studies of neurodegenerative disorders attract much attention of the world scientific community due to increasing dissemination of Alzheimer’s disease. The reason for such pathologies consists in transition of a “healthy” molecule or peptide from its native conformation into a very stable “pathological” form. During this process, molecules existing in the “pathological” conformation aggregate and form amyloid fibrils that can undergo an uncontrolled increase. Novel knowledge is required on sporadic forms of Alzheimer’s disease, on the nature of triggering mechanisms of the conformational transitions of beta-amyloid fragments from normally functioning proteins into new structure, nano-beta-amyloids, that escape of neuronal and whole-body control resulted in the loss of neurons. This review summarized results of studies on the formation of amyloid fibrils and their role in pathogenesis of amyloid diseases.  相似文献   

12.
Altered glutamatergic neurotransmission and neuronal metabolic dysfunction appear to be central to the pathophysiology of Parkinson’s disease (PD). The substantia nigra pars compacta—the area where the primary pathological lesion is located—is particularly exposed to oxidative stress and toxic and metabolic insults. A reduced capacity to cope with metabolic demands, possibly related to impaired mitochondrial function, may render nigral neurons highly vulnerable to the effects of glutamate, which acts as a neurotoxin in the presence of impaired cellular energy metabolism. In this way, glutamate may participate in the pathogenesis of PD. Degeneration of dopamine nigral neurons is followed by striatal dopaminergic denervation, which causes a cascade of functional modifications in the activity of basal ganglia nuclei. As an excitatory neurotransmitter, glutamate plays a pivotal role in normal basal ganglia circuitry. With nigrostriatal dopaminergic depletion, the glutamatergic projections from subthalamic nucleus to the basal ganglia output nuclei become overactive and there are regulatory changes in glutamate receptors in these regions. There is also evidence of increased glutamatergic activity in the striatum. In animal models, blockade of glutamate receptors ameliorates the motor manifestations of PD. Therefore, it appears that abnormal patterns of glutamatergic neurotransmission are important in the symptoms of PD. The involvement of the glutamatergic system in the pathogenesis and symptomatology of PD provides potential new targets for therapeutic intervention in this neuro-degenerative disorder.  相似文献   

13.
14.
15.
Breakthroughs in biochemistry have furthered our understanding of the onset and progression of various diseases, and have advanced the development of new therapeutics. Oxidative stress and reactive oxygen species (ROS) are ubiquitous in biological systems. ROS can be formed non-enzymatically by chemical, photochemical and electron transfer reactions, or as the byproducts of endogenous enzymatic reactions, phagocytosis, and inflammation. Imbalances in ROS homeostasis, caused by impairments in antioxidant enzymes or non-enzymatic antioxidant networks, increase oxidative stress, leading to the deleterious oxidation and chemical modification of biomacromolecules such as lipids, DNA, and proteins. While many ROS are intracellular signaling messengers and most products of oxidative metabolisms are beneficial for normal cellular function, the elevation of ROS levels by light, hyperglycemia, peroxisomes, and certain enzymes causes oxidative stress-sensitive signaling, toxicity, oncogenesis, neurodegenerative diseases, and diabetes. Although the underlying mechanisms of these diseases are manifold, oxidative stress caused by ROS is a major contributing factor in their onset. This review summarizes the relationship between ROS and oxidative stress, with special reference to recent advancements in the detection of biomarkers related to oxidative stress. Further, we will introduce biomarkers for the early detection of neurodegenerative diseases and diabetes, with a focus on our recent work.  相似文献   

16.
Microglial cells are the resident phagocytic cells of the central nervous system (CNS). They possess a wide range of receptors allowing them to identify and internalize numerous pathogens. We will discuss here the role of the most important receptors of microglia involved in non-opsonin-dependent phagocytosis (mannose receptor, β-glucan receptor, scavenger receptor) and that of receptors involved in the opsonin-dependent phagocytosis, namely the complement 3 (CR3) and the Fcγ receptors (FcγR). First, the molecular and cellular mechanisms induced when these receptors are conducting a phagocytic event are presented. In the second part, we will discuss the role these receptors may play in multiple sclerosis and Alzheimer’s disease, in the elimination by phagocytosis of myelin and beta amyloid peptide respectively. The first two authors contributed equally to this work.  相似文献   

17.
18.
19.
20.
This brief review discusses copper transport in humans, with an emphasis on knowledge learned from one of the simplest model organisms, yeast. There is a further focus on copper transport in Alzheimer’s Disease (AD). Copper homeostasis is essential for the well-being of all organisms, from bacteria to yeast to humans: survival depends on maintaining the required supply of copper for the many enzymes, dependent on copper for activity, while ensuring that there is no excess free copper, which would cause toxicity. A virtual orchestra of proteins are required to achieve copper homeostasis. For copper uptake, Cu(II) is first reduced to Cu(I) via a membrane-bound reductase. The reduced copper can then be internalised by a copper transporter where it is transferred to copper chaperones for transport and specific delivery to various organelles. Of significance are internal copper transporters, ATP7A and ATP7B, notable for their role in disorders of copper deficiency and toxicity, Menkes and Wilson’s disease, respectively. Metallothioneins and Cu/Zn superoxide dismutase can protect against excess copper in cells. It is clear too, increasing age, environmental and lifestyle factors impact on brain copper. Studies on AD suggest an important role for copper in the brain, with some AD therapies focusing on mobilising copper in AD brains. The transport of copper into the brain is complex and involves numerous players, including amyloid precursor protein, Aβ peptide and cholesterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号