首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Switchgrass (Panicum virgatum L.) is well suited to marginal croplands, but is difficult to manage sustainably both for maximum yield and optimal biomass composition. Quality can be improved by overwintering switchgrass in the field, but more information is needed on amount and consistency of yield recovery in spring. Two cultivars of switchgrass were sown on separate fields in Freeville, NY, and mowed and baled in late fall (FALL), mowed in fall and baled in spring (WINTER), or mowed and baled in spring (SPRING), using conventional field harvesting equipment. Samples were collected for analysis of plant morphological components and for determining the influence of harvest stubble height on yield and composition. Recovery of FALL biomass yields the following spring ranged from 52 to 82% and was related to both total winter snowfall and to the spring date when soil was dry enough to allow equipment traffic. Approximately 1% of dry matter yield was left in the field for each centimeter of stubble height following mowing. Bale moisture content was very low in spring, averaging 7.3%, but was much more variable and higher in the fall, averaging 22% for “Cave-in-Rock”. Inflorescence and leaf blade were the primary morphological components lost in standing switchgrass over winter. The SPRING treatment can be mowed and baled on the same day without other field operations and has higher quality than WINTER, with no consistent yield advantage for either spring baling treatment. The large and variable yield loss due to overwintering switchgrass in the field makes the practice questionable.  相似文献   

2.
Although upgrading bio-oil from fast pyrolysis of biomass is an attractive pathway for biofuel production, nitrogen (N) and mineral matter carried over from the feedstock to the bio-oil represents a serious contaminant in the process. Reducing the N and ash content of biomass feedstocks would improve process reliability and reduce production costs of pyrolytic biofuels. This study investigated: (1) How does switchgrass harvest date influence the yield, N concentration ([N]), and ash concentration of biomass and fast pyrolysis products? and (2) Is there a predictive relationship between [N] of switchgrass biomass and [N] of fast pyrolysis products? Switchgrass from five harvest dates and varying [N] from central Iowa were pyrolyzed using a free-fall reactor. Harvestable biomass peaked in August (8.6 Mg ha?1), dropping significantly by November (6.7 Mg ha?1, P?=?0.0027). Production of bio-oil per unit area mirrored that of harvested biomass at each harvest date; however, bio-oil yield per unit dry biomass increased from 46.6 % to 56.7 % during the season (P?=?0.0018). Allowing switchgrass to senesce lowered biomass [N] dramatically, by as much as 68 % from June to November (P?<?0.0001). Concurrently, bio-oil [N] declined from 0.51 % in June to 0.17 % by November (P?<?0.0001). Significant reductions in ash concentration were also observed in biomass and char. Finally, we show for the first time that the [N] of switchgrass biomass is a strong predictor of the [N] of bio-oil, char, and non-condensable gas with R 2 values of 0.89, 0.94, and 0.88, respectively.  相似文献   

3.
Switchgrass (Panicum virgatum L.) is being developed into a perennial, herbaceous, cellulosic feedstock crop for use in temperate regions of the USA. Information on spatial and temporal variation for stands and biomass yield among and within fields in large agroecoregions is not available. Spatial and temporal variation information is needed to model feedstock availability for biorefineries. In this 5-yr study, the spatial and temporal variation for biomass yield and stands was determined among and within 10 fields located in North Dakota, South Dakota, and Nebraska. Switchgrass fields were managed for bioenergy from 2000 to 2004 for the Nebraska locations and 2001 to 2005 for the South Dakota and North Dakota locations. A global positioning system (GPS) receiver was used to repeatedly measure within field quadrat sites for switchgrass stands using frequency grid (2.25 m2) measurements in June for five growing seasons. Sixteen quadrat (≥1 m2) yield samples were taken post-killing frost in the establishment year and in August in subsequent years at each location. Topographic within field effects on switchgrass stand frequency and biomass yields were largely insignificant. Stands tended to increase from establishment year to year 3 and then begin to plateau. Weather factors, which were the principal source of temporal variation, were more important in switchgrass yield variation than on switchgrass stand frequencies. Temporal standard deviations for yield were higher on quadrat sites with higher than average field means while temporal standard deviations were smaller in quadrat sites that had lower than average field means at six locations. In the Northern Great Plains agroecoregion, there is greater temporal and spatial variation for switchgrass biomass yields among fields than within fields. Results indicate that modeling feedstock availability for a biorefinery can be based on field scale yields.  相似文献   

4.
Numerous cases of increasing population without fallow shortening or intensification without population pressure have been cited as disproof of the Boserup model of agricultural change. In this paper we argue that the model is an efficient explanation for agricultural change but only when certain agroecological conditions are met: higher marginal input costs must be both necessary and sufficient to raise production. Elsewhere, conditions are non-Boserupian, and other kinds of responses should be expected. Wupatki, a prehistoric agricultural frontier, is a case in point. Boserupian intensification was mostly impossible here, and with population influx, fanners turned instead to sociopolitical means of protecting the land base for extensive agriculture. A contemporary example from Nigeria illustrates territorial control by groups consolidated along ethnic lines. The strategy of relying on increasing numbers and monumental construction to back up territorial claims had unintended long-term consequences that led to abandonment of Wupatki. [agricultural change, political ecology, settlement patterns, prehistoric Southwest, West Africa]  相似文献   

5.
Switchgrass (Panicum virgatum L.) is currently undergoing intensive breeding efforts to improve biomass yield. Consideration must be made regarding the relative importance of spaced plantings to sward plots for evaluation and selection for increased biomass yield. It has previously been suggested that selection schemes using secondary plant morphological traits as selection criteria within spaced plantings may be an efficient method of making genetic gain. The objective of this study was to empirically test the effects of direct selection for plant height, tiller count, flowering date, and visual selection for biomass yield within spaced plantings on biomass yield and morphology traits within sward plots. Divergently selected populations for each trait were developed from the WS4U upland tetraploid germplasm and evaluated for biomass yield at five locations in Wisconsin during two growing seasons. Significant variation was observed between maternal parents of the selected populations for both selected and nonselected traits. Despite substantial differences between parent plant populations for plant morphology, significant differences were not observed for sward-plot biomass yield or sward-plot morphology relative to the base population. Late flowering selections yielded 2.0 Mg/ha greater biomass than early flowering selections (29 % increase). Plant height within sward plots was observed to have a strong positive correlation with biomass yield. Tiller count was observed to have a weak correlation with biomass yield. Based on the observed results, it is recommended that greater emphasis be placed on evaluation of biomass yield using sward plots.  相似文献   

6.
Ecosystems - Balancing agricultural production with other ecosystem services is a vexing challenge. The Yahara River watershed in southern Wisconsin is a place where tensions among farmers,...  相似文献   

7.
This paper develops the methodological foundations of agrolandscape-environmental studies and management of agricultural land that are based on the concept of conservation and reproduction of land and other natural resources used in agriculture, soil fertility, productive longevity of agro-ecosystems and agrolandscapes (All-Russian Williams Fodder Research Institute), and the concept of the ecological framework of agricultural landscapes and ecological–economic balance (Moscow State University, Institute of Geography Russian Academy of Sciences). An integrative understanding of the essence of agricultural lands allows us to consider them as natural agricultural systems, which have a specific structure, functions, and links and are interrelated with other agrogeo-ecosystems and geo-ecosystems that form the environment. They supply agricultural products and other side derivatives of their functioning that are associated with the development of negative processes outside their limits. The features of study, construction, and management of agricultural land are determined by the dual nature-productive essence of agrogeo-ecosystems and the presence of three subsystems in them (abiotic, biotic, and anthropogenic). A special role is played by a control and monitoring unit. Agrogeoecosystems are characterized by the presence of three types of relationships (substance-energy, informational, and management); three main functions of agrogeo-ecosystems (productive, environment-forming, and nature-protective); the ability of agrogeo-ecosystems to respond to anthropogenic impacts; the ability of adaptation and recovery; and their distinctive openness and dynamism. The priorities of studies and management of agricultural land are formulated in several principles (systematic approach, emergence, environmental framework, landscape-ecological balance, multilevel and multifactor adaptation, etc.). They are intended to improve the adaptability, sustainability, productivity, and resource-saving and environmental role of agro-ecosystems and agricultural landscapes, which is only possible by creating favorable conditions for their functioning, ensuring a balance between the productive and protective agro-ecosystems and favorable conditions for the development of soil and soil biota, for the active life of major soil-formers (perennial grasses and microbes).  相似文献   

8.
To avoid competition with food crops, biofuel feedstocks may need to be produced on economically marginal lands where yields are limited and replacement of existing vegetation will reduce soil C, foregoing some CO2 emission savings. Therefore, our first goal was to determine whether biochar application to marginal lands could improve switchgrass yield while sequestering sufficient soil C to eliminate the negative impact of cultivation. Because it may be difficult to obtain large quantities of biochar, our second goal was to compare small, incremental and large, all-at-once biochar applications. Our third goal was to determine whether biochar had any negative effects on earthworms, mycorrhizal fungi, soil bacteria, soil fungi, and soil enzyme activity. We grew switchgrass at two sites with poorly drained soils and two sites with excessively drained soils. Irrespective of site, biochar significantly increased yield when we rototilled in the entire amount before planting but not when we applied it incrementally between crop rows using a chisel plow. Biochar increased soil C stocks, in some cases increasing it beyond that found in soils of intact marginal land vegetation. Nevertheless, mixing biochar with soil had little or no impact on earthworm activity, mycorrhizal colonization, soil bacterial and fungal communities, and soil enzyme activities. We conclude that biochar may be part of an effective strategy for producing switchgrass on marginal lands, but the choice of application method depends on the relative importance of several considerations including biochar availability, switchgrass yield, C sequestration, soil erosion, and ease of application.  相似文献   

9.
10.
Reed canarygrass, Phalaris arundinacea L., produces high biomass yields in cool climates and wetlands. The number and timing of harvests during a growing season directly affect biomass yield and biofuel quality. In order to determine optimum harvest management, seven cultivars of reed canarygrass were planted in field experiments at Ames, IA; McNay, IA; and Arlington, WI in the upper Midwestern USA and harvested once in autumn or in winter, twice in spring + autumn or spring + winter, or three times during the season as hay. Biomass yield varied considerably among harvest treatments, locations, and years, ranging up to 12.6 Mg ha?1. Dry matter percentage ranged from 37% for spring-harvested biomass to 84% for overwintered biomass. The three harvest hay and two harvest spring + autumn managements produced the highest biomass yield compared to other systems, but the advantage, if any, of hay management was small and probably does not justify the cost of additional fieldwork. More mature biomass, such as that found in the single harvest systems, had higher fiber concentrations. Overwintered biomass had superior biofuel quality, being low in P, K, S, and Cl and high in cell wall concentration. However, winter harvest systems had lower yield than autumn harvest and in some years, no harvest was possible due to lodging from snow compaction. The main limitation of a two harvest system is the high moisture content of the late spring/early summer biomass.  相似文献   

11.
Energy sorghum tolerates adverse climatic and edaphic conditions and has great potential as biofuel feedstock in marginal land. This study investigates the potential energy sorghum biomass production and uptake of nitrogen (N), phosphorus (P), and potassium (K) on a sandy loam marginal land in a semi-arid region, in order to define optimum N fertilizer rate to produce the highest biomass yield with minimal nutrient elimination. Five N rate treatments (0, 60, 120, 180, and 240 kg ha?1) and two sorghum varieties (sweet type Guotian-8 (GT-8) and biomass type Guoneng-11 (GN-11)) were used. Yield increment was observed as N level increased, but the standout treatment appeared to be N rate of 60 kg ha?1 which significantly increased biomass yield vs. controls by 68.8% in 2014 and 64.1% in 2015. Biomass yield exhibited non-significant differences between N rate treatments from 60 to 240 kg ha?1, although the highest biomass yield (9.2–11.9 t ha?1) was observed in the 120 kg N ha?1 treatment. Nutrient analysis showed that N, P, and K accumulation in aboveground plants increased with N rate increase, ranging between 32.2 and 119.1, 7.9 and 19.2, and 22.1 and 94.0 kg ha?1, respectively, for the highest N rate of 240 kg ha?1. Substantial amounts of N were extracted from the soil in control and 60 kg N ha?1 treatments, despite the low fertility and organic matter content of the soil. Moreover, nitrogen (N) use efficiency (NUE) was maximized at lower N rates. A decline in physiological N use efficiency (PNUE) resulted in decreased agronomic N use efficiency (ANUE) at higher N rates. Hence, it is concluded that N fertilizer rate between 60 and 120 kg ha?1 would be the optimal N requirement to facilitate sustainable production of energy sorghum on a sandy wasteland.  相似文献   

12.
In the USA, biomass crop systems will be needed to meet future ethanol production goals. We estimated production costs, profits, and energy budgets for three potential crop systems for the Upper Midwest: continuous corn with stover harvest, an alfalfa–corn rotation with stover harvest, and switchgrass. Production costs, profits, and on-farm energy use were greatest for continuous corn, less for alfalfa–corn, and least for switchgrass. Energy to transport crops was similar for all crop systems. Both energy used to produce ethanol and energy output in ethanol was greatest for continuous corn, less for alfalfa–corn, and least for switchgrass. Co-product energy output was 32% greater for alfalfa–corn than continuous corn and 42% greater than switchgrass. Net energy produced (outputs–inputs) was greatest for switchgrass, followed by continuous corn, and then alfalfa–corn. Efficiency of energy production (outputs/inputs) was greatest for switchgrass, followed by alfalfa–corn, and then continuous corn. Our analysis emphasizes tradeoffs among crop systems. Corn may produce high rates of ethanol and net energy, but will do so least efficiently and with the greatest erosion and N leaching. Corn may have the greatest production costs, but return the greatest profit. Comparatively, alfalfa–corn will produce less ethanol and net energy, but will do so more efficiently, and with less erosion and little N leaching. Production costs, but also profits, may be less for alfalfa–corn than continuous corn. Switchgrass may produce the most net energy and will do so most efficiently and with the least erosion, but will also yield the least ethanol. Nitrogen leaching will be less for switchgrass than corn, but greater than alfalfa–corn. Switchgrass may be the least expensive to produce, but may return a profit only if selling prices or yields are high.  相似文献   

13.
Various local factors influence the decision of when to harvest grassland biomass for renewable energy including climate, plant composition, and phenological stage. However, research on biomass yield and quality related to a wide range of harvest timing from multiple environments and years is lacking. Our objective was to determine the effect of harvest timing on yield, moisture, and mineral concentration of switchgrass (Panicum virgatum L.) and native polyculture biomass. Biomass was harvested on 56 unique days ranging from late summer (2 September) to late spring (20 May) spanning 3 years (2009 to 2011) and seven sites in Minnesota, USA. Biomass yield varied considerably by location and year (range?=?0.7–11.7 Mg ha?1) and was lowest during the winter. On average, there was no difference in biomass yield harvested in early fall compared to late spring. Biomass moisture content was lowest in late spring, averaging 156 g kg?1 across all locations and years when harvested after 1 April. Biomass N concentration did not change across harvest dates; however, P and K concentrations declined dramatically from late summer to late spring. Considering the economic costs of replacing exported minerals and changes in revenues from biomass yield through time, biomass harvest should be conducted in late summer–early fall or late spring and avoided in winter. However, biomass managed for gasification should be harvested in spring to reduce concentrations of minerals that lead to slagging and fouling. Changes in biomass yield and quality through time were similar for switchgrass and native polyculture biomass. These biomass harvest recommendations are made from data spanning multiple years and locations and should be applicable to various growing conditions across the Upper Midwest.  相似文献   

14.
冬小麦高产优质高效栽培决策模拟研究   总被引:1,自引:0,他引:1  
在产量和品质形成规律及投入产出效益规律基础上,应用模糊集方法,构建了一个综合的冬小麦高产优质高效栽培优化决策模拟模型.并以Window XP为平台,采用VB(Visual Basic)语言编程,建立了相应的可视化决策支持系统.实现了在不同时空、自然、社会、经济、技术条件下,进行多目标、可综合、可选择、可调控的冬小麦田间水肥管理决策的目标.通过检验证明模拟模型是可行的.  相似文献   

15.
对根芹的不同外植体在附加不同成分的MS培养基上进行离体培养,以诱导适合于制作人工种子用的高质量体细胞胚。下胚轴、子叶和叶片在含0.5mg/LKT,0.5mg/L2,4 一 D的MSO培养基上诱导与继代胚性愈伤组织,然后转移到附加有100mg/L肌醇、2g/L葡萄糖的MSO无激素培养基上悬浮培养产生体细胞胚,获得了比固体培养基及含有KT的液体培养基中产生的体细胞胚形态发育更正常的大量体细胞胚,这为人工种子制作奠定了基础。  相似文献   

16.
近年来,微生物燃料电池已引起了广泛关注,它将低能量废水和木质纤维素生物质等有机废物转化为电能。在将来,微生物电能将成为一种重要的生物能源,因为微生物燃料电池提供了一种复合有机物和可再生生物能源中提取电能的可行性。人们研究了许多物质,以考察其是否能作为微生物电能转化的底物。这些物质包括人工的和天然废物,以及木质纤维素生物质。尽管现在微生物燃料电池提供的电流和功率较低,但是随着技术的发展和对微生物燃料电池系统的深入了解,微生物燃料电池转化的电流和电力将极大增加,从而向世人提供了一种可以将纤维素生物质和废水直接转化为有用能源的有效方法。本文介绍了迄今为止在微生物燃料电池中用到的各种反应底物,并对它们的应用效率和存在的不足进行了分析。  相似文献   

17.
Land tenure has been considered one of the key factors that define patterns and change in land-use systems. This paper examines the implications of land reform for household decisions regarding patterns of land use, agricultural intensification, and forest conservation. We look at an Amazonian caboclo settlement in the Lower Amazon that had experienced land reform by the end of the 1980s. Results show that defined land tenure is not enough to guarantee agricultural intensification and forest conservation. In fact, several factors working at different scales are affecting land-use change in the region. At the settlement level, privatization of upland forest has led to an overall increase in cultivated land—pasture and annual crops—and increasing deforestation rates. However, at the farm-property level, different systems of agricultural production—intensive, extensive, or abandonment of land—occur according to availability of labor, and capital, and access to different natural resources.  相似文献   

18.
川西南地区的农、林、牧业,不仅在全省农业经济结构中占有重要地位,而且矿物和能源特别丰富,是我国西南工业战略要地。所以,合理利用本区植被资源,对发展经济、协调农业生态系统具有重要意义。全文讨论5个问题:1.范围和环境特点;2.植物植被资源特点;3.植被利用现状;4.植被在生态农业中的意义;5.植被利用的几点建议.  相似文献   

19.
Aquatic ecoregions, based on regional landscape features, have been proposed as a model for aquatic resource management. The model assumes the existence of a typical biota associated with a given ecoregion and serves as the basis for biological assessment, reference site designation, and determination of stream potential, based on this biotic assemblage. Contrasting models for predicting stream ecosystem structure focus on the importance of local site conditions, including the regular and predictable changes that occur as a function of area draining to a site. In this study, a classification of 429 stream sites over an area of approximately 20000km2 in the St. Croix River basin delineated three major species groups: redhorse/spotfin shiner; brook charr/sculpin; and mixed species. Numerical analyses revealed no relationship between the species communities and ecoregions. In contrast, there was a strong association between the species communities and the area draining to the site. Our study highlights the importance of accommodating the inherent structure associated with site drainage area when imposing a regionally-based ecological classification upon stream ecosystems. This structure is expressed in the systematic changes to the physical habitat that occur with increasing drainage area and are reflected by the species community at the site. Management models that currently incorporate ecoregions in the classification or prediction of stream ecosystem structure would benefit from the inclusion of specific components that incorporate drainage area measurements.now at Environment Protection Authority  相似文献   

20.
在沿黄灌区选择8年生‘骏枣’植株,以不施钾肥作为对照,分别在果树开花期、幼果期、果实膨大期、转色期每株沟施300 g硫酸钾,测定各处理果实品质、产量、叶片光合以及荧光参数的变化,以明确沿黄灌区‘骏枣’的最佳施钾时期,为制定枣树合理施肥措施提供理论依据。结果表明:(1)与对照相比,施用钾肥可促进骏枣的光合作用、改善果实品质,且不同生育期效应不同,并以果实膨大期施用钾肥对提高骏枣果实品质、产量、叶片光合效果最为显著。(2)果实膨大期施用钾肥后,‘骏枣’的果实纵径、横径、果形指数、单果重、单株产量比对照分别显著提高了22.64%、39.33%、13.62%、19.52%和19.58%,果实维生素C(Vc)、可溶性糖和果糖的含量、糖酸比分别比对照显著提高了37.98%、22.82%、31.37%和29.95%,叶片叶绿素含量、净光合速率(P_n)、气孔导度(G_s)和蒸腾速率(T_r)比对照分别显著提高了28.91%、38.44%、36.75%和27.25%,叶片初始荧光(F_o)、最大荧光(F_m)、电子传递速率(ETR)比对照分别显著提高了28.18%、29.15%和37.75%,而胞间CO _2浓度(C_i)和裂果率在果实膨大期达到最低值,比对照分别显著降低了28.34%和35.50%。研究发现,在‘骏枣’果实膨大期株施300 g钾肥,可显著增加植株叶片叶绿素含量、光合作用效率和光能吸收、电子传递效率,提高树体光合能力,显著降低裂果率,有效改善骏枣果实外在和内在品质,显著提高单株产量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号