首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Dedicated energy crops and crop residues will meet herbaceous feedstock demands for the new bioeconomy in the Central and Eastern USA. Perennial warm-season grasses and corn stover are well-suited to the eastern half of the USA and provide opportunities for expanding agricultural operations in the region. A suite of warm-season grasses and associated management practices have been developed by researchers from the Agricultural Research Service of the US Department of Agriculture (USDA) and collaborators associated with USDA Regional Biomass Research Centers. Second generation biofuel feedstocks provide an opportunity to increase the production of transportation fuels from recently fixed plant carbon rather than from fossil fuels. Although there is no “one-size-fits-all” bioenergy feedstock, crop residues like corn (Zea mays L.) stover are the most readily available bioenergy feedstocks. However, on marginally productive cropland, perennial grasses provide a feedstock supply while enhancing ecosystem services. Twenty-five years of research has demonstrated that perennial grasses like switchgrass (Panicum virgatum L.) are profitable and environmentally sustainable on marginally productive cropland in the western Corn Belt and Southeastern USA.  相似文献   

2.
Converting land to biofuel feedstock production incurs changes in soil organic carbon (SOC) that can influence biofuel life‐cycle greenhouse gas (GHG) emissions. Estimates of these land use change (LUC) and life‐cycle GHG emissions affect biofuels' attractiveness and eligibility under a number of renewable fuel policies in the USA and abroad. Modeling was used to refine the spatial resolution and depth extent of domestic estimates of SOC change for land (cropland, cropland pasture, grassland, and forest) conversion scenarios to biofuel crops (corn, corn stover, switchgrass, Miscanthus, poplar, and willow) at the county level in the USA. Results show that in most regions, conversions from cropland and cropland pasture to biofuel crops led to neutral or small levels of SOC sequestration, while conversion of grassland and forest generally caused net SOC loss. SOC change results were incorporated into the Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model to assess their influence on life‐cycle GHG emissions of corn and cellulosic ethanol. Total LUC GHG emissions (g CO2eq MJ?1) were 2.1–9.3 for corn‐, ?0.7 for corn stover‐, ?3.4 to 12.9 for switchgrass‐, and ?20.1 to ?6.2 for Miscanthus ethanol; these varied with SOC modeling assumptions applied. Extending the soil depth from 30 to 100 cm affected spatially explicit SOC change and overall LUC GHG emissions; however, the influence on LUC GHG emission estimates was less significant in corn and corn stover than cellulosic feedstocks. Total life‐cycle GHG emissions (g CO2eq MJ?1, 100 cm) were estimated to be 59–66 for corn ethanol, 14 for stover ethanol, 18–26 for switchgrass ethanol, and ?7 to ?0.6 for Miscanthus ethanol. The LUC GHG emissions associated with poplar‐ and willow‐derived ethanol may be higher than that for switchgrass ethanol due to lower biomass yield.  相似文献   

3.
Switchgrass (Panicum virgatum L.), a highly productive perennial grass, has been recommended as one potential source for cellulosic biofuel feedstocks. Previous studies indicate that planting perennial grasses (e.g., switchgrass) in high‐topographic‐relief cropland waterway buffers can improve local environmental conditions and sustainability. The main advantages of this land management practice include (i) reducing soil erosion and improving water quality because switchgrass requires less tillage, fertilizers, and pesticides; and (ii) improving regional ecosystem services (e.g., improving water infiltration, minimizing drought and flood impacts on production, and serving as carbon sinks). In this study, we mapped high‐topographic‐relief cropland waterway buffers with high switchgrass productivity potential that may be suitable for switchgrass development in the eastern Great Plains (EGP). The US Geological Survey (USGS) Compound Topographic Index map, National Land Cover Database 2011, USGS irrigation map, and a switchgrass biomass productivity map derived from a previous study were used to identify the switchgrass potential areas. Results show that about 16 342 km2 (c. 1.3% of the total study area) of cropland waterway buffers in the EGP are potentially suitable for switchgrass development. The total annual estimated switchgrass biomass production for these suitable areas is approximately 15 million metric tons. Results from this study provide useful information on EGP areas with good cellulosic switchgrass biomass production potential and synergistic substantial potential for improvement of ecosystem services.  相似文献   

4.
Cultivating annual row crops in high topographic relief waterway buffers has negative environmental effects and can be environmentally unsustainable. Growing perennial grasses such as switchgrass (Panicum virgatum L.) for biomass (e.g., cellulosic biofuel feedstocks) instead of annual row crops in these high relief waterway buffers can improve local environmental conditions (e.g., reduce soil erosion and improve water quality through lower use of fertilizers and pesticides) and ecosystem services (e.g., minimize drought and flood impacts on production; improve wildlife habitat, plant vigor, and nitrogen retention due to post-senescence harvest for cellulosic biofuels; and serve as carbon sinks). The main objectives of this study are to: (1) identify cropland areas with high topographic relief (high runoff potentials) and high switchgrass productivity potential in eastern Nebraska that may be suitable for growing switchgrass, and (2) estimate the total switchgrass production gain from the potential biofuel areas. Results indicate that about 140,000 hectares of waterway buffers in eastern Nebraska are suitable for switchgrass development and the total annual estimated switchgrass biomass production for these suitable areas is approximately 1.2 million metric tons. The resulting map delineates high topographic relief croplands and provides useful information to land managers and biofuel plant investors to make optimal land use decisions regarding biofuel crop development and ecosystem service optimization in eastern Nebraska.  相似文献   

5.
Maize (Zea mays L.) stover and cobs are potential feedstock sources for cellulosic ethanol production. Nitrogen (N) fertilization is an important management decision that influences cellulosic biomass and grain production, but its effect on cell wall composition and subsequent cellulosic ethanol production is not known. The objectives of this study were to quantify the responses of maize stover (leaves, stalks, husks, and tassel) and cob cell wall composition and theoretical ethanol yield potential to N fertilization across a range of sites. Field experiments were conducted at rainfed and irrigated sites in Minnesota, USA, over a 2-year period. Stover cell wall polysaccharides, pentose sugar concentration, and theoretical ethanol yield decreased as N fertilization increased. Stover Klason lignin increased with N fertilization at all sites. Cob cell wall composition was less sensitive to N fertilization, as only pentose and Klason lignin decreased with N fertilization at two and one site(s), respectively, and hexose increased with N fertilization at one of eight sites. Cob theoretical ethanol yield was not affected by N fertilization at any site. These results indicate variation in stover cellulosic ethanol production is possible as a result of N management. This study also demonstrated that cell wall composition and subsequent theoretical ethanol yield of maize cobs are generally more stable than those with stover because of overall less sensitivity to N management.  相似文献   

6.
This study evaluates the effect of agronomic uncertainty on bioenergy crop production as well as endogenous commodity and biomass prices on the feedstock composition of cellulosic biofuels under a binding mandate in the United States. The county‐level simulation model focuses on both field crops (corn, soybean, and wheat) and biomass feedstocks (corn stover, wheat straw, switchgrass, and Miscanthus). In addition, pasture serves as a potential area for bioenergy crop production. The economic model is calibrated to 2022 in terms of yield, crop demand, and baseline prices and allocates land optimally among the alternative crops given the binding cellulosic biofuel mandate. The simulation scenarios differ in terms of bioenergy crop type (switchgrass and Miscanthus) and yield, biomass production inputs, and pasture availability. The cellulosic biofuel mandates range from 15 to 60 billion L. The results indicate that the 15 and 30 billion L mandates in the high production input scenarios for switchgrass and Miscanthus are covered entirely by agricultural residues. With the exception of the low production input for Miscanthus scenario, the share of agricultural residues is always over 50% for all other scenarios including the 60 billion L mandate. The largest proportion of agricultural land dedicated to either switchgrass or Miscanthus is found in the southern Plains and the southeast. Almost no bioenergy crops are grown in the Midwest across all scenarios. Changes in the prices for the three commodities are negligible for cellulosic ethanol mandates because most of the mandate is met with agricultural residues. The lessons learned are that (1) the share of agricultural residue in the feedstock mix is higher than previously estimated and (2) for a given mandate, the feedstock composition is relatively stable with the exception of one scenario.  相似文献   

7.
Growing cellulosic feedstock crops (e.g., switchgrass) for biofuel is more environmentally sustainable than corn‐based ethanol. Specifically, this practice can reduce soil erosion and water quality impairment from pesticides and fertilizer, improve ecosystem services and sustainability (e.g., serve as carbon sinks), and minimize impacts on global food supplies. The main goal of this study was to identify high‐risk marginal croplands that are potentially suitable for growing cellulosic feedstock crops (e.g., switchgrass) in the US Great Plains (GP). Satellite‐derived growing season Normalized Difference Vegetation Index, a switchgrass biomass productivity map obtained from a previous study, US Geological Survey (USGS) irrigation and crop masks, and US Department of Agriculture (USDA) crop indemnity maps for the GP were used in this study. Our hypothesis was that croplands with relatively low crop yield but high productivity potential for switchgrass may be suitable for converting to switchgrass. Areas with relatively low crop indemnity (crop indemnity <$2 157 068) were excluded from the suitable areas based on low probability of crop failures. Results show that approximately 650 000 ha of marginal croplands in the GP are potentially suitable for switchgrass development. The total estimated switchgrass biomass productivity gain from these suitable areas is about 5.9 million metric tons. Switchgrass can be cultivated in either lowland or upland regions in the GP depending on the local soil and environmental conditions. This study improves our understanding of ecosystem services and the sustainability of cropland systems in the GP. Results from this study provide useful information to land managers for making informed decisions regarding switchgrass development in the GP.  相似文献   

8.
Lignocellulosic biomass is a sustainable feedstock for fuel ethanol production, but it is characterized by low mass and energy densities, and distributed production with relatively small scales is more suitable for cellulosic ethanol, which can better balance cost for the feedstock logistics. Lignocellulosic biomass is recalcitrant to degradation, and pretreatment is needed, but more efficient pretreatment technologies should be developed based on an in-depth understanding of its biosynthesis and regulation for engineering plant cell walls with less recalcitrance. Simultaneous saccharification and co-fermentation has been developed for cellulosic ethanol production, but the concept has been mistakenly defined, since the saccharification and co-fermentation are by no means simultaneous. Lignin is unreactive, which not only occupies reactor spaces during the enzymatic hydrolysis of the cellulose component and ethanol fermentation thereafter, but also requires extra mixing, making high solid loading difficult for lignocellulosic biomass and ethanol titers substantially compromised, which consequently increases energy consumption for ethanol distillation and stillage discharge, presenting another challenge for cellulosic ethanol production. Pentose sugars released from the hydrolysis of hemicelluloses are not fermentable with Saccharomyces cerevisiae used for ethanol production from sugar- and starch-based feedstocks, and engineering the brewing yeast and other ethanologenic species such as Zymomonas mobilis with pentose metabolism has been performed within the past decades. However strategies for the simultaneous co-fermentation of pentose and hexose sugars that have been pursued overwhelmingly for strain development might be modified for robust ethanol production. Finally, unit integration and system optimization are needed to maximize economic and environmental benefits for cellulosic ethanol production. In this article, we critically reviewed updated progress, and highlighted challenges and strategies for solutions.  相似文献   

9.
Conversion of native prairie to agriculture has increased food and bioenergy production but decreased wildlife habitat. However, enrollment of highly erodible cropland in conservation programs has compensated for some grassland loss. In the future, climate change and production of second-generation perennial biofuel crops could further transform agricultural landscapes and increase or decrease grassland area. Switchgrass (Panicum virgatum) is an alternative biofuel feedstock that may be economically and environmentally superior to maize (Zea mays) grain for ethanol production on marginally productive lands. Switchgrass could benefit farmers economically and increase grassland area, but there is uncertainty as to how conversions between rowcrops, switchgrass monocultures and conservation grasslands might occur and affect wildlife. To explore potential impacts on grassland birds, we developed four agricultural land-use change scenarios for an intensively cultivated landscape, each driven by potential future climatic changes and ensuing irrigation limitations, ethanol demand, commodity prices, and continuation of a conservation program. For each scenario, we calculated changes in area for landcover classes and predicted changes in grassland bird abundances. Overall, birds responded positively to the replacement of rowcrops with switchgrass and negatively to the conversion of conservation grasslands to switchgrass or rowcrops. Landscape context and interactions between climate, crop water use, and irrigation availability could influence future land-use, and subsequently, avian habitat quality and quantity. Switchgrass is likely to provide higher quality avian habitat than rowcrops but lower quality habitat than conservation grasslands, and therefore, may most benefit birds in heavily cultivated, irrigation dependent landscapes under warmer and drier conditions, where economic profitability may also encourage conversions to drought tolerant bioenergy feedstocks.  相似文献   

10.
SWAT watershed model simulated biomass yield and pollutant loadings were integrated with associated economic costs of farm production and transport to study two dedicated energy crops, switchgrass and Miscanthus, and corn stover, as feedstocks for a cellulosic biorefinery. A multi-level spatial optimization (MLSOPT) framework was employed to get spatially explicit cropping plans for a watershed under the assumption that the watershed supplies biomass to a hypothetical biorefinery considering both the biochemical and the thermochemical conversion pathways. Consistent with previous studies, the perennial grasses had higher biomass yield than corn stover, with considerably lower sediment, nitrogen, and phosphorus loadings, but their costs were higher. New insights were related to the tradeoffs between cost, feedstock production, and the level and form of environmental quality society faces as it implements the Renewable Fuel Standard. Economically, this involved calculating the farthest distance a biorefinery would be willing to drive to source corn residue before procuring a single unit of perennial grasses from productive agricultural soils.  相似文献   

11.
With cellulosic energy production from biomass becoming popular in renewable energy research, agricultural producers may be called upon to plant and collect corn stover or harvest switchgrass to supply feedstocks to nearby facilities. Determining the production and transportation cost to the producer of corn stover or switchgrass and the amount available within a given distance from the plant will result in a per metric ton cost the plant will need to pay producers in order to receive sufficient quantities of biomass. This research computes up-to-date biomass production costs using recent prices for all important cost components including seed, fertilizer, herbicide, mowing/shredding, raking, baling, storage, handling, and transportation. The cost estimates also include nutrient replacement for corn stover. The total per metric ton cost is a combination of these cost components depending on whether equipment is owned or custom hired, what baling options are used, the size of the farm, and the transport distance. Total costs per dry metric ton for biomass with a transportation distance of 60 km ranges between $63 and $75 for corn stover and $80 and $96 for switchgrass. Using the county quantity data and this cost information, we then estimate biomass supply curves for three Indiana coal-fired electric utilities. This supply framework can be applied to plants of any size, location, and type, such as future cellulosic ethanol plants. Finally, greenhouse gas emissions reductions are estimated from using biomass instead of coal for part of the utility energy and also the carbon tax required to make the biomass and coal costs equivalent. Depending on the assumed CO2 price, the use of biomass instead of coal is found to decrease overall costs in most cases.  相似文献   

12.
Eastern gamagrass (Trypsacum dactyloides) is a C4 perennial grass, native to the USA with desirable characteristics that warrants further investigation as a new lignocellulosic crop for bioethanol production. Chemical composition assays showed that eastern gamagrass had comparable cellulose, hemicellulose and lignin compositions to those of switchgrass (Panicum virgatum). With the cellulose solvent-based lignocellulose fractionation (CSLF) pretreatment and subsequent enzymatic saccharification, 80.5–99.8% of cellulosic glucose was released from the gamagrass biomass, which was 10–17% greater than the glucose release efficiency from switchgrass (73.5–87.1%). Furthermore, the hydrolysate of gamagrass supported greater ethanol fermentation yield (up to 0.496 g/g glucose) than the hydrolysates of switchgrass. As such, in the whole process of biomass-to-ethanol conversion, gamagrass could yield 13–35% more ethanol per gram of biomass than switchgrass, indicating that gamagrass has high potential as an alternative energy feedstock for lignocellulosic ethanol production.  相似文献   

13.
Current research and development in cellulosic ethanol production has been focused mainly on agricultural residues and dedicated energy crops such as corn stover and switchgrass; however, woody biomass remains a very important feedstock for ethanol production. The precise composition of hemicellulose in the wood is strongly dependent on the plant species, therefore different types of enzymes are needed based on hemicellulose complexity and type of pretreatment. In general, hardwood species have much lower recalcitrance to enzymes than softwood. For hardwood, xylanases, beta‐xylosidases and xyloglucanases are the main hemicellulases involved in degradation of the hemicellulose backbone, while for softwood the effect of mannanases and beta‐mannosidases is more relevant. Furthermore, there are different key accessory enzymes involved in removing the hemicellulosic fraction and increasing accessibility of cellulases to the cellulose fibres improving the hydrolysis process. A diversity of enzymatic cocktails has been tested using from low to high densities of biomass (2–20% total solids) and a broad range of results has been obtained. The performance of recently developed commercial cocktails on hardwoods and softwoods will enable a further step for the commercialization of fuel ethanol from wood.  相似文献   

14.
Switchgrass is being evaluated as a potential feedstock source for cellulosic biofuels and is being cultivated in several regions of the United States. The recent availability of switchgrass land cover maps derived from the National Agricultural Statistics Service cropland data layer for the conterminous United States provides an opportunity to assess the environmental conditions of switchgrass over large areas and across different geographic locations. The main goal of this study is to develop a data-driven multiple regression switchgrass productivity model and identify the optimal climate and environment conditions for the highly productive switchgrass in the Great Plains (GP). Environmental and climate variables used in the study include elevation, soil organic carbon, available water capacity, climate, and seasonal weather. Satellite-derived growing season averaged Normalized Difference Vegetation Index (GSN) was used as a proxy for switchgrass productivity. Multiple regression analyses indicate that there are strong correlations between site environmental variables and switchgrass productivity (r = 0.95). Sufficient precipitation and suitable temperature during the growing season (i.e., not too hot or too cold) are favorable for switchgrass growth. Elevation and soil characteristics (e.g., soil available water capacity) are also an important factor impacting switchgrass productivity. An anticipated switchgrass biomass productivity map for the entire GP based on site environmental and climate conditions and switchgrass productivity model was generated. Highly productive switchgrass areas are mainly located in the eastern part of the GP. Results from this study can help land managers and biofuel plant investors better understand the general environmental and climate conditions influencing switchgrass growth and make optimal land use decisions regarding switchgrass development in the GP.  相似文献   

15.
16.
Modeling the life cycle of fuel pathways for cellulosic ethanol (CE) can help identify logistical barriers and anticipated impacts for the emerging commercial CE industry. Such models contain high amounts of variability, primarily due to the varying nature of agricultural production but also because of limitations in the availability of data at the local scale, resulting in the typical practice of using average values. In this study, 12 spatially explicit, cradle-to-refinery gate CE pathways were developed that vary by feedstock (corn stover, switchgrass, and Miscanthus), nitrogen application rate (higher, lower), pretreatment method (ammonia fiber expansion [AFEX], dilute acid), and co-product treatment method (mass allocation, sub-division), in which feedstock production was modeled at the watershed scale over a nine-county area in Southwestern Michigan. When comparing feedstocks, the model showed that corn stover yielded higher global warming potential (GWP), acidification potential (AP), and eutrophication potential (EP) than the perennial feedstocks of switchgrass and Miscanthus, on an average per area basis. Full life cycle results per MJ of produced ethanol demonstrated more mixed results, with corn stover-derived CE scenarios that use sub-division as a co-product treatment method yielding similarly favorable outcomes as switchgrass- and Miscanthus-derived CE scenarios. Variability was found to be greater between feedstocks than watersheds. Additionally, scenarios using dilute acid pretreatment had more favorable results than those using AFEX pretreatment.  相似文献   

17.
The production of dedicated energy crops on marginally productive cropland is projected to play an important role in reaching the US Billion Ton goal. This study aimed to evaluate warm‐season grasses for biomass production potential under different harvest timings (summer [H1], after killing frost [H2], or alternating between two [H3]) and nitrogen (N) fertilizer rates (0, 56, and 112 kg N/ha) on a wet marginal land across multiple production years. Six feedstocks were evaluated including Miscanthus x giganteus, two switchgrass cultivars (Panicum virgatum L.), prairie cordgrass (Spartina pectinata Link), and two polycultures including a mixture of big bluestem (Andropogon gerardii Vitman), indiangrass (Sorghastrum nutans), and sideoats grama (Bouteloua curtipendula [Michx.] Torr.), and a mixture of big bluestem and prairie cordgrass. Across four production years, harvest timing and feedstock type played an important role in biomass production. Miscanthus x giganteus produced the greatest biomass (18.7 Mg/ha), followed by the switchgrass cultivar “Liberty” (14.7 Mg/ha). Harvest in H1 tended to increase yield irrespective of feedstock; the exception being M. x giganteus that had significantly lower biomass when harvested in H1 when compared to H2 and H3. The advantage H1 harvest had over H2 for all feedstocks declined over time, suggesting H2 or H3 would provide greater and more sustainable biomass production for the observed feedstocks. The N application rate played an important role mainly for M. x giganteus where 112 kg N/ha yielded more biomass than no N. Other feedstocks occasionally showed a slight, but statistically insignificant increase in biomass yield with increasing N rate. This study showed the potential of producing feedstocks for bioenergy on wet marginal land; however, more research on tissue and soil nutrient dynamics under different N rates and harvest regimes will be important in understanding stand longevity for feedstocks grown under these conditions.  相似文献   

18.
Agricultural residues are important sources of feedstock for a cellulosic biofuels industry that is being developed to reduce greenhouse gas emissions and improve energy independence. While the US Midwest has been recognized as key to providing maize stover for meeting near‐term cellulosic biofuel production goals, there is uncertainty that such feedstocks can produce biofuels that meet federal cellulosic standards. Here, we conducted extensive site‐level calibration of the Environmental Policy Integrated Climate (EPIC) terrestrial ecosystems model and applied the model at high spatial resolution across the US Midwest to improve estimates of the maximum production potential and greenhouse gas emissions expected from continuous maize residue‐derived biofuels. A comparison of methodologies for calculating the soil carbon impacts of residue harvesting demonstrates the large impact of study duration, depth of soil considered, and inclusion of litter carbon in soil carbon change calculations on the estimated greenhouse gas intensity of maize stover‐derived biofuels. Using the most representative methodology for assessing long‐term residue harvesting impacts, we estimate that only 5.3 billion liters per year (bly) of ethanol, or 8.7% of the near‐term US cellulosic biofuel demand, could be met under common no‐till farming practices. However, appreciably more feedstock becomes available at modestly higher emissions levels, with potential for 89.0 bly of ethanol production meeting US advanced biofuel standards. Adjustments to management practices, such as adding cover crops to no‐till management, will be required to produce sufficient quantities of residue meeting the greenhouse gas emission reduction standard for cellulosic biofuels. Considering the rapid increase in residue availability with modest relaxations in GHG reduction level, it is expected that management practices with modest benefits to soil carbon would allow considerable expansion of potential cellulosic biofuel production.  相似文献   

19.
Switchgrass (Panicum virgatum) has been evaluated as one potential source for cellulosic biofuel feedstocks. Planting switchgrass in marginal croplands and waterway buffers can reduce soil erosion, improve water quality, and improve regional ecosystem services (i.e. it serves as a potential carbon sink). In previous studies, we mapped high risk marginal croplands and highly erodible cropland buffers that are potentially suitable for switchgrass development, which would improve ecosystem services and minimally impact food production. In this study, we advance our previous study results and integrate future crop expansion information to develop a switchgrass biofuel potential ensemble map for current and future croplands in eastern Nebraska. The switchgrass biomass productivity and carbon benefits (i.e. NEP: net ecosystem production) for the identified biofuel potential ensemble areas were quantified. The future scenario‐based (‘A1B’) land use and land cover map for 2050, the US Geological Survey crop type and Compound Topographic Index (CTI) maps, and long‐term (1981–2010) averaged annual precipitation data were used to identify future crop expansion regions that are suitable for switchgrass development. Results show that 2528 km2 of future crop expansion regions (~3.6% of the study area) are potentially suitable for switchgrass development. The total estimated biofuel potential ensemble area (including cropland buffers, marginal croplands, and future crop expansion regions) is 4232 km2 (~6% of the study area), potentially producing 3.52 million metric tons of switchgrass biomass per year. Converting biofuel ensemble regions to switchgrass leads to potential carbon sinks (the total NEP for biofuel potential areas is 0.45 million metric tons C) and is environmentally sustainable. Results from this study improve our understanding of environmental conditions and ecosystem services of current and future cropland systems in eastern Nebraska and provide useful information to land managers to make land use decisions regarding switchgrass development.  相似文献   

20.
In dry climates with long, hot summers and freezing winters, such as that of the southern Great Plains of North America, switchgrass (Panicum virgatum L.) has proven potential as a cellulosic bioenergy feedstock. This trial looked at dry matter (DM) and N yield dynamics of switchgrass overseeded with cool-season legumes and rye (Secale cereale L.), compared to switchgrass fertilized with 0, 56 and 112 kg N ha-1 yr-1 at an infertile and a fertile location. Optimal N fertilizer rate on switchgrass was 56 kg N ha-1 at the infertile location. Legume yield was greater in the first season after planting, compared to subsequent years where annual legumes were allowed to reseed and alfalfa (Medicago sativa L.) was allowed to grow. This suggests that the reseeding model for annual legumes will not work in switchgrass swards grown for biomass unless soil seed banks are built up for more than one year, and that overseeding with alfalfa may have to be repeated in subsequent years to build up plant populations. Overseeding rye and legumes generally did not suppress or enhance switchgrass biomass production compared to unfertilized switchgrass. However, cumulative spring and fall biomass yields were generally greater due to winter and spring legume production, which could be beneficial for grazing or soil conservation systems, but not necessarily for once-yearly late autumn harvest biofuel production systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号