首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria   总被引:3,自引:0,他引:3  
Environmental contamination with compounds containing oxyanions of chlorine, such as perchlorate or chlorate [(per)chlorate] or chlorine dioxide, has been a constantly growing problem over the last 100 years. Although the fact that microbes reduce these compounds has been recognized for more than 50 years, only six organisms which can obtain energy for growth by this metabolic process have been described. As part of a study to investigate the diversity and ubiquity of microorganisms involved in the microbial reduction of (per)chlorate, we enumerated the (per)chlorate-reducing bacteria (ClRB) in very diverse environments, including pristine and hydrocarbon-contaminated soils, aquatic sediments, paper mill waste sludges, and farm animal waste lagoons. In all of the environments tested, the acetate-oxidizing ClRB represented a significant population, whose size ranged from 2.31 x 10(3) to 2.4 x 10(6) cells per g of sample. In addition, we isolated 13 ClRB from these environments. All of these organisms could grow anaerobically by coupling complete oxidation of acetate to reduction of (per)chlorate. Chloride was the sole end product of this reductive metabolism. All of the isolates could also use oxygen as a sole electron acceptor, and most, but not all, could use nitrate. The alternative electron donors included simple volatile fatty acids, such as propionate, butyrate, or valerate, as well as simple organic acids, such as lactate or pyruvate. Oxidized-minus-reduced difference spectra of washed whole-cell suspensions of the isolates had absorbance maxima close to 425, 525, and 550 nm, which are characteristic of type c cytochromes. In addition, washed cell suspensions of all of the ClRB isolates could dismutate chlorite, an intermediate in the reductive metabolism of (per)chlorate, into chloride and molecular oxygen. Chlorite dismutation was a result of the activity of a single enzyme which in pure form had a specific activity of approximately 1,928 micromol of chlorite per mg of protein per min. Analyses of the 16S ribosomal DNA sequences of the organisms indicated that they all belonged to the alpha, beta, or gamma subclass of the Proteobacteria. Several were closely related to members of previously described genera that are not recognized for the ability to reduce (per)chlorate, such as the genera Pseudomonas and Azospirllum. However, many were not closely related to any previously described organism and represented new genera within the Proteobacteria. The results of this study significantly increase the limited number of microbial isolates that are known to be capable of dissimilatory (per)chlorate reduction and demonstrate the hitherto unrecognized phylogenetic diversity and ubiquity of the microorganisms that exhibit this type of metabolism.  相似文献   

3.
4.
Pseudomonas sp. PDA is an unusual bacterium due to its ability to respire using chlorate under aerobic conditions. The chlorate reductase produced by PDA was shown to be intrinsically different from the enzyme responsible for chlorate and perchlorate [(per)chlorate] reduction produced by Azospira sp. KJ based on subunit composition and other enzyme properties. The perchlorate reductase from strain KJ appeared to have two subunits (100 and 40 kDa) while the chlorate reductase from PDA had three subunits (60, 48, and 27 kDa). N-terminal amino acid sequencing of the 100 kDa protein from strain KJ showed a 77% similarity with the perchlorate reductase alpha subunit from another perchlorate-respiring bacterium, Dechloromonas agitata, while the N-terminus amino acid sequence of the 60 kDa protein from strain PDA did not show a similarity to previously isolated chlorate or perchlorate reductases.  相似文献   

5.
Azospira suillum strain PS (formally Dechlorosoma suillum strain PS) is a metabolically versatile betaproteobacterium first identified for its ability to grow by dissimilatory reduction of perchlorate and chlorate [denoted (per)chlorate]. Together with Dechloromonas species, these two genera represent the dominant (per)chlorate-reducing bacteria in mesophilic freshwater environments. In addition to (per)chlorate reduction, A. suillum is capable of the anaerobic oxidation of humic substances and is the first anaerobic nitrate-dependent Fe(II) oxidizer outside the Diaphorobacter and Acidovorax genera for which there is a completed genome sequence.  相似文献   

6.
Two (per)chlorate-reducing bacteria, strains CUZ and NSS, were isolated from marine sediments in Berkeley and San Diego, CA, respectively. Strain CUZ respired both perchlorate and chlorate [collectively designated (per)chlorate], while strain NSS respired only chlorate. Phylogenetic analysis classified both strains as close relatives of the gammaproteobacterium Sedimenticola selenatireducens. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) preparations showed the presence of rod-shaped, motile cells containing one polar flagellum. Optimum growth for strain CUZ was observed at 25 to 30°C, pH 7, and 4% NaCl, while strain NSS grew optimally at 37 to 42°C, pH 7.5 to 8, and 1.5 to 2.5% NaCl. Both strains oxidized hydrogen, sulfide, various organic acids, and aromatics, such as benzoate and phenylacetate, as electron donors coupled to oxygen, nitrate, and (per)chlorate or chlorate as electron acceptors. The draft genome of strain CUZ carried the requisite (per)chlorate reduction island (PRI) for (per)chlorate respiration, while that of strain NSS carried the composite chlorate reduction transposon responsible for chlorate metabolism. The PRI of strain CUZ encoded a perchlorate reductase (Pcr), which reduced both perchlorate and chlorate, while the genome of strain NSS included a gene for a distinct chlorate reductase (Clr) that reduced only chlorate. When both (per)chlorate and nitrate were present, (per)chlorate was preferentially utilized if the inoculum was pregrown on (per)chlorate. Historically, (per)chlorate-reducing bacteria (PRB) and chlorate-reducing bacteria (CRB) have been isolated primarily from freshwater, mesophilic environments. This study describes the isolation and characterization of two highly related marine halophiles, one a PRB and the other a CRB, and thus broadens the known phylogenetic and physiological diversity of these unusual metabolisms.  相似文献   

7.
Petroleum contamination of soils and sediments is a national concern due to the toxicity and recalcitrance of the aromatic components in the absence of oxygen. Oxygen can be introduced into the anaerobic zone of a contaminated environment by injection of gaseous O2 to stimulate biodegradation, but this process is costly and inefficient. Other more soluble electron acceptors, such as nitrate or sulfate, may alternatively be used, but the rates of oxidation are slow and not all hydrocarbons are degraded. Here we report that chlorite dismutation by (per)chlorate-reducing bacteria may offer an alternative source of oxygen for contaminant degradation. The dismutation of chlorite is an intermediate step in the microbial reduction of chlorate. Chlorite dismutation can stimulate the rapid oxidation of aromatic hydrocarbons such as benzene or naphthalene in anoxic environments by supplying oxygen to the aerobic hydrocarbon-oxidizing population. Benzene, which is extremely recalcitrant under anaerobic conditions, is rapidly degraded to CO2 even in pristine soils with no prior exposure to hydrocarbons. The (per)chlorate-reducing bacteria grew rapidly in a broad diversity of environmental conditions and survived in significant numbers over the long term in inoculated sediments. In addition, the (per)chlorate-reducer Dechlorimonas agitatus strain CKB could survive starvation, forming a stable ultramicrobacterium with a cell size less than one-tenth that of the vegetative cells. Such ultramicrobacterial cells can readily pass through small pore sizes of subsurface environments preventing near-well plugging in bioaugmentation strategies. The ultramicrobacterial cells formed could readily be recovered as vegetative cells and could be used to stimulate hydrocarbon oxidation after only 68 hours recovery. Our results suggest that chlorite in the presence of (per)chlorate-reducing bacteria may be used as an effective in situ remediation strategy for petroleum contamination.  相似文献   

8.
Natural attenuation of the environmental contaminant perchlorate is a cost-effective alternative to current removal methods. The success of natural perchlorate remediation is dependent on the presence and activity of dissimilatory (per)chlorate-reducing bacteria (DPRB) within a target site. To detect DPRB in the environment, two degenerate primer sets targeting the chlorite dismutase (cld) gene were developed and optimized. A nested PCR approach was used in conjunction with these primer sets to increase the sensitivity of the molecular detection method. Screening of environmental samples indicated that all products amplified by this method were cld gene sequences. These sequences were obtained from pristine sites as well as contaminated sites from which DPRB were isolated. More than one cld phylotype was also identified from some samples, indicating the presence of more than one DPRB strain at those sites. The use of these primer sets represents a direct and sensitive molecular method for the qualitative detection of (per)chlorate-reducing bacteria in the environment, thus offering another tool for monitoring natural attenuation. Sequences of cld genes isolated in the course of this project were also generated from various DPRB and provided the first opportunity for a phylogenetic treatment of this metabolic gene. Comparisons of the cld and 16S ribosomal DNA (rDNA) gene trees indicated that the cld gene does not track 16S rDNA phylogeny, further implicating the possible role of horizontal transfer in the evolution of (per)chlorate respiration.  相似文献   

9.
10.
Natural attenuation of the environmental contaminant perchlorate is a cost-effective alternative to current removal methods. The success of natural perchlorate remediation is dependent on the presence and activity of dissimilatory (per)chlorate-reducing bacteria (DPRB) within a target site. To detect DPRB in the environment, two degenerate primer sets targeting the chlorite dismutase (cld) gene were developed and optimized. A nested PCR approach was used in conjunction with these primer sets to increase the sensitivity of the molecular detection method. Screening of environmental samples indicated that all products amplified by this method were cld gene sequences. These sequences were obtained from pristine sites as well as contaminated sites from which DPRB were isolated. More than one cld phylotype was also identified from some samples, indicating the presence of more than one DPRB strain at those sites. The use of these primer sets represents a direct and sensitive molecular method for the qualitative detection of (per)chlorate-reducing bacteria in the environment, thus offering another tool for monitoring natural attenuation. Sequences of cld genes isolated in the course of this project were also generated from various DPRB and provided the first opportunity for a phylogenetic treatment of this metabolic gene. Comparisons of the cld and 16S ribosomal DNA (rDNA) gene trees indicated that the cld gene does not track 16S rDNA phylogeny, further implicating the possible role of horizontal transfer in the evolution of (per)chlorate respiration.  相似文献   

11.
Mass spectrometry and a time-course cell lysis method were used to study proteins involved in perchlorate and chlorate metabolism in pure bacterial cultures and environmental samples. The bacterial cultures used included Dechlorosoma sp. KJ, Dechloromonas hortensis, Pseudomonas chloritidismutans ASK-1, and Pseudomonas stutzeri. The environmental samples included an anaerobic sludge enrichment culture from a sewage treatment plant, a sample of a biomass-covered activated carbon matrix from a bioreactor used for treating perchlorate-contaminated drinking water, and a waste water effluent sample from a paper mill. The approach focused on detection of perchlorate (and chlorate) reductase and chlorite dismutase proteins, which are the two central enzymes in the perchlorate (or chlorate) reduction pathways. In addition, acetate-metabolizing enzymes in pure bacterial samples and housekeeping proteins from perchlorate (or chlorate)-reducing microorganisms in environmental samples were also identified.  相似文献   

12.
Perchlorate is a known health hazard for humans, fish, and other species. Therefore, it is important to assess the response of an ecosystem exposed to perchlorate contamination. The data reported here show that a liquid chromatography-mass spectrometry-based proteomics approach for the detection of perchlorate-reducing enzymes can be used to measure the ability of microorganisms to degrade perchlorate, including determining the current perchlorate degradation status. Signature peptides derived from chlorite dismutase (CD) and perchlorate reductase can be used as biomarkers of perchlorate presence and biodegradation. Four peptides each derived from CD and perchlorate reductase subunit A (PcrA) and seven peptides derived from perchlorate reductase subunit B (PcrB) were identified as signature biomarkers for perchlorate degradation, as these sequences are conserved in the majority of the pure and mixed perchlorate-degrading microbial cultures examined. However, chlorite dismutase signature biomarker peptides from Dechloromonas agitata CKB were found to be different from those in other cultures used and should also be included with selected CD biomarkers. The combination of these peptides derived from the two enzymes represents a promising perchlorate presence/biodegradation biomarker system. The biomarker peptides were detected at perchlorate concentrations as low as 0.1 mM and at different time points both in pure cultures and within perchlorate-reducing environmental enrichment consortia. The peptide biomarkers were also detected in the simultaneous presence of perchlorate and an alternate electron acceptor, nitrate. We believe that this technique can be useful for monitoring bioremediation processes for other anthropogenic environmental contaminants with known metabolic pathways.  相似文献   

13.
A chlorate reductase has been purified from the chlorate-reducing strain Pseudomonas chloritidismutans. Comparison with the periplasmic (per)chlorate reductase of strain GR-1 showed that the cytoplasmic chlorate reductase of P. chloritidismutans reduced only chlorate and bromate. Differences were also found in N-terminal sequences, molecular weight, and subunit composition. Metal analysis and electron paramagnetic resonance measurements showed the presence of iron and molybdenum, which are also found in other dissimilatory oxyanion reductases.  相似文献   

14.
The reduction of (per)chlorate and nitrate in (per)chlorate-reducing bacteria shows similarities and differences. (Per)chlorate reductase and nitrate reductase both belong to the type?II DMSO family of enzymes and have a common bis(molybdopterin guanine dinucleotide)molybdenum cofactor. There are two types of dissimilatory nitrate reductases. With respect to their localization, (per)chlorate reductase is more similar to the dissimilatory periplasmic nitrate reductase. However, the periplasmic, unlike the membrane-bound, respiratory nitrate reductase, is not able to use chlorate. Structurally, (per)chlorate reductase is more similar to respiratory nitrate reductase, since these reductases have analogous subunits encoded by analogous genes. Both periplasmic (per)chlorate reductase and membrane-bound nitrate reductase activities are induced under anoxic conditions in the presence of (per)chlorate and nitrate respectively. During microbial (per)chlorate reduction, molecular oxygen is generated. This is not the case for nitrate reduction, although an atypical reaction in nitrite reduction linked to oxygen formation has been described recently. Microbial oxygen production during reduction of oxyanions may enhance biodegradation of pollutants under anoxic conditions.  相似文献   

15.
A bacterium, strain BC, was isolated from a benzene-degrading chlorate-reducing enrichment culture. Strain BC degrades benzene in conjunction with chlorate reduction. Cells of strain BC are short rods that are 0.6 μm wide and 1 to 2 μm long, are motile, and stain gram negative. Strain BC grows on benzene and some other aromatic compounds with oxygen or in the absence of oxygen with chlorate as the electron acceptor. Strain BC is a denitrifying bacterium, but it is not able to grow on benzene with nitrate. The closest cultured relative is Alicycliphilus denitrificans type strain K601, a cyclohexanol-degrading nitrate-reducing betaproteobacterium. Chlorate reductase (0.4 U/mg protein) and chlorite dismutase (5.7 U/mg protein) activities in cell extracts of strain BC were determined. Gene sequences encoding a known chlorite dismutase (cld) were not detected in strain BC by using the PCR primers described in previous studies. As physiological and biochemical data indicated that there was oxygenation of benzene during growth with chlorate, a strategy was developed to detect genes encoding monooxygenase and dioxygenase enzymes potentially involved in benzene degradation in strain BC. Using primer sets designed to amplify members of distinct evolutionary branches in the catabolic families involved in benzene biodegradation, two oxygenase genes putatively encoding the enzymes performing the initial successive monooxygenations (BC-BMOa) and the cleavage of catechol (BC-C23O) were detected. Our findings suggest that oxygen formed by dismutation of chlorite can be used to attack organic molecules by means of oxygenases, as exemplified with benzene. Thus, aerobic pathways can be employed under conditions in which no external oxygen is supplied.  相似文献   

16.
The response behavior of three dissimilatory perchlorate-reducing bacteria to different electron acceptors (nitrate, chlorate, and perchlorate) was investigated with two different assays. The observed response was species-specific, dependent on the prior growth conditions, and was inhibited by oxygen. We observed attraction toward nitrate when Dechloromonas aromatica strain RCB and Azospira suillum strain PS were grown with nitrate. When D. aromatica and Dechloromonas agitata strain CKB were grown with perchlorate, both responded to nitrate, chlorate, and perchlorate. When A. suillum was grown with perchlorate, the organism responded to chlorate and perchlorate but not nitrate. A gene replacement mutant in the perchlorate reductase subunit (pcrA) of D. aromatica resulted in a loss of the attraction response toward perchlorate but had no impact on the nitrate response. Washed-cell suspension studies revealed that the perchlorate grown cells of D. aromatica reduced both perchlorate and nitrate, while A. suillum cells reduced perchlorate only. Based on these observations, energy taxis was proposed as the underlying mechanism for the responses to (per)chlorate by D. aromatica. To the best of our knowledge, this study represents the first investigation of the response behavior of perchlorate-reducing bacteria to environmental stimuli. It clearly demonstrates attraction toward chlorine oxyanions and the unique ability of these organisms to distinguish structurally analogous compounds, nitrate, chlorate, and perchlorate and respond accordingly.  相似文献   

17.
As part of a study to elucidate the environmental parameters that control microbial perchlorate respiration, we investigated the reduction of perchlorate by the dissimilatory perchlorate reducer Dechlorosoma suillum under a diverse set of environmental conditions. Our results demonstrated that perchlorate reduction by D. suillum only occurred under anaerobic conditions in the presence of perchlorate and was dependent on the presence of molybdenum. Perchlorate reduction was dependent on the presence of the enzyme chlorite dismutase, which was induced during metabolism of perchlorate. Anaerobic conditions alone were not enough to induce expression of this enzyme. Dissolved oxygen concentrations less than 2 mg liter(-1) were enough to inhibit perchlorate reduction by D. suillum. Similarly to oxygen, nitrate also regulated chlorite dismutase expression and repressed perchlorate reduction by D. suillum. Perchlorate-grown cultures of D. suillum preferentially reduced nitrate in media with equimolar amounts of perchlorate and nitrate. In contrast, an extended (40 h) lag phase was observed if a similar nitrate-perchlorate medium was inoculated with a nitrate-grown culture. Perchlorate reduction commenced only when nitrate was completely removed in either of these experiments. In contrast to D. suillum, nitrate had no inhibitory effects on perchlorate reduction by the perchlorate reducer Dechloromonas agitata strain CKB. Nitrate was reduced to nitrite concomitant with perchlorate reduction to chloride. These studies demonstrate that microbial respiration of perchlorate is significantly affected by environmental conditions and perchlorate reduction is directly dependent on bioavailable molybdenum and the presence or absence of competing electron acceptors. A microbial treatment strategy can achieve and maintain perchlorate concentrations below the recommended regulatory level, but only in environments in which the variables described above can be controlled.  相似文献   

18.
A comparative analysis of the genomes of four dissimilatory (per)chlorate-reducing bacteria has revealed a genomic island associated with perchlorate reduction. In addition to the characterized metabolic genes for perchlorate reductase and chlorite dismutase, the island contains multiple conserved uncharacterized genes possibly involved in electron transport and regulation.  相似文献   

19.
The aim of this study was to clarify the pathway of electron transfer between the inner membrane components and the periplasmic chlorate reductase. Several soluble c-type cytochromes were found in the periplasm. The optical difference spectrum of dithionite-reduced periplasmic extract shows that at least one of these components is capable of acting as an electron donor to the enzyme chlorate reductase. The cytochromes were partially separated, and the fractions were analyzed by UV/visible spectroscopy to determine the ability of donating electrons to chlorate reductase. Our results show that one of the c cytochromes (6 kDa) is able to donate electrons, both to chlorate reductase and to the membrane-bound cytochrome c oxidase, whereas the roles of the remaining c cytochromes still remain to be elucidated. Peptide extracts of the c cytochromes were obtained by tryptic in-gel digestion for matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis. Peptide sequences obtained indicate that the 6-kDa cytochrome c protein is similar to c cytochromes from the chlorate-reducing bacterium Dechloromonas aromatica.Oxyanions of chlorine (ClO3 and ClO4) occur in the environment mainly as by-products from human activities (6, 7). The decomposition of chlorate by microbial respiration is important in the treatment of industrial effluents and has been known since the beginning of the 20th century (2). One of the chlorate-respiring bacteria, the gram-negative Ideonella dechloratans, was isolated by Malmqvist and coworkers (8).Chlorate metabolism takes place in the periplasmic space between the inner and outer membranes and involves the soluble enzymes chlorate reductase and chlorite dismutase. The reaction takes place in two steps. First, chlorate is reduced to chlorite by chlorate reductase in a two-electron transfer reaction. The second step is the decomposition of chlorite into chloride ions and molecular oxygen, which is catalyzed by chlorite dismutase. Both enzymes have been isolated and characterized, and their genes have been sequenced (4, 5, 15). Chlorate reduction is coupled to cell growth, suggesting that chlorate reductase is part of a respiratory chain that generates an electrochemical gradient, which can serve as the driving force for ATP synthesis. The aim of this study was to investigate the pathways of electron transfer, in particular the route between membrane-bound components of the respiratory chain and the soluble periplasmic enzymes, in I. dechloratans. One interesting aspect is the finding that a gene encoding a soluble c-type cytochrome is located downstream of the gene for chlorate reductase (GenBank accession no. EU768872) (J. Bohlin, A. Smedja Bäcklund, N. Gustavsson, S. Wahlberg, and J. Nilsson, unpublished data).Although the electron transport pathways in bacteria differ, two major strategies for the transfer of electrons to soluble enzymes seem to occur. One strategy is the oxidation of quinol by cytochrome bc1 complex, followed by electron transfer to a soluble c-type cytochrome. In the other strategy, where the bc1 complex is absent or not involved, electron transfer is mediated by a membrane-anchored periplasmic c-type cytochrome belonging to the NapC/NirT family (13).The chlorate reductase in I. dechloratans shows similarity to molybdopterin-containing members of the type II subgroup of the dimethyl sulfoxide reductase family (10). One member of the family, dimethyl sulfoxide dehydrogenase (Ddh) from the phototrophic Rhodovulum sulfidophilum, utilizes a soluble cytochrome c for transfer of electrons, but in the reverse direction. The β subunit in Ddh donates electrons to the membrane-bound photochemical center, mediated by the soluble cytochrome c2 (9). Another member of the dimethyl sulfoxide reductase family, the closest known relative to chlorate reductase in I. dechloratans, is selenate reductase from Thauera selenatis (14). The quaternary structure of this enzyme is very similar to that of Ddh in R. sulfidophilum, and it has been suggested that the enzyme may interact with a periplasmic c cytochrome that receives electrons from the bc1 complex (10). Several other (per)chlorate-reducing bacteria, such as Dechloromonas agitata (1), Dechloromonas aromatica strain RCB (3), and strain GR-1 (12), have been isolated. In D. aromatica, several genes encoding NapC/NirT-like cytochromes have been found, but the physiological roles of the corresponding proteins are not known (3). The electron transfer pathways in D. agitata and strain GR-1 are unknown.The present study aims at investigating the role of soluble c-type cytochromes as electron mediators between the bc1 complex in the inner membrane and the periplasmic chlorate reductase in I. dechloratans. We have found that at least one of the periplasmic c-type cytochromes is capable to act as a electron donor to the enzyme chlorate reductase.  相似文献   

20.
Chlorite dismutase (Cld) is a unique heme enzyme catalyzing the conversion of ClO(2)(-) to Cl(-) and O(2). Cld is usually found in perchlorate- or chlorate-reducing bacteria but was also recently identified in a nitrite-oxidizing bacterium of the genus Nitrospira. Here we characterized a novel Cld-like protein from the chemolithoautotrophic nitrite oxidizer Nitrobacter winogradskyi which is significantly smaller than all previously known chlorite dismutases. Its three-dimensional (3D) crystal structure revealed a dimer of two identical subunits, which sharply contrasts with the penta- or hexameric structures of other chlorite dismutases. Despite a truncated N-terminal domain in each subunit, this novel enzyme turned out to be a highly efficient chlorite dismutase (K(m) = 90 μM; k(cat) = 190 s(-1); k(cat)/K(m) = 2.1 × 10(6) M(-1) s(-1)), demonstrating a greater structural and phylogenetic diversity of these enzymes than was previously known. Based on comparative analyses of Cld sequences and 3D structures, signature amino acid residues that can be employed to assess whether uncharacterized Cld-like proteins may have a high chlorite-dismutating activity were identified. Interestingly, proteins that contain all these signatures and are phylogenetically closely related to the novel-type Cld of N. winogradskyi exist in a large number of other microbes, including other nitrite oxidizers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号