首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When exposed to 5 °C for periods of 3–4 weeks, mouse L cells, grown as monolayer cultures, lose K more slowly than do diploid mammalian cells. Subcultures of mouse L cells previously exposed to low temperature for intermittent periods lose K more slowly than subcultures not previously cold exposed. The superior retention of K in the cold may account in part for the better survival in the cold of mouse L cells than of diploid cells, and of cold-conditioned L cells than of unconditioned L cells.  相似文献   

2.
Antarctic notothenioid fish display specializations related to cope with their chronically cold environment, such as high triacylglycerol (TAG) content in tissues. The metabolic fate of glycerol, a product of TAG mobilization, has not been studied in Antarctic fish. To assess the importance of glycerol as a substrate for gluconeogenesis and to determine whether this pathway is metabolically cold adapted (MCA), key hepatic enzyme activities were measured in Antarctic (Notothenia coriiceps, Gobionotothen gibberifrons, and Chionodraco rastrospinosus) and non-Antarctic (Dissostichus eleginoides, Patagonotothen ramsayi, and Eleginops maclovinus) notothenioid fish. Fructose 1,6-biphosphatase (FBP), phosphoenolpyruvate carboxykinase (PEPCK), and glycerol kinase (GK) activities were similar in both groups at common temperatures (1, 6, 11, or 21 °C). In particular, thermal sensitivity for the reactions catalyzed by FBP and PEPCK was analogous between Antarctic and non-Antarctic species, reflected by similar values for Arrhenius energy of activation (E a) and Q10. Additionally, hepatic glycerol, glucose, and glycogen contents together with plasma glycerol and glucose concentrations were similar for all of the species studied. Our results do not support the concept of MCA in hepatic gluconeogenesis and may indicate that the use of glycerol as a precursor for glucose synthesis by this pathway is of low physiological importance in Antarctic fish.  相似文献   

3.
M K Ray  G S Kumar    S Shivaji 《Journal of bacteriology》1994,176(14):4243-4249
Phosphorylation of lipopolysaccharide (LPS) from a psychrotrophic bacterium, Pseudomonas syringae, from Antarctica was studied by using sucrose gradient-separated membrane fractions. The bacterium was found to possess an LPS kinase which could phosphorylate more LPS postsynthetically at higher temperatures. The phosphorylation was low at a lower temperature and was also found to occur in vivo. After phosphorylation of LPS in vitro, it was found that the major part of the radioactivity (> 85%) was associated with the core oligosaccharide region of the LPS. The phosphate groups of this region are probably involved in the binding of metal ions, which could be removed by EDTA. The cells grown at the lower temperature probably contained fewer divalent cations because of the smaller amount of phosphate and thereby were more sensitive to EDTA. The cells were also more sensitive to cationic antibiotics at the lower temperature. A possible role of this differential phosphorylation of LPS in modulating the function of the outer membrane as a permeability barrier in the psychrotroph is discussed.  相似文献   

4.
Cold-loving microorganisms developed numerous adaptation mechanisms allowing them to survive in extremely cold habitats, such as adaptation of the cell membrane. The focus of this study was on the membrane fatty acids of Antarctic Flavobacterium spp., and their adaptation response to cold-stress. Fatty acids and cold-response of Antarctic flavobacteria was also compared to mesophilic and thermophilic members of the genus Flavobacterium. The results showed that the psychrophiles produced more types of major fatty acids than meso- and thermophilic members of this genus, namely C15:1 iso G, C15:0 iso, C15:0 anteiso, C15:1 ω6c, C15:0 iso 3OH, C17:1 ω6c, C16:0 iso 3OH and C17:0 iso 3OH, summed features 3 (C16:1 ω7cand/or C16:1 ω6c) and 9 (C16:0 10-methyl and/or C17:1 iso ω9c). It was shown that the cell membrane of psychrophiles was composed mainly of branched and unsaturated fatty acids. The results also implied that Antarctic flavobacteria mainly used two mechanisms of membrane fluidity alteration in their cold-adaptive response. The first mechanism was based on unsaturation of fatty acids, and the second mechanism on de novo synthesis of branched fatty acids. The alteration of the cell membrane was shown to be similar for all thermotypes of members of the genus Flavobacterium.  相似文献   

5.
6.
We have done a comparative study of tRNA diversity and total tRNA genes among different strains of bacteria with respect to the optimum growth temperature of the cells. Our observation suggests that higher tRNA diversity usually occurs in thermophiles in comparison to non-thermophiles. Among psychrophiles total tRNA was observed to be more than two-fold higher than in the non-psychrophiles. Though tRNA diversity and total tRNA have recently been shown to be affected by an organism's genomic GC% and growth rate, this work is the first report on growth temperature affecting these features in bacteria. This work extends the list of molecular features undergoing adaptation due to growth temperature and supports the view that growth temperature acts as a selecting factor at the molecular level during evolution.  相似文献   

7.
Polyhydroxyalkanoates (PHAs) are highly reduced bacterial storage compounds that increase fitness in changing environments. We have previously shown that phaRBAC genes from the Antarctic bacterium Pseudomonas sp. 14-3 are located in a genomic island containing other genes probably related with its adaptability to cold environments. In this paper, Pseudomonas sp. 14-3 and its PHA synthase-minus mutant (phaC) were used to asses the effect of PHA accumulation on the adaptability to cold conditions. The phaC mutant was unable to grow at 10°C and was more susceptible to freezing than its parent strain. PHA was necessary for the development of the oxidative stress response induced by cold treatment. Addition of reduced compounds cystine and gluthathione suppressed the cold sensitive phenotype of the phaC mutant. Cold shock produced very rapid degradation of PHA in the wild type strain. The NADH/NAD ratio and NADPH content, estimated by diamide sensitivity, decreased strongly in the mutant after cold shock while only minor changes were observed in the wild type. Accordingly, the level of lipid peroxidation in the mutant strain was 25-fold higher after temperature downshift. We propose that PHA metabolism modulates the availability of reducing equivalents, contributing to alleviate the oxidative stress produced by low temperature.  相似文献   

8.
9.
Although carbonic anhydrase is a ubiquitous enzyme involved in a variety of physiological processes, the information on its evolution and cold adaptation among Antarctic fish is still limited: the only Antarctic fish carbonic anhydrase characterized up-to-date is from Chionodraco hamatus, a member of the Channichthyidae family. In this work, we characterized orthologous genes within two other fish families: Nototheniidae (Trematomus eulepidotus, Trematomus lepidorhinus, Trematomus bernacchii) and Bathydraconidae (Cygnodraco mawsoni). The cDNAs of epithelial gill carbonic anhydrases were cloned and sequenced. Both coding and deduced amino acid sequences were used in phylogenetic analyses. The group of enzymes preferentially expressed in fish erythrocytes (CAIIb) represented the most conserved variant. This result suggests that, although the two variants derived from the same ancestor, CAIIc genes have a more complex evolutionary history than CAIIb. The peculiar distribution of Antarctic CAs among fish CAIIcs suggests that the CAIIc gene appeared at different times through independent duplication events, even after the speciation that led to the differentiation of Antarctic fish families. Using the new CA sequences, we built homology models to trace the expected consequences of sequence variability at the protein structure level. From these analyses, we inferred that sequence variability in Antarctic fish CAs affect important physicochemical properties of these proteins and consequentially influence their reactivity. Furthermore, we searched and tested the validity of various potential molecular trademarks for cold adaptation: significant features that can be related to cold adaptation in fish CAs include reduction of positively charged solvent accessible surfaces and an increased flexibility of N-terminal and C-terminal regions.  相似文献   

10.
The possible roles of cellular K for survival of cells at low temperature   总被引:2,自引:0,他引:2  
J S Willis 《Cryobiology》1972,9(5):351-366
  相似文献   

11.
Five strains of influenza viruses A(H3N2) replicated at low temperature passaged in cotton rats were reisolated. The properties of these strains replicated at low temperature were compared before and after passage in susceptible animals to check the stability of some its markers. At the same time original viruses replicated at 37 degrees C--which are different in epidemiological potency--were compared. The following parameters being tested: NA activity, HA titers, heat inactivation NA and Ha, Michaelis constants and optimum pH. We observed some differences between strains both replicated at low temperature after passage in the susceptible animal organism and original viruses from 37 degrees C. Viruses replicated at low temperature from original epidemiostrain are really cold adapted and remained stable after passage in the animals when the others derived from no epidemic strain are not stable.  相似文献   

12.
13.
14.
15.
We have shown previously that the tubulins of Antarctic fish assemble into microtubules efficiently at low temperatures (-2 to +2 degrees C) due to adaptations intrinsic to the tubulin subunits. To determine whether changes in posttranslational glutamylation of the fish tubulins may contribute to cold adaptation of microtubule assembly, we have characterized C-terminal peptides from alpha- and beta-tubulin chains from brains of adult specimens of the Antarctic rockcod Notothenia coriiceps by MALDI-TOF mass spectrometry and by Edman degradation amino acid sequencing. Of the four fish beta-tubulin isotypes, nonglutamylated isoforms were more abundant than glutamylated isoforms. In addition, maximal glutamyl side-chain length was shorter than that observed for mammalian brain beta tubulins. For the nine fish alpha-tubulin isotypes, nonglutamylated isoforms were also generally more abundant than glutamylated isoforms. When glutamylated, however, the maximal side-chain lengths of the fish alpha tubulins were generally longer than those of adult rat brain alpha chains. Thus, Antarctic fish adult brain tubulins are glutamylated differently than mammalian brain tubulins, resulting in a more heterogeneous population of alpha isoforms and a reduction in the number of beta isoforms. By contrast, neonatal rat brain tubulin possesses low levels of glutamylation that are similar to that of the adult fish brain tubulins. We suggest that unique residue substitutions in the primary structures of Antarctic fish tubulin isotypes and quantitative changes in isoform glutamylation act synergistically to adapt microtubule assembly to low temperatures.  相似文献   

16.
The thermodynamic stability of beta-lactoglobulin (beta-Lg) was studied at acidic and near-neutral pH values using equilibrium thermal-unfolding measurements. Transition temperature increased with a decrease in pH from 7.5 to 6.5 and 3.0 to 1.5, suggesting an increase in the net protein stability. Determination of the change in free energy of unfolding and extrapolation into the nontransition region revealed that beta-Lg increases its stability by increasing the magnitude of the change in free energy of unfolding at the temperature of maximum stability, as well as by increasing the temperature of maximum stability. The relative difference in the change in free energy of unfolding at 70 degrees C (with a reference pH of 7.5) was positive and its magnitude increased with a decrease in pH from 7.0 to 1.5 van't Hoff plots of thermal unfolding of beta-Lg at all pH values studied were non-linear and the measured changes in the enthalpy and entropy of unfolding for beta-Lg were high and positive. The relative magnitude of change of both enthalpy and entropy at 70 degrees C (compared with pH 7.5) increased with a decrease in pH up to 1.5. A possible mechanism for the increased stability of beta-Lg at low pH is discussed.  相似文献   

17.
Summary Gangliosides and sialoglycoproteins from brain, liver and muscle have been isolated from 6 Antarctic fish species from the suborder Notothenoids and from 4 Arctic-boreal fish species. In addition freezing and melting points from serum of both groups were examined in order to determine the presence of protein antifreezes. In comparison with eurythermic fishes of temperate climates in both groups the phylogenetical adaptation to cold is correlated with a significantly higher concentration of gangliosides in the brain. The ganglioside concentration of liver in Antarctic fish, but not in Arctic species, is 3 to 5fold higher than in mammals (rat); in muscle the ganglioside content is increased only in red-blooded Antarctic fish as compared with mammals. The concentration of neuronal sialo-glycoproteins generally is lower in Antarctic fish than in other marine teleosts; in muscles the content is 2 to 3fold higher than in mammals. The molecular composition of brain gangliosides is characterized by an extreme high polarity which is due to an equipment with highly sialylated fractions (40 to 50% higher sialylated than tetrasialogangliosides). There are distinct differences between the freezing and melting point of blood serum, especially in the Antarctic species in favour of the existence of protein antifreezes. The results are discussed with regard to the fact that the extremely high polarity of brain gangliosides reflects a very efficient mechanism on molecular level to keep the neuronal membrane functional under low temperature conditions.  相似文献   

18.
王国莉  郭振飞 《广西植物》2005,25(4):375-379,361
综述了近年来有关植物低温光抑制和光保护机制的研究进展。与以往对光抑制的定义不同,现在认为光抑制既包括光对光合作用反应中心的损伤,也包括植物为避免光破坏而形成的生理生化保护机制。该文主要从三个方面展开论述:低温下光抑制发生的原因及光抑制的位点;低温光抑制时可能的光保护机制;低温光抑制下过剩光能的耗散机制。  相似文献   

19.
20.
Summary A heat resistant mutant of E. coli dnaAts46 was isolated, which grows normally only at temperatures above 39°. After a temperature shift from 42° to 32° the mutant overproduces DNA relative to protein. This is due to overinitiation of rounds of chromosome replication at low temperature, as indicated by hybridization and other experiments. The mutation is cotransduced by Pl with ilv and could not be separated from dnaAts46 by transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号