首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The rates of bicarbonate-dependent uptake and efflux of 22Na+ in Vero cells were studied and compared with the uptake and efflux of 36Cl-. Both processes were strongly inhibited by DIDS. Whereas the transport of chloride increased approximately ten-fold when the internal pH was increased over a narrow range around neutrality, the uptake of Na+ was much less affected by changes in pH. The bicarbonate-linked uptake of 22Na+ was dependent on internal Cl- but not on internal Na+. At a constant external concentration of HCO3-, the amount of 22Na+ associated with the cells increased when the internal concentration of HCO3- decreased and vice versa, which is compatible with the possibility that the ion pair NaCO3- is the transported species and that the transport is symmetric across the membrane. Bicarbonate inhibited the uptake of 36Cl- both in the absence and presence of Na+. At alkaline internal pH, HCO3- stimulated the efflux of 36Cl- from preloaded cells, while at acidic internal pH both Na+ and HCO3- were required to induce 36Cl- efflux. We propose a model for how bicarbonate-dependent regulation of the internal pH may occur. This model implies the existence of two bicarbonate transport mechanisms that, under physiological conditions, transport OH(-)-equivalents in opposite directions across the plasma membrane.  相似文献   

2.
In sodium-free buffer of low ionic strength, the uptake of chloride and sulfate in Vero cells was found to occur mainly by antiport which was very sensitive to inhibition by 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid. Efflux of anions from the cells appeared to energize the uptake. While the uptake of Cl- occurred over a wide pH range, that of SO4(2-) showed a clear maximum at pH 6-7. The rate of efflux of 36Cl- and 35SO4(2-) was strongly increased by the presence of permeant anions in the efflux buffer. Preincubation of the cells at slightly alkaline pH strongly increased the rate of C1- efflux into buffers nominally free of permeant anions, as well as the efflux by exchange. This increase did not occur if the cells were depleted for ATP during the preincubation. Depolarization of the cells reduced the rate of efflux into buffers without permeant anions, indicating that the efflux is at least partly due to net, electrogenic, anion transport. The efflux by antiport was not affected by manipulations of the membrane potential, indicating electroneutral exchange. The uptake and efflux were increased to the same extent with increasing temperature, the activation energies were Ea = 25 kcal/mol of Cl- and Ea = 12 kcal/mol of SO4(2-). Similar anion antiport appears to occur in L, baby hamster kidney, and HeLa S3 cells.  相似文献   

3.
pH-regulated anion antiport in nucleated mammalian cells   总被引:6,自引:0,他引:6       下载免费PDF全文
The uptake of 36Cl- into cells was measured after preincubation in medium containing nigericin and KCl to allow control of the intracellular pH. When the pH was increased from pH 7.0 to pH 7.3 there was a 10-fold increase in the rate of 36Cl- uptake. The increase was half maximal at pH 7.15 in Vero and L-cells, whereas in phorbol 12-myristate 13-acetate-treated Vero cells the increase was half maximal at pH 6.9. Kinetic studies showed that in cells preincubated with nigericin and isotonic KCl, both at pH 7.0 and at pH 8.0, the Km for Cl- was 7 mM. In the two cases the Jmax was 1.7 X 10(8) Cl- ions X cell-1 X s-1 and 1.6 X 10(9) Cl- ions X cell-1 X s-1, respectively. Bicarbonate inhibited 36Cl- uptake with a Ki of 5-6 mM. Probably, the anion antiporter plays a role in the regulation of the intracellular pH.  相似文献   

4.
U937 cell possess two mechanisms that allow them to recover from an intracellular acidification. The first mechanism is the amiloride-sensitive Na+/H+ exchange system. The second system involves bicarbonate ions. Its properties have been defined from intracellular pH (pHi) recovery experiments, 22Na+ uptake experiments, 36Cl- influx and efflux experiments. Bicarbonate induced pHi recovery of the cells after a cellular acidification to pHi = 6.3 provided that Na+ ions were present in the assay medium. Li+ or K+ could not substitute for Na+. The system seemed to be electroneutral. 22Na+ uptake experiments showed the presence of a bicarbonate-stimulated uptake pathway for Na+ which was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonate. The bicarbonate-dependent 22Na+ uptake component was reduced by depleting cells of their internal Cl- and increased by removal of external Cl-. 36Cl- efflux experiments showed that the presence of both external Na+ and bicarbonate stimulated the efflux of 36Cl- at a cell pHi of 6.3. Finally a 36Cl- uptake pathway was documented. It was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonate (K0.5 = 10 microM) and bicarbonate (K0.5 = 2 mM). These results are consistent with the presence in U937 cells of a coupled exchange of Na+ and bicarbonate against chloride. It operates to raise the intracellular pH. Its pHi and external Na+ dependences were defined. No evidence for a Na+-independent Cl-/HCO3- exchange system could be found. The Na+-dependent Cl-/HCO3- exchange system was relatively insensitive to (aryloxy)alkanoic acids which are potent inhibitors of bicarbonate-induced swelling of astroglia and of the Li(Na)CO3-/Cl- exchange system of human erythrocytes. It is concluded that different anionic exchangers exist in different cell types that can be distinguished both by their biochemical properties and by their pharmacological properties.  相似文献   

5.
By applying a rapid filtration technique to isolated brush border membrane vesicles from guinea pig ileum, 36Cl uptake was quantified in the presence and absence of electrical, pH and alkali-metal ion gradients. A mixture of 20 mM-Hepes and 40 mM-citric acid, adjusted to the desired pH with Tris base, was found to be the most suitable buffer. Malate and Mes could be used to replace the citrate, but succinate, acetate and maleate proved to be unsuitable. In the absence of a pH gradient (pHout:pHin = 7.5:7.5), Cl- uptake increased slightly when an inside-positive membrane potential was applied, but uphill transport was never observed. A pH gradient (pHout:pHin = 5.0:7.5) induced both a 400% increase in the initial Cl- influx rate and a long-lasting (20 to 300 s) overshoot, indicating that a proton gradient can furnish the driving force for uphill Cl- transport. Under pH gradient conditions, initial Cl- entry rates had the following characteristics. (1) They were unaffected by cis-Na+ and/or -K+, indicating the absence of Cl-/K+, Cl-/Na+ or Cl-/K+/Na+ symport activity. (2) Inhibition by 20-100 mM-trans-Na+ and/or -K+ occurred, independent of the existence of an ion gradient. (3) Cl- entry was practically unaffected by short-circuiting the membrane potential with equilibrated potassium and valinomycin. (4) Carbonyl cyanide m-chlorophenylhydrazone was strongly inhibitory and so, to a lesser extent, was 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid [(SITS)], independent of the sign and size of the membrane potential. (5) Cl- entry was negligibly increased (less than 30%) by either trans-Cl- or -HCO3-, indicating the absence of an obligatory Cl-/anion antiport activity. In contrast, the height of the overshoot at 60 s was increased by trans-Cl-, indicating time-dependent inhibition of 36Cl efflux. That competitive inhibition of 36Cl fluxes by anions is involved here is supported by initial influx rate experiments demonstrating: (1) the saturability of Cl- influx, which was found to exhibit Michaelis-Menten kinetics; and (2) competitive inhibition of influx by cis-Cl- and -Br-. Quantitatively, the conclusion is warranted that over 85% of the total initial Cl- uptake energized by a pH gradient involves an electroneutral Cl-/H+ symporter or its physicochemical equivalent, a Cl-/OH- antiporter, exhibiting little Cl- uniport and either Cl-/Cl- or Cl-/HCO3- antiport activities.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The PS120 variant of Chinese hamster lung fibroblasts which lacks Na+/H+ exchange activity was used to investigate bicarbonate transport systems and their role in intracellular pH (pHi) regulation. When pHi was decreased by acid load, bicarbonate caused pHi increase and stimulated 36Cl- efflux from the cells, both in a Na+-dependent manner. These results together with previous findings that bicarbonate stimulates 22Na+ uptake in PS120 cells (L'Allemain, G., Paris, S., and Pouyssegur, J. (1985) J. Biol. Chem. 260, 4877-4883) demonstrate the presence of a Na+-linked Cl-/HCO3- exchange system. In cells with normal initial pHi, bicarbonate caused Na+-independent pHi increase in Cl(-)-free solutions and stimulated Na+-independent 36Cl- efflux, indicating that a Na+-independent Cl-/HCO3- exchanger is also present in the cell. Na+-linked and Na+-independent Cl-/HCO3- exchange is apparently mediated by two distinct systems, since a [(tetrahydrofluorene-7-yl)oxy]acetic acid derivative selectively inhibits the Na+-independent exchanger. An additional distinctive feature is a 10-fold lower affinity for chloride of the Na+-linked exchanger. The Na+-linked and Na+-independent Cl-/HCO3- exchange systems are likely to protect the cell from acid and alkaline load, respectively.  相似文献   

7.
Glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, is transported into bovine synaptic vesicles in a manner that is ATP dependent and requires a vesicular electrochemical proton gradient. We studied the electrical and chemical elements of this driving force and evaluated the effects of chloride on transport. Increasing concentrations of Cl- were found to increase the steady-state ATP-dependent vesicular pH gradient (delta pH) and were found to concomitantly decrease the vesicular membrane potential (delta psi). Low millimolar chloride concentrations, which cause 3-6-fold stimulation of vesicular glutamate uptake, caused small but measurable increases in delta pH and decreases in delta psi, when compared to control vesicles in the absence of chloride. Nigericin in potassium buffers was used to alter the relative proportions of delta pH and delta psi. Compared to controls, at all chloride concentrations tested, nigericin virtually abolished delta pH and increased the vesicle interior positive delta psi. Concomitantly, nigericin increased ATP-dependent glutamate uptake in 0-1 mM chloride but decreased glutamate uptake in 4 mM (45%), 20 mM (80%), and 140 mM (75%) Cl- (where delta pH in the absence of nigericin was large). These findings suggest that either delta psi, delta pH, or a combination can drive glutamate uptake, but to different degrees. In the presence of 4 mM Cl-, where uptake is optimal, both delta psi and delta pH contribute to the driving force for uptake. When the extravesicular pH was increased from 7.4 to 8.0, more Cl- was required to stimulate vesicular glutamate uptake. In the absence of Cl-, as extravesicular pH was lowered to 6.8, uptake was over 3-fold greater than it was at pH 7.4. As extravesicular pH was reduced from 8.0 toward 6.8, less Cl- was required for maximal stimulation. Decreasing the extravesicular pH from 8.0 to 6.8 in the absence of Cl- significantly increased glutamate uptake activity, even though proton-pumping ATPase activity actually decreased about 45% under identical conditions. In the absence of chloride, nigericin increased glutamate uptake at all the pH values tested except pH 8.0. Glutamate uptake at pH 6.8 in the presence of nigericin was over 6-fold greater than uptake at pH 7.4 in the absence of nigericin. We conclude from these experiments that optimal ATP-dependent glutamate uptake requires a large delta psi and a small delta pH.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The effect of pH changes on Ca2+ transport by isolated heart mitochondria was measured. Two components of Ca2+ transport were identified, an accumulation dependent on mitochondrial respiration and a Na+-dependent efflux. A decrease of pH over the range 7.7-6.7 reduced the initial rate and the total amount of respiration dependent Ca2+ accumulation. At pH 7.2 the [Na+] required to activate half-maximal efflux, k1/2, was 7.5 +/- 1.1 mM. Decreasing the pH over the range 7.7 to 6.9 increased the k1/2 from 3.6 to 11.6. The effect of acidosis was more profound on the respiration dependent Ca2+ uptake than the Na+-dependent efflux.  相似文献   

9.
The effect of K+ depletion of Hep 2 cells on ion fluxes, internal pH, cell volume, and membrane potential was studied. The cells were depleted of K+ by incubation in K+-free buffer with or without a preceding exposure to hypotonic medium. Efflux of K+ in cells not exposed to hypotonic medium was inhibited by furosemide or by incubation in Na+-free medium, indicating that in this case at least part of the K+ efflux occurs by Na+/K+/Cl- cotransport. After exposure to hypotonic medium, K+ efflux was not inhibited by furosemide, whereas it was partly inhibited by 4,4'-diisothiocyano-2,2'-stilbene-disulfonic acid (DIDS). Exposure to hypotonic medium induced acidification of the cytosol, apparently because of efflux of protons from intracellular acidic vesicles. When isotonicity was restored, a rebound alkalinization of the cytosol was induced, because of activation of the Na+/H+ antiporter. While hypotonic shock and a subsequent incubation in K+-free buffer rapidly depolarized the cells, depolarization occurred much more slowly when the K+ depletion was carried out by incubation in K+-free buffer alone. The cell volume was reduced in both cases. K+ depletion by either method strongly reduced the ability of the cells to accumulate 36Cl- by anion antiport, and K+-depleted cells were unable to increase the rate of 36Cl- uptake in response to alkalinization of the cytosol.  相似文献   

10.
Freshly harvested mycelium of the filamentous ascomycete Neocosmospora vasinfecta accumulated C1- against a concentration gradient by a process probably requiring the expenditure of metabolic energy. When mycelium, washed free of growth medium, was incubated in deionized water or tris (hydroxymethyl) aminomethane sulfate at pH 7.5 for 4 h and then transferred to K36C1 solutions, the C1- uptake rate was, on the average, 3.77 +/- 0.26 (+/-SE, N = 20) times the uptake rate exhibited by freshly harvested mycelium. This development of an increased rate of Cl- uptake could be blocked by the presence of an inhibitor of ribonucleic acid synthesis (azaguanine) or of protein synthesis (cycloheximide, fluorophenylalanine, or puromycin). The combined presence of glucose and a potassium salt in the preincubation solution virtually arrested the development of enhanced Cl- uptake. The rate of Cl- uptake by freshly harvested mycelium did not vary greatly with the age of the culture on harvest but the ability to develop an increased rate declined with age. The fact that it is possible to obtain mycelium possessing widely different capacities for Cl- uptake should assist in biochemical characterization of the Cl- uptake system.  相似文献   

11.
Chloride homeostasis in Saccharomyces cerevisiae has been characterized with the goal of identifying new Cl- transport and regulatory pathways. Steady-state cellular Cl- contents ( approximately 0.2 mEq/liter cell water) differ by less than threefold in yeast grown in media containing 0.003-5 mM Cl-. Therefore, yeast have a potent mechanism for maintaining constant cellular Cl- over a wide range of extracellular Cl-. The cell water:medium [Cl-] ratio is >20 in media containing 0.01 mM Cl- and results in part from sequestration of Cl- in organelles, as shown by the effect of deleting genes involved in vacuolar acidification. Organellar sequestration cannot account entirely for the Cl- accumulation, however, because the cell water:medium [Cl-] ratio in low Cl- medium is approximately 10 at extracellular pH 4.0 even in vma1 yeast, which lack the vacuolar H(+)-ATPase. Cellular Cl- accumulation is ATP dependent in both wild type and vma1 strains. The initial (36)Cl- influx is a saturable function of extracellular [(36)Cl-] with K(1/2) of 0.02 mM at pH 4.0 and >0.2 mM at pH 7, indicating the presence of a high affinity Cl- transporter in the plasma membrane. The transporter can exchange (36)Cl- for either Cl- or Br- far more rapidly than SO4=, phosphate, formate, HCO3-, or NO3-. High affinity Cl- influx is not affected by deletion of any of several genes for possible Cl- transporters. The high affinity Cl- transporter is activated over a period of approximately 45 min after shifting cells from high-Cl- to low-Cl- media. Deletion of ORF YHL008c (formate-nitrite transporter family) strongly reduces the rate of activation of the flux. Therefore, Yhl008cp may be part of a Cl(-)-sensing mechanism that activates the high affinity transporter in a low Cl- medium. This is the first example of a biological system that can regulate cellular Cl- at concentrations far below 1 mM.  相似文献   

12.
Addition of either vasoactive intestinal peptide (VIP) or the Ca2+ ionophore, A23187, to confluent monolayers of the T84 epithelial cell line derived from a human colon carcinoma increased the rate of 86Rb+ or 42K+ efflux from preloaded cells. Stimulation of the rate of efflux by VIP and A23187 still occurred in the presence of ouabain and bumetanide, inhibitors of the Na+,K+-ATPase and Na+,K+,Cl- cotransport, respectively. The effect of A23187 required extracellular Ca2+, while that of VIP correlated with its known effect on cyclic AMP production. Other agents which increased cyclic AMP production or mimicked its effect also increased 86Rb+ efflux. VIP- or A23187-stimulated efflux was inhibited by 5 mM Ba2+ or 1 mM quinidine, but not by 20 mM tetraethylammonium, 4 mM 4-aminopyridine, or 1 microM apamin. Under appropriate conditions, VIP and A23187 also increased the rate of 86Rb+ or 42K+ uptake. Stimulation of the initial rate of uptake by either agent required high intracellular K+ and was not markedly affected by the imposition of transcellular pH gradients. The effect of A23187, but not VIP or dibutyryl cyclic AMP, was refractory to depletion of cellular energy stores. A23187-stimulated uptake was not significantly affected by anion substitution, however, stimulation of uptake by VIP required the presence of a permeant anion. This result may be due to the simultaneous activation of a cyclic AMP-dependent Cl- transport system. The kinetics of both VIP- and A23187-stimulated uptake and efflux were consistent with a channel-rather than a carrier-mediated K+ transport mechanism. The results also suggest that cyclic AMP and Ca2+ may activate two different kinds of K+ transport systems. Finally, both transport systems have been localized to the basolateral membrane of T84 monolayers, a result compatible with their possible regulatory role in hormone-activated electrogenic Cl- secretion.  相似文献   

13.
1. Carbamylcholine-induced 86Rb+ and 36Cl- efflux, as markers of calcium mobilization and water secretion, respectively, were studied during 30 days of heat acclimation (at 34 degrees C) in rat submaxillary gland slices using perifusion techniques. 2. The fractional rate of 36Cl- efflux was markedly elevated with acclimation, reaching its maximal level on day 30, while that of 86Rb+, after an initial rise, returned to non-acclimated control levels. The total carbamylcholine-induced efflux of both ions markedly increased throughout the 30 days' acclimation. 3. The rapid increase in ion fluxes was accompanied by a transient increase in Na+ concentrations in the gland and a decrease in the saliva. 4. The data suggest that the acclimation-induced increase in secretory capacity is bi-phasic: initially, a rapid transient rise in ion fluxes accompanies a transient rise in muscarinic receptor density (Kloog et al., 1985). 5. Long term acclimation is characterized by increased efficiency of the cellular secretory mechanism(s), as demonstrated by the chronically increased efflux of ions.  相似文献   

14.
In red cells of several species, the sulfhydryl reagent N-ethylmaleimide activates a Cl- -dependent, ouabain-resistant K+ transport pathway. Here we report our attempts to demonstrate ouabain-resistant Cl- -dependent K+ fluxes stimulated by N-ethylmaleimide in resealed human red cell ghosts using Rb+ as a K+ analogue. In contrast to intact cells, the rate constants of the base level Rb+ efflux in ghosts were similar in NaNO3 and NaCl (okRb = 0.535 +/- 0.079 h-1 and 0.534 +/- 0.085 h-1, respectively), while 1 mM N-ethylmaleimide stimulated Rb+ efflux strongly in NaNO3 (okRb = 14.26 +/- 1.32 h-1) and moderately in NaCl (okRb = 2.73 +/- 0.54 h-1). This effect was dependent on the presence of internal ATP. Stimulation of Rb+ efflux was observed in the presence of greater than or equal to 0.2 mM N-ethylmaleimide and increased at pH values approaching 8.0, consistent with titration of SH groups. N-Ethylmaleimide-stimulated Rb+ efflux was approx. 50% inhibited by 100 microM quinine sulfate whereas 1 microM bumetanide had no effect. In NaCl the N-ethylmaleimide-stimulated efflux saturated with initial internal ghost Rb+ concentration, but rates increased linearly in NaNO3. Replacement of external Na+ with glucamine or choline decreased the N-ethylmaleimide-stimulated Rb+ efflux, suggesting a role for external Na+. N-Ethylmaleimide-stimulated Rb+ efflux was greater in buffers with lipophilic anions such as SCN- or NO3- than in solutions with Cl- or acetate. However, the cation selectivity of the pathway studied was low, as Li+ efflux was also stimulated by N-ethylmaleimide. We conclude that the effect of N-ethylmaleimide on ouabain-resistant cation effluxes of human red cell ghosts is very different from the selective action of N-ethylmaleimide on Rb+ influxes in intact red cells.  相似文献   

15.
The present study was designed to investigate Cl- transport across rat ileal basolateral membranes. Basolateral membrane vesicles were prepared by a well-validated technique. The purity of the basolateral membrane vesicles was verified by marker enzyme studies and by studies of d-glucose and calcium uptake. Cl- uptake was studied by a rapid filtration technique. Neither an outwardly directed pH gradient, nor a HCO3- gradient, or their combination could elicit any stimulation of Cl- transport when compared with no gradient. 4,4-Diisothiocyanostilbene-2,2-disulfonic acid at 5 mM concentration did not inhibit Cl- uptake under gradient condition. Similarly, the presence of the combination of outwardly directed Na+ and HCO3- gradients did not stimulate Cl- uptake compared with the combination of K+ and HCO3- gradients or no HCO3- gradient. This is in contrast to our results in the brush border membranes, where an outwardly directed pH gradient caused an increase in Cl- uptake. Cl- uptake was stimulated in the presence of combined Na+ and K+ gradient. Bumetanide at 0.1 mM concentration inhibited the initial rate of Cl- uptake in the presence of combined Na+ and K+ gradients. Kinetic studies of bumetanide-sensitive Cl- uptake showed a Vmax of 5.6 +/- 0.7 nmol/mg protein/5 sec and a Km of 30 +/- 8.7 mM. Cl- uptake was stimulated by an inside positive membrane potential induced by the ionophore valinomycin in the setting of inwardly directed K+ gradient compared with voltage clamp condition. These studies demonstrate two processes for Cl- transport across the rat ileal basolateral membrane: one is driven by an electrogenic diffusive process and the second is a bumetanide-sensitive Na+/K+/2 Cl- process. Cl- uptake is not enhanced by pH gradient, HCO3- gradient, their combination, or outwardly directed HCO3- and Na+ gradients.  相似文献   

16.
Volume-induced increase of anion permeability in human lymphocytes   总被引:14,自引:7,他引:7       下载免费PDF全文
Peripheral blood mononuclear cells (PBM) readjust their volumes after swelling in hypotonic media. This regulatory volume decrease (RVD) is associated with a loss of cellular K+ and is thought to be promoted by an increased permeability to this ion. In contrast, no change in volume was observed when K+ permeability of PBM in isotonic media was increased to comparable or higher levels using valinomycin. Moreover, valinomycin-induced 86Rb+ loss in K+-free medium was considerably slower than in K+-rich medium. These results suggest that anion conductance limits net salt loss in isotonic media. Direct measurements of relative conductance confirmed that in volume-static cells, anion conductance is lower than that of K+. In volume-regulating cells depolarization occurred presumably as a result of increased anion conductance. Accordingly, the efflux of 36Cl from PBM was markedly increased by hypotonic stress. Since both membrane potential and intracellular 36Cl concentration are reduced in hypotonically swollen cells, the increased efflux is probably due to a change in Cl- permeability. Anions and cations seem to move independently through the volume-induced pathways: the initial rate of 86Rb uptake in swollen cells was not affected by replacement of external Cl- by SO=4; conversely, 36Cl fluxes were unaffected by substitution of K+ by Na+. The data indicate that anion conductance is rate-determining in salt and water loss from PBM. An increase in anion conductance is suggested to be the critical step of RVD of human PBM.  相似文献   

17.
NPPB (5-nitro-2-(3-phenylpropylamino)benzoic acid) has been reported to block Cl- channels in isolated rabbit nephrons with high potency (IC50 = 80 nM). The effects of this compound on Cl(-)-mediated transport processes in intestinal tissues have been studied using agonist-stimulated short-circuit current (T84) in Ussing chamber experiments and 36Cl- fluxes in monolayers of a colonic cell line (T84). NPPB inhibited PGE1-stimulated Isc in rabbit distal colon and ileum at concentrations in the range 20 to 100 microM. However, NPPB at the same concentrations also inhibited glucose-stimulated Isc in rabbit ileum, suggesting that its effects were not restricted to those on Cl- transport. Consistent with this, exposure of rabbit distal colon to 100 microM NPPB was found to reduce endogenous ATP levels by 69%, implying that, at these concentrations, NPPB could impair active transport processes by an effect on cellular energy metabolism. Clear evidence for a direct effect of NPPB on epithelial chloride channels was found in studies on Cl- fluxes in T84 cell monolayers. NPPB inhibited VIP-stimulated Cl- uptake into T84 cells with an IC50 of 414 microM. NPPB (1 mM) also inhibited Cl- efflux from pre-loaded cells confirming its effect as a weak Cl- channel blocker in this system.  相似文献   

18.
Three independent mutants of the Madin-Darby canine kidney cell line (MDCK) have been isolated which were capable of growth in media containing low concentrations of potassium. All three mutants were deficient to varying extents in furosemide- and bumetanide-sensitive 22Na+, 86+b+, and 36Cl- uptake. The two mutants most resistant to low K+ media had lost essentially all of the 22Na+, 86Rb+, and 36Cl- uptake activities of this system. The third mutant was partially resistant to low K+ media and had reduced levels of bumetanide-sensitive uptake for all three ions. Extrapolated initial uptake rates for 22Na+, 86Rb+, and 36Cl- revealed that the partial mutant exhibited approximately 50% of the parental uptake rates for all three ions. The stoichiometries of bumetanide-sensitive uptake in both the parental cell line and the partial mutant approximated 1 Rb+:1 Na+:2 Cl-. The results of this study provide genetic evidence for a single tightly-coupled NaCl/KCl symporter in MDCK cells. The correlation between the ability to grow in low K+ media and decreased activity of the bumetanide-sensitive co-transport system suggests that the bumetanide-sensitive transport system catalyzes net K+ efflux from cells in low K+ media. The results of 86Rb+ efflux studies conducted on ouabain-pretreated mutant and parental cells are consistent with this interpretation. Cell volume measurements made on cells at different densities in media containing normal K+ concentrations showed that none of the mutants differed significantly in volume from the parental strain at a similar cell density. Furthermore, all three mutants were able to readjust their volume after suspension in hypotonic media. These results suggest that in the MDCK cell line, the bumetanide-sensitive NaCl/KCl symport system does not function in the regulation of cell volume under the conditions employed.  相似文献   

19.
Cl(-)-HCO3- exchange in rat renal basolateral membrane vesicles   总被引:1,自引:0,他引:1  
Pathways for HCO3- transport across the basolateral membrane were investigated using membrane vesicles isolated from rat renal cortex. The presence of Cl(-)-HCO3- exchange was assessed directly by 36Cl- tracer flux measurements and indirectly by determinations of acridine orange absorbance changes. Under 10% CO2/90% N2 the imposition of an outwardly directed HCO3- concentration gradient (pHo 6/pHi 7.5) stimulated Cl- uptake compared to Cl- uptake under 100% N2 in the presence of a pH gradient alone. Mediated exchange of Cl- for HCO3- was suggested by the HCO3- gradient-induced concentrative accumulation of intravesicular Cl-. Maneuvers designed to offset the development of ion-gradient-induced diffusion potentials had no significant effect on the magnitude of HCO3- gradient-driven Cl- uptake further suggesting chemical as opposed to electrical Cl(-)-HCO3- exchange coupling. Although basolateral membrane vesicle Cl- uptake was observed to be voltage sensitive, the DIDS insensitivity of the Cl- conductive pathway served to distinguish this mode of Cl- translocation from HCO3- gradient-driven Cl- uptake. No evidence for K+/Cl- cotransport was obtained. As determined by acridine orange absorbance measurements in the presence of an imposed pH gradient (pHo 7.5/pHi 6), a HCO3- dependent increase in the rate of intravesicular alkalinization was observed in response to an outwardly directed Cl- concentration gradient. The basolateral membrane vesicle origin of the observed Cl(-)-HCO3- exchange activity was verified by experiments performed with purified brush-border membrane vesicles. In contrast to our previous observations of the effect of Cl- on HCO3- gradient-driven Na+ uptake suggesting a basolateral membrane Na+-HCO3- for Cl- exchange mechanism, no effect of Na+ on Cl-HCO3- exchange was observed in the present study.  相似文献   

20.
To test the hypothesis that internal ion imbalances at high pH are caused by altered branchial ion transporting capacity and permeability, radiotracers (24Na+ and 36Cl-) were used to measure ion movements across the gills of intact rainbow trout (Oncorhynchus mykiss) during 3 d exposure to pH 9.5. At control pH (pH 8.0), the trout were in net ion balance, but by 8 h at high pH, 60%-70% reductions in Cl- influx (JClin) and Na+ influx (JNain) led to net Cl- and Na+ losses of -200 micromol kg-1 h-1. Outflux (diffusive efflux plus renal ion losses) was not initially altered. By 72 h, net Cl- balance was reestablished because of a restoration of JClin. Although JNain remained 50% lower at this time, counterbalancing reductions in Na+ outflux restored net Na+ balance. One-substrate ion-uptake kinetics analyses indicated that reduced ion influx after 8 h at pH 9.5 was caused by 50% decreases in Cl- and Na+ maximal transport rates (JClmax, JNamax), likely reflecting decreased numbers of functional transport sites. Two-substrate kinetic analyses indicated that reduced internal HCO-3 and H+ supply for respective branchial Cl-/base and Na+/acid transport systems also contributed to lower JClin and, to a lesser extent, lower JNain at pH 9.5. Recovery of JClmax after 3 d accounted for restoration of Cl- balance and likely reflected increased numbers of transport sites. In contrast, JNamax remained 33% lower after 3 d, but a lower affinity of the gills for Na+ (fourfold greater KNam) accounted for the chronic reduction in Na+ influx at pH 9.5. Thus, reestablishment of Cl- uptake capacity and counterbalancing reductions in Na+ outflux allows rainbow trout to reestablish net ion balance in alkaline waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号