首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Ferredoxins are iron-sulfur proteins that have been studied for decades because of their role in facilitating the monooxygenase reactions catalyzed by p450 enzymes. More recently, studies in bacteria and yeast have demonstrated important roles for ferredoxin and ferredoxin reductase in iron-sulfur cluster assembly. The human genome contains two homologous ferredoxins, ferredoxin 1 (FDX1) and ferredoxin 2 (FDX2--formerly known as ferredoxin 1L). More recently, the roles of these two human ferredoxins in iron-sulfur cluster assembly were assessed, and it was concluded that FDX1 was important solely for its interaction with p450 enzymes to synthesize mitochondrial steroid precursors, whereas FDX2 was used for synthesis of iron-sulfur clusters, but not steroidogenesis. To further assess the role of the FDX-FDXR system in mammalian iron-sulfur cluster biogenesis, we performed siRNA studies on FDX1 and FDX2, on several human cell lines, using oligonucleotides identical to those previously used, along with new oligonucleotides that specifically targeted each gene. We concluded that both FDX1 and FDX2 were important in iron-sulfur cluster biogenesis. Loss of FDX1 activity disrupted activity of iron-sulfur cluster enzymes and cellular iron homeostasis, causing mitochondrial iron overload and cytosolic iron depletion. Moreover, knockdown of the sole human ferredoxin reductase, FDXR, diminished iron-sulfur cluster assembly and caused mitochondrial iron overload in conjunction with cytosolic depletion. Our studies suggest that interference with any of the three related genes, FDX1, FDX2 or FDXR, disrupts iron-sulfur cluster assembly and maintenance of normal cytosolic and mitochondrial iron homeostasis.  相似文献   

8.
In Salmonella enterica serovar Typhimurium, sigma(28) and anti-sigma factor FlgM are regulatory proteins crucial for flagellar biogenesis and motility. In this study, we used S. enterica serovar Typhimurium as an in vivo heterologous system to study sigma(28) and anti-sigma(28) interactions in organisms where genetic manipulation poses a significant challenge due to special growth requirements. The chromosomal copy of the S. enterica serovar Typhimurium sigma(28) structural gene fliA was exchanged with homologs of Aquifex aeolicus (an extreme thermophile) and Chlamydia trachomatis (an obligate intracellular pathogen) by targeted replacement of a tetRA element in the fliA gene location using lambda-Red-mediated recombination. The S. enterica serovar Typhimurium hybrid strains showed sigma(28)-dependent gene expression, suggesting that sigma(28) activities from diverse species are preserved in the heterologous host system. A. aeolicus mutants defective for sigma(28)/FlgM interactions were also isolated in S. enterica serovar Typhimurium. These studies highlight a general strategy for analysis of protein function in species that are otherwise genetically intractable and a straightforward method of chromosome restructuring using lambda-Red-mediated recombination.  相似文献   

9.
10.
The alternative sigma factor sigma(B) is an important regulator of the stress response of Bacillus cereus. Here, the role of the regulatory proteins RsbV, RsbW, and RsbY in regulating sigma(B) activity in B. cereus is analyzed. Functional characterization of RsbV and RsbW showed that they act as an anti-sigma factor antagonist and an anti-sigma factor, respectively. RsbW can also act as a kinase on RsbV. These data are in line with earlier functional characterizations of RsbV and RsbW homologs in B. subtilis. The rsbY gene is unique to B. cereus and its closest relatives and is predicted to encode a protein with an N-terminal CheY domain and a C-terminal PP2C domain. In an rsbY deletion mutant, the sigma(B) response upon stress exposure was almost completely abolished, but the response could be restored by complementation with full-length rsbY. Expression analysis showed that rsbY is transcribed from both a sigma(A)-dependent promoter and a sigma(B)-dependent promoter. The central role of RsbY in regulating the activity of sigma(B) indicates that in B. cereus, the sigma(B) activation pathway is markedly different from that in other gram-positive bacteria.  相似文献   

11.
12.
13.
14.
Genome sequence analysis of the bacterium Xylella fastidiosa revealed the presence of two genes, named rpoE and rseA, predicted to encode an extracytoplasmic function (ECF) sigma factor and an anti-sigma factor, respectively. In this work, an rpoE null mutant was constructed in the citrus strain J1a12 and shown to be sensitive to exposure to heat shock and ethanol. To identify the X. fastidiosa sigma(E) regulon, global gene expression profiles were obtained by DNA microarray analysis of bacterial cells under heat shock, identifying 21 sigma(E)-dependent genes. These genes encode proteins belonging to different functional categories, such as enzymes involved in protein folding and degradation, signal transduction, and DNA restriction modification and hypothetical proteins. Several putative sigma(E)-dependent promoters were mapped by primer extension, and alignment of the mapped promoters revealed a consensus sequence similar to those of ECF sigma factor promoters of other bacteria. Like other ECF sigma factors, rpoE and rseA were shown to comprise an operon in X. fastidiosa, together with a third open reading frame (XF2241). However, upon heat shock, rpoE expression was not induced, while rseA and XF2241 were highly induced at a newly identified sigma(E)-dependent promoter internal to the operon. Therefore, unlike many other ECF sigma factors, rpoE is not autoregulated but instead positively regulates the gene encoding its putative anti-sigma factor.  相似文献   

15.
16.
17.
18.
Rhodobacter sphaeroides sigma(E) is a member of the extra cytoplasmic function sigma factor (ECF) family, whose members have been shown to regulate gene expression in response to a variety of signals. The functions of ECF family members are commonly regulated by a specific, reversible interaction with a cognate anti-sigma factor. In R.sphaeroides, sigma(E) activity is inhibited by ChrR, a member of a newly discovered family of zinc containing anti-sigma factors. We used gel filtration chromatography to gain insight into the mechanism by which ChrR inhibits sigma(E) activity. We found that formation of the sigma(E):ChrR complex inhibits the ability of sigma(E) to form a stable complex with core RNA polymerase. Since the sigma(E):ChrR complex inhibits the ability of the sigma factor to bind RNA polymerase, we sought to identify amino acid substitutions in sigma(E) that altered the sensitivity of this sigma factor to inhibition by ChrR. This analysis identified single amino acid changes in conserved region 2.1 of sigma(E) that either increased or decreased the sensitivity of sigma(E) for inhibition by ChrR. Many of the amino acid residues that alter the sensitivity of sigma(E) to ChrR are located within regions known to be important for interacting with core RNA polymerase in other members of the sigma(70) superfamily. Our results suggest a model where solvent-exposed residues with region 2.1 of sigma(E) interact with ChrR to sterically occlude this sigma factor from binding core RNA polymerase and to inhibit target gene expression.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号