首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Excised watermelon (Citrullus vulgaris Schrad.) cotyledons were grown in the dark in the presence of 0.1 mM benzyladenine (BA). Under these conditions reserve breakdown and organelle differentiation progress very slowly. Treatment with BA accelerates, breakdown of reserves and stimulates development of organelles. Electron micrographs of cells from treated cotyledons show a larger number of plastids with a more developed inner membrane system. The levels of plastid pigments and enzymes are increased while starch content is reduced. Glyoxysomal enzyme levels are increased by BA during the first three days of development and their decline is accelerated thereafter. Also the activity of hydroxypyruvate reductase (EC 1.1.1.81.), a peroxisomal enzyme, is increased, but this increase is not followed by a decay phase. In water controls, hydroxypyruvate reductase bands together with glyoxysomal enzymes after equilibrium centrifugation in a sucrose gradient. In treated cotyledons the equilibrium position of glyoxysomal enzymes is uchanged while that of hydroxypyruvate reductase is shifted to a lower density.Abbreviations BA benzyladenine - RuDP ribulose-1,5-diphosphate - HPR hydroxypyruvate reductase  相似文献   

3.
We have investigated the regulation of cucumber (Cucumis sativus) hydroxypyruvate reductase mRNA abundance in response to white-, red-, and far-red-light treatments. Following irradiation of dark-adapted cucumber seedlings with 15 min to 4 h of either white or red light and return to darkness, the mRNA level for the gene encoding hydroxypyruvate reductase (Hpr) in cotyledons peaks in the darkness 16 to 20 h later. The response of the Hpr mRNA level to total fluence of white light depends more directly on irradiation time than on fluence rate. In addition to this time-dependent component, a phytochrome-dependent component is involved in Hpr regulation in dark-adapted green cotyledons as shown by red-light induction and partial far-red-light reversibility. Parallel measurements of mRNA levels for the ribulose bisphosphate carboxylase/oxygenase small subunit and for the chlorophyll a/b-binding protein show that Hpr is the most responsive to short (about 60 min) white- and red-light treatments and that each mRNA has a characteristic pattern of accumulation in dark-adapted cotyledons in response to light.  相似文献   

4.
The gene encoding the serine cycle hydroxypyruvate reductase of Methylobacterium extorquens AM1 was isolated by using a synthetic oligonucleotide with a sequence based on a known N-terminal amino acid sequence. The cloned gene was inactivated by insertion of a kanamycin resistance gene, and recombination of this insertion derivative with the wild-type gene produced a serine cycle hydroxypyruvate reductase null mutant. This mutant had lost its ability to grow on C-1 compounds but retained the ability to grow on C-2 compounds, showing that the hydroxypyruvate reductase operating in the serine cycle is not involved in the conversion of acetyl coenzyme A to glycine as previously proposed. A second hydroxypyruvate-reducing enzyme with a low level of activity was found in M. extorquens AM1; this enzyme was able to interconvert glyoxylate and glycollate. The gene encoding hydroxypyruvate reductase was shown to be located about 3 kb upstream of two other serine cycles genes encoding phosphoenolpyruvate carboxylase and malyl coenzyme A lyase.  相似文献   

5.
6.
7.
Induction of nitrate reductase activity and mRNA by nitrate and light is prevented if chloroplasts are destroyed by photooxidation in norflurazon-treated squash (Cucurbita maxima L.) cotyledons. The enzyme activity and mRNA can be induced if norflurazon-treated squash seedlings are kept in low-intensity red light, which minimizes photodamage to the plastids. It is concluded that induction of nitrate reductase activity and nitrate reductase mRNA requires intact plastids. If squash seedlings grown in low-intensity red light are transferred to photooxidative white light, nitrate reductase activity accumulates during the first 12 hours after the shift and declines thereafter. Thus photodamage to the plastids and the disappearance of nitrate reductase activity and mRNA are events separable in time, and disappearance of the enzyme activity is a consequence of the damage to the plastids.  相似文献   

8.
9.
10.
11.
Catalase, glycolate oxidase, and hydroxypyruvate reductase, enzymes which are located in the microbodies of leaves, show different developmental patterns in the shoots of wheat seedlings. Catalase and hydroxypyruvate reductase are already present in the shoots of ungerminated seeds. Glycolate oxidase appears later. All three enzymes develop in the dark, but glycolate oxidase and hydroxypyruvate reductase have only low activities. On exposure of the seedlings to continuous white light (14.8 × 103 ergs cm−2 sec−1), the activity of catalase is doubled, and glycolate oxidase and hydroxypyruvate reductase activities increase by 4- to 7-fold. Under a higher light intensity, the activities of all three enzymes are considerably further increased. The activities of other enzymes (cytochrome oxidase, fumarase, glucose-6-phosphate dehydrogenase) are unchanged or only slightly influenced by light. After transfer of etiolated seedlings to white light, the induced increase of total catalase activity shows a much longer lag-phase than that of glycolate oxidase and hydroxypyruvate reductase. It is concluded that the light-induced increases of the microbody enzymes are due to enzyme synthesis. The light effect on the microbody enzymes is independent of chlorophyll formation or the concomitant development of functional chloroplasts. Short repeated light exposures which do not lead to greening are very effective. High activities of glycolate oxidase and hydroxypyruvate reductase develop in the presence of 3-amino-1,2,4-triazole which blocks chloroplast development. The effect of light is not exerted through induced glycolate formation and appears instead to be photomorphogenetic in character.  相似文献   

12.
Development of enzymes in the cotyledons of watermelon seedlings   总被引:19,自引:13,他引:6       下载免费PDF全文
Changes in hypocotyl length, cotyledon weight, lipid content, chlorophyll content, and capacity for photosynthesis have been described in seedlings of Citrullus vulgaris, Schrad. (watermelon) growing at 30 C under various light treatments. Corresponding changes in the levels of 19 enzymes in the cotyledons are described, with particular emphasis on enzymes of microbodies, since during normal greening, enzymes of the glyoxysomes are lost and those of leaf peroxisomes appear. In complete darkness enzymes of the glyoxysomes reach a peak at 4 days and decline as the fat is depleted. Enzymes of mitochondria and of glycolytic pathways also peak at 4 to 5 days and either remain unchanged or decline to a lesser extent. Exposure to light at 4 days, when the cotyledons emerge, results in a selectively greater destruction of enzymes of the glyoxylate cycle; chlorophyll synthesis and capacity for photosynthesis increase in parallel, and there is a striking increase in the activities of chloroplast enzymes and in those of the leaf peroxisomes, hydroxypyruvate reductase and glycolate oxidase. The reciprocal changes in enzymes of the glyoxysomes and of leaf peroxisomes can be temporally dissociated, since even after 10 days in darkness, when malate synthetase and isocitrate lyase have reached very low levels, hydroxypyruvate reductase and glycolate oxidase increase strikingly on exposure to light and the cotyledons become photosynthetic. Furthermore, the parallel development of enzymes of leaf peroxisomes and functional chloroplasts is not immutable, since hydroxypyruvate reductase and glycolate oxidase activity can be elicited in darkness following a 5-minute exposure to light at day 4 while chlorophyll does not develop under these conditions.  相似文献   

13.
14.
Cytokinin-modulated gene expression in excised pumpkin cotyledons   总被引:5,自引:2,他引:3       下载免费PDF全文
Comparison of two-dimensional polyacrylamide gel electrophoretic maps of proteins isolated from benzyladenine-treated and untreated pumpkin (Cucurbita pepo L. cv Halloween) cotyledons showed that the expression of certain proteins is enhanced, induced, or suppressed by the cytokinin treatment. The amount of poly(A)+ mRNA isolated from cotyledons incubated with 10−4 molar benzyladenine for five days was about four-fold over the water-incubated control. The activity of hydroxypyruvate reductase prepared from purified cotyledonous microbodies and analyzed by native gel electrophoresis is proportionally enhanced by sequentially higher concentrations (10−9 to 10−4 molar) of benzyladenine. Ethidium bromide (1 microgram per milliliter) did not inhibit hydroxypyruvate reductase activity; thus, the enzyme synthesis does not appear to be controlled by organelle genes. Hydroxypyruvate reductase synthesis is inhibited by cycloheximide, cordycepin, and to a certain degree by actinomycin D. These data support the view of a close association between cytokinin action and gene expression.  相似文献   

15.
Retrograde signalling from the plastid to the nucleus, also known as plastid signalling, plays a key role in coordinating nuclear gene expression with the functional state of plastids. Inhibitors that cause plastid dysfunction have been suggested to generate specific plastid signals related to their modes of action. However, the molecules involved in plastid signalling remain to be identified. Genetic studies indicate that the plastid-localized pentatricopeptide repeat protein GUN1 mediates signalling under several plastid signalling-related conditions. To elucidate further the nature of plastid signals, investigations were carried out to determine whether different plastid signal-inducing treatments had similar effects on plastids and on nuclear gene expression. It is demonstrated that norflurazon and lincomycin treatments and the plastid protein import2-2 (ppi2-2) mutation, which causes a defect in plastid protein import, all resulted in similar changes at the gene expression level. Furthermore, it was observed that these three treatments resulted in defective RNA editing in plastids. This defect in RNA editing was not a secondary effect of down-regulation of pentatricopeptide repeat protein gene expression in the nucleus. The results indicate that these three treatments, which are known to induce plastid signals, affect RNA editing in plastids, suggesting an unprecedented link between plastid signalling and RNA editing.  相似文献   

16.
Physiological conditions which lead to changes in total carotenoid content in tomato plantlets were identified. Carotenoid levels were found to increase after the onset of a dark period during a normal 24 h cycle. This rapid initial increase is followed by a steady decrease in carotenoid content throughout the night. A decrease in the expression of several carotenogenic genes, namely pds, zds (carotenoid desaturases) and ptox (plastid terminal oxidase), was observed following the removal of the light (when carotenoid content is at its highest). An increase in gene expression was observed before the return to light for pds and zds (when carotenoid levels were at their lowest), or following the return to light for ptox. The phytoene desaturation inhibitor norflurazon leads to a decrease coloured carotenoid content and, in the light, this correlated with pds and zds gene induction. In the dark, norflurazon treatment led to only a weak decrease in carotenoid content and only a small increase in pds and zds gene expression. The striking absence of phytoene accumulation under norflurazon treatment in the dark suggests a down-regulation of carotenoid formation in darkness However, prolonged dark conditions, or treatment with photosynthetic inhibitors, surprisingly led to higher carotenoid levels, which correlated with decreased expression of most examined genes. In addition to light, which acts in a complex way on carotenoid accumulation and gene expression, our results are best explained by a regulatory effect of carotenoid levels on the expression of several biosynthetic genes. In addition, monitoring of protein amounts for phytoene desaturase and plastid terminal oxidase (which sometimes do not correlate with gene expression) indicate an even more complex regulatory pattern.  相似文献   

17.
Saeed M  Duke SH 《Plant physiology》1990,93(1):131-140
Photobleaching of pea (Pisum sativum L.) seedling leaves by treatment with norflurazon (San 9789) and 7 days of continuous white light caused a 76- to 85-fold increase in the activity of the primary α-amylase, a largely apoplastic enzyme, over normally greening seedlings. Levels of chlorophyll were near zero and levels of plastid marker enzyme activities were very low in norflurazon-treated seedlings, indicating severe photooxidative damage to plastids. As levels of norflurazon or fluence rates were lowered, decreasing photobleaching of tissues, α-amylase activity decreased. Levels of leaf β-amylase and starch debranching enzyme changed very little in norflurazon-treated seedlings. Infiltration extraction of leaves of norflurazon-treated and normally greening seedlings indicated that at least 57 and 62%, respectively, of α-amylase activity was in the apoplast. α-Amylase activity recovered from the apoplast of photobleached leaves of norflurazon-treated seedlings was 18-fold higher than that for green leaves. Inhibitors of photosynthesis (DCMU and atrazine) and an inhibitor of chlorophyll accumulation that does not cause photooxidation of plastid components (tentoxin) had little effect on levels of α-amylase activity, indicating norflurazon-caused loss of chlorophyll and lack of photosynthesis did not cause the large induction in α-amylase activity. An inhibitor of both abscisic acid and gibberellin synthesis (paclobutrazol [PP333]) and an analog of norflurazon which inhibits photosynthesis but not carotenoid synthesis (San 9785) caused only moderate (about five-fold) increases in α-amylase activity. Lincomycin and chloramphenicol increased α-amylase activity in light grown seedings to the same magnitude as norflurazon, indicating that the effect of norflurazon is probably through the destruction of plastid ribosomes. It is proposed that chloroplasts produce a negative signal for the regulation of the apoplastic α-amylase in pea.  相似文献   

18.
Glyoxylate and hydroxypyruvate are metabolites involved in the pathway of carbon in photorespiration. The chief glyoxylate-reducing enzyme in leaves is now known to be a cytosolic glyoxylate reductase that uses NADPH as the preferred cofactor but can also use NADH. Glyoxylate reductase has been isolated from spinach leaves, purified to homogeneity, and characterized kinetically and structurally. Chloroplasts contain lower levels of glyoxylate reductase activity supported by both NADPH and NADH, but it is not yet known whether a single chloroplastic enzyme catalyzes glyoxylate reduction with both cofactors. The major hydroxypyruvate reductase activity of leaves has long been known to be a highly active enzyme located in peroxisomes; it uses NADH as the preferred cofactor. To a lesser extent, NADPH can also be used by the peroxisomal enzyme. A second hydroxypyruvate reductase enzyme is located in the cytosol; it preferentially uses NADPH but can also use NADH as cofactor. In a barley mutant deficient in peroxisomal hydroxypyruvate reductase, the NADPH-preferring cytosolic form of the enzyme permits sufficient rates of hydroxypyruvate reduction to support continued substrate flow through the terminal stages of the photosynthetic carbon oxidation (glycolate/glycerate) pathway. The properties and metabolic significance of the cytosolic and organelle-localized glyoxylate and hydroxypyruvate reductase enzymes are discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号