首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forest condition and the associated ecological processes vital for forest patch persistence are difficult to judge rapidly and time‐consuming to sample. Here we examine the efficacy of epigaeic invertebrate species as ecological indicators of Afromontane forest condition. Epigaeic invertebrates are potentially good ecological indicators because they play an important role in maintaining ecosystem processes, such as nutrient cycling, rely almost entirely upon the resources provided by the organic leaf litter layer, are known to be sensitive to environmental changes, and are easily surveyed. Epigaeic invertebrate communities were sampled using pitfall traps for 21 days in each of 11 forests that spanned a gradient from large and relatively undisturbed to small and highly disturbed forest patches. Using canonical correspondence analysis, we identified a suite of potential ecological indicator species (eight out of 140 species) and showed that gradients in their population response (abundance) reflect overall forest condition, as judged from the correlated vegetation indicators and position of the forests of varying condition along this gradient. The abundance of all but two of the eight indicator species (a spider and the landhopper, Talitriator africana[Amphipoda]) decreased with increasing disturbance. As a group, the rove beetles (Staphylinidae) show promise as ecological indicators and comprised four of the eight potential indicators species. A strong case is also made for a single‐species ecological indicator in the form of T. africana, which is a robust and sensitive indicator of poor forest condition.  相似文献   

2.
The Afromontane region of South Africa is characterised by numerous small, remnant forests in a grassland matrix. The edges, or ecotones between forests and grasslands are usually sharp (typically just over a few metres) and are mainly maintained by both natural and, more recently, anthropogenic fires. We investigated epigaeic amphipod, carabid and ant distribution patterns across Afromontane forest/grassland ecotones and found little evidence to support the biological edge effect. Five of the fifty-two sampled species however, did increase significantly in abundance at the ecotone. Among these was a very distinct edge species, the amphipod Talistroides africana. Overall, carabids were more abundant and species rich in forests while for ants it was in the grasslands. Ants and carabids were both more abundant and species rich in spring and summer than in autumn and winter. More interestingly, the abundance and species richness patterns across the ecotone did not change with the passing of the seasons. We argue that a conservation strategy for the Afromontane forest patches must also incorporate the surrounding grassland. The grassland habitat is often perceived as less valuable than forest and, as a consequence, is subject to many anthropogenic disturbances such as fragmentation, cattle grazing and afforestation. Protecting grasslands around forest patches not only conserves the rich ant diversity, but also conserves the biota in the forests and at the edges, and would therefore be more meaningful in terms of the overall conservation of Afromontane biodiversity.  相似文献   

3.
Human disturbance threatens and modifies forest ecosystems worldwide. Previous studies have investigated the effects of human impact on local bird communities in disturbed forests, but we still lack information on how bird species richness and ecological processes respond to different forest modifications present at a landscape scale. In a heterogeneous South African landscape, we chose six types of indigenous scarp forest, differing in the intensity of human disturbance: continuous natural forests and natural forest fragments in nature reserves, forest fragments in eucalyptus plantations, fragments in the agricultural matrix, forest gardens and secondary forests in game reserves. In 36 study sites, we investigated the bird community using point counts and observed the seed removal of birds at the native tree species Celtis africana. Species richness did not differ among the forest types, but abundance varied significantly with most birds observed in fragments in the agricultural matrix, forest gardens, and secondary forests. The higher bird abundance in these forests was mainly due to forest generalists, shrubland and open country species whereas forest specialists were rarely present. Changes in species composition were also confirmed by multivariate analysis which clearly separated bird communities by forest type. Frugivore abundance in C. africana was highest in natural forest fragments, fragments in the agricultural matrix, forest gardens and secondary forests. The same trend was found for the estimated total number of fruits removed per C. africana tree, though the differences among forest types were not significant. Consequently, modified forests seem to maintain important ecological functions as they provide food sources for generalist species which may, due to their mobility, enhance natural plant regeneration. However, we could show that protected forest habitats are important refugees for specialist species sensitive to human disturbance.  相似文献   

4.
Abstract The conservation of biodiversity is dependent on protecting ecosystem‐level processes. We investigated the effects of fragment size and habitat edge on the relative functioning of three ecological processes – decomposition, predation and regeneration of trees – in small Afromontane forests in KwaZulu‐Natal, South Africa. Ten sampling stations were placed in each of four forest categories: the interior of three large indigenous forest fragments (100 m from the edge), the edges of these large fragments, 10 small indigenous fragments (<1 ha) and 10 small exotic woodlands (<0.5 ha). Fragment size and edge effects did not affect the abundance of the amphipod Talitriator africana, a litter decomposer, and overall dung beetle abundance and species richness significantly. Bird egg predation was marginally greater at large patch edges compared with the other forest categories, while seed predation did not differ among forest categories. Tree seedling assemblage composition did not differ significantly among large patch interiors and edges, and small indigenous fragments. Sapling and canopy assemblage composition each differed significantly among these three indigenous forest categories. Thus, while tree recruitment was not negatively affected by patch size or distance from the edge, conditions in small fragments and at edges appear to affect the composition of advanced tree regeneration. These ecological processes in Afromontane forests appear to be resilient to fragmentation effects. We speculate that this is because the organisms in these forests have evolved under fragmented conditions. Repeated extreme changes in climate and vegetation over the Pleistocene have acted as significant distribution and ecological extinction filters on these southern hemisphere forest biota, resulting in fauna and flora that are potentially resilient to contemporary fragmentation effects. We argue that because small patches and habitat edges appear to be ecologically viable they should be included in future conservation decisions.  相似文献   

5.
Forest fires are one of the most frequent and important causes of forest disturbances, the occurrence of which is globally increasing due to the effects of climate change. This study aimed to determine the impacts of fire and human activity on arthropod communities in affected forests. Twelve study sites in three burned areas were selected for this study. Intensities of disturbance in the study sites were characterized as follows: Disturbance Degree (DD) 0 (no fire), DD 1 (surface fire), DD 2 (crown fire), and DD 3 (crown fire followed by reforestation). Arthropods were collected using pitfall traps. Fourteen arthropod taxa (families, orders or classes), which are relatively homogeneous in their feeding habits and abundant, were analyzed. Depth of litter layer was selected as an environmental indicator for disturbance intensity, as it decreases linearly as the degree of disturbance increased. Changes of arthropod abundance in response to disturbance differed among functional guilds. As disturbance intensity increased, the abundance of detritivores decreased, but the abundance of herbivores increased. However, the abundance of predators varied between taxa. Formicidae and Araneae increased in disturbed sites, whereas Carabidae and Staphylinidae did not change. The abundance of Thysanura and Diptera was highly correlated with disturbance intensity, and may be suitable as a bioindicator for forest disturbance. Arthropod communities were more heterogeneous in forests of intermediate disturbance.  相似文献   

6.
Amazonian forest fragments and second-growth forests often differ substantially from undisturbed forests in their microclimate, plant-species composition, and soil fauna. To determine if these changes could affect litter decomposition, we quantified the mass loss of two contrasting leaf-litter mixtures, in the presence or absence of soil macroinvertebrates, and in three forest habitats. Leaf-litter decomposition rates in second-growth forests (>10 years old) and in fragment edges (<100 m from the edge) did not differ from that in the forest interior (>250 m from the edges of primary forests). In all three habitats, experimental exclusion of soil invertebrates resulted in slower decomposition rates. Faunal-exclosure effects were stronger for litter of the primary forest, composed mostly of leaves of old-growth trees, than for litter of second-growth forests, which was dominated by leaves of successional species. The latter had a significantly lower initial concentration of N, higher C:N and lignin:N ratios, and decomposed at a slower rate than did litter from forest interiors. Our results indicate that land-cover changes in Amazonia affect decomposition mainly through changes in plant species composition, which in turn affect litter quality. Similar effects may occur on fragment edges, particularly on very disturbed edges, where successional trees become dominant. The drier microclimatic conditions in fragment edges and second-growth forests (>10 years old) did not appear to inhibit decomposition. Finally, although soil invertebrates play a key role in leaf-litter decomposition, we found no evidence that differences in the abundance, species richness, or species composition of invertebrates between disturbed and undisturbed forests significantly altered decomposition rates.  相似文献   

7.
张念念  陈又清  卢志兴  张威  李可力 《昆虫学报》2013,56(11):1314-1323
橡胶树Hevea brasiliensis是云南省重要的经济林木, 但对其生态服务功能尚存在争议。本研究以天然次生林为对照, 使用Winkler法对橡胶林枯落物层蚂蚁进行初步研究, 探讨橡胶林枯落物层蚂蚁的生态状况。于2012年10月和2013年4月采用Winkler袋法调查了云南省绿春县大黑山乡橡胶林和牛孔乡天然次生林枯落物层蚂蚁群落的物种多样性、 群落结构差异及指示种。结果表明: 橡胶林枯落物层蚂蚁多度(转换后)、 物种丰富度S和ACE值显著低于无干扰的天然次生林(P<0.05); 蚂蚁多度(转换后)显著低于有干扰的天然次生林(P<0.05), 而物种丰富度S和ACE值差异不显著。橡胶林枯落物层蚂蚁群落结构与两种天然次生林都不相似(F=3.93, df=12, P<0.01)。橡胶林中流浪种大头蚁属Pheidole的蚂蚁种类与天然次生林相比, 物种丰富度增加了100%。天然次生林枯落物层中蚂蚁指示种有3种, 分别为刘氏隆头蚁Strumigenys lewisi、 黄足厚结猛蚁Pachycondyla luteipes和女娲角腹蚁Recurvidris nuwa, 而橡胶林枯落物层中指示种仅为菱结大头蚁Pheidole nodus。枯落物层蚂蚁物种多样性与枯落物厚度呈显著正相关, 而枯落物盖度仅与蚂蚁多度(转换后)有相关性。结果说明, 橡胶林经过长期的经营管理, 生态环境趋于稳定, 对枯落物层蚂蚁群落具有一定的保护作用, 但与天然次生林相比, 蚂蚁多度(转换后)及群落结构仍显示出明显的不同。  相似文献   

8.
Forest destruction and disturbance can have long-term consequences for species diversity and ecosystem processes such as seed dispersal. Understanding these consequences is a crucial component of conserving vulnerable ecosystems. In the heavily fragmented and disturbed Kakamega Forest, western Kenya, we studied seed dispersal of Prunus africana (Rosaceae). In the main forest, five forest fragments, and differently disturbed sites, we quantified the overall frugivore community as an indicator for species diversity. Furthermore, we determined the frugivores on 28 fruiting P. africana trees, estimated seed dispersal, crop size and the general fruit availability of surrounding trees. During the overall frugivore census we recorded 49 frugivorous species; 36 of them were observed visiting P. africana trees and feeding on their fruits. Although overall frugivore species richness was 1.1 times lower in fragments than in main forest sites and 1.02 times higher in highly disturbed than in less disturbed sites, P. africana experienced 1.1 times higher numbers of frugivores in fragments than in main forest sites and 1.5 times higher numbers of frugivores in highly disturbed than in less disturbed sites. Correspondingly, seed dispersal was 1.5 times higher in fragments than in main forest sites and 1.5 times higher in more disturbed than less disturbed sites. Fruit availability of surrounding trees and crop size influenced the number of visitors to some degree. Thus, the number of dispersed seeds seemed to be slightly higher in fragmented and highly disturbed sites. This indicates that loss of single species does not necessarily lead to a decrease of ecosystem services. However, loss of diversity could be a problem in the long term, as a multitude of species might act as buffer against future environmental change.  相似文献   

9.
Tree abundance and species composition in the mechanically logged, intensively pitsawn and minimally disturbed areas of Kalinzu Forest Reserve were determined. The spatial and diameter size‐class distribution of ten selected tree species representing pioneer, secondary colonizer, understorey, canopy, dominant and endangered species were also assessed. The species were: Musanga leo‐errerae, Trema orientalis, Funtumia africana, Strombosia scheffleri, Oxyansus speciosus, Parinari excelsa, Tabernaemontana holstii, Newtonia buchananii, Lovoa swynnertonii and Entandrophragma angolense. The mean stem density of all trees ≥0.5 m in height was 2809.1 per hectare and 150 species were enumerated in the three forest areas. Most individuals (47.73%) and species (75.0%) were recorded in the minimally disturbed and least in the mechanically logged areas. Of the selected species, F. africana was the most abundant (n = 789) and widely distributed in each of the areas. Entandrophragma angolense was the least abundant (n = 63) and most of its individuals (74.6%) were recorded in the minimally disturbed area. Funtumia africana and S. scheffleri (subcanopy), O. speciosus and T. holstii (understorey), N. buchananii (canopy) and P. excelsa (an upper canopy and a climax species of this forest reserve) had an inverse J‐shaped diameter size‐class structure while pioneer species (M. leo‐errerae and T. orientalis) had a bell‐shaped size‐class structure.  相似文献   

10.
Transportation infrastructure is a main cause of environmental change in forest landscapes worldwide. In the Canary Islands, a dense road system fragment the native Canarian pine and laurel forests causing potential changes in population densities of endemic lacertid lizards (genus Gallotia). Our aim was to assess road edge effects on relative abundance patterns of the endemic Gallotia galloti in both forests. We also explored the species–habitat relationships in this road-fragmentation context. We found that lizard relative density in relation to road edges differed between forests. Lizards were more abundant along edges and leeward interior, but virtually absent from the interior of the windward laurel forest. In the pine forest, lizards were present at three distances from edge, with a net decrease in abundance from edge to interior. These patterns may be explained partly by differences in vegetation structure regarding road proximity in each forest that potentially affect the helio- and thigmothermic character of G. galloti, and thus its habitat use. A general suggestion of this study is that road margins create corridors that may be used by native lizards for dispersal through inhospitable forest matrix. The high road density in Tenerife may have negative implications for the conservation of the genetic variability of G. galloti. At the island scale, increased communication between lizard populations through road corridors might increase homogenization of the gene pool. Ecological processes in which this lizard plays important roles may also experience changes along road edges.  相似文献   

11.
Many contemporary landscapes have vast areas of production land-uses within landscape mosaics, which may impact species dispersal and occurrence. Here, we determined the extent to which commercial exotic plantation forests affect arthropod diversity associated with natural Afrotemperate forests in the southern Cape Afrotemperate landscape mosaic, South Africa. Natural forests and fynbos vegetation naturally coexist here, with the addition of exotic plantation forests to form a heterogeneous landscape. Epigaeic arthropods were collected by means of pitfall trapping at stations along transects from inside natural Afrotemperate forest, across the edge and into the surrounding land use, which included natural fynbos vegetation, mature forestry plantation blocks (Pinus radiata) and areas where plantations have been clear-felled. Stations were set at 5, 10, 20, 30 and 50 m to both sides of the forest edge with the addition of 100 m stations situated in the natural forest. Arthropod assemblages were distinct in all land-use types. Natural edge effect between forest and fynbos, as measured by arthropod compositional changes, was 20 m into natural forests, yet when bordered by plantations this edge increased up to 30 m into the forest. Once plantations were clear-felled, edge effects increased up to 50 m into natural forests. Responses in terms of assemblage composition and species richness were however taxon specific. Results show that (1) pine plantations are not alternative habitat for native Afrotemperate forest arthropods, (2) there were stark changes in arthropod assemblage composition at edges between these land-use types and (3) that the effects of timber plantation practices (re: clear-felling) also penetrate deep into surrounding natural forests and need to be considered in regional landscape planning. The need for an effective rehabilitation strategy of clear-felled areas is identified as key priority for bordering natural forests. Ongoing monitoring in both the disturbed area and the adjoining natural forest should be undertaken to ensure sufficient recovery.  相似文献   

12.
Landscape change and habitat fragmentation is increasingly affecting forests worldwide. Assessments of patterns of spatial cover in forests over time can be critical as they reveal important information about landscape condition. In this study, we assessed landscape patterns across the Mountain Ash (Eucalyptus regnans) and Alpine Ash (Eucalyptus delegatensis) forests in the Central Highlands of Victoria between 1999 and 2019. These forests have experienced major disturbance over the past 20 years through a major fire (in 2009) and extensive industrial logging. We found that around 70% and 65% of the Mountain Ash and Alpine Ash forest areas, respectively, were either disturbed or within 200 m of a disturbed area. Inclusion of planned logging increased these disturbance categories to 72% and 70%, respectively. We also found that the isolation of Mountain Ash core areas (patches of undisturbed forest >1000 ha) increased significantly (P < 0.05) over our study period, with the proximity between disturbed areas conversely increasing significantly (P < 0.05). This means that continued and planned disturbance through industrial logging will have an amplified adverse effect on remaining undisturbed ash forest patches, which will become smaller and more dispersed across the landscape.  相似文献   

13.
  1. We investigated how compositional differences in riparian leaf litter derived from burned and undisturbed forests influenced leaf breakdown and macroinvertebrate communities using experimental mixed-species leaf packs in boreal headwater streams. Leaf pack mixtures simulating leaf litter from dominant riparian woody-stem species in burned and undisturbed riparian zones were incubated in two references and two fire-disturbed streams for 5 weeks prior to measuring temperature-corrected breakdown rates and macroinvertebrate community composition, richness, and functional metrics associated with decomposers such as shredder abundance and % shredders.
  2. Leaf litter breakdown rates were higher and had greater variability in streams bordered by reference riparian forests than in streams where riparian forests had been burned during a wildfire. Streams bordered by fire disturbance showed significant effects of litter mixture on decomposition rates, observed as significantly higher decomposition rates of a fire-simulated leaf mixture compared to all other mixtures.
  3. Variation among sites was higher than variation among litter mixtures, especially for macroinvertebrate community composition. In general, fire-simulated leaf mixtures had greater shredder abundances and proportions, but lower overall macroinvertebrate abundance; however, the shredder abundance trend was not consistent across all leaf mixtures at each stream.
  4. These results show that disturbance-driven riparian forest condition and resulting composition of leaf subsidies to streams can influence aquatic invertebrate community composition and their function as decomposers. Therefore, if one of the primary goals of modern forest management is to emulate natural disturbance patterns, boreal forest managers should adapt silvicultural practices to promote leaf litter input that would arise post-fire, thereby supporting stream invertebrate communities and their function.
  相似文献   

14.
Pselaphine beetles (Coleoptera: Staphylinidae: Pselaphinae) are cosmopolitan, species‐rich, and yet poorly studied, particularly in the tropics. We sampled beetles in three types of primary forest and two types of disturbed forest habitats in eastern Thailand to assess the utility of pselaphine beetles as bioindicators of forest disturbance. We simultaneously measured leaf litter mass, soil moisture, soil acidity and canopy cover at each site to infer which environmental factors affect pselaphine beetle diversity and abundance. At each site, pselaphine beetles were extracted from ten 1 m2 samples of leaf litter and soil with Tullgren funnels. We sampled 1867 adult beetles representing six supertribes, 51 genera and 114 morphospecies; 7% of the genera and 92% of the species were undescribed. Forest types differed significantly in species richness, abundance, diversity and evenness. Primary forest had greater numbers of species and individuals, and higher diversity indices (H′). Teak plantation and secondary forest had substantially fewer individuals and species of pselaphine beetles. Species composition differed between primary and degraded forests. Canopy cover, soil moisture, and leaf litter mass positively correlated with beetle species richness and abundance. Leaf litter mass and soil moisture were the two most important factors affecting the diversity of pselaphine beetle assemblages. Among the 114 morphospecies collected, 43 morphospecies were specific to two or three habitats and 64 morphospecies were found only in a single habitat. Thus pselaphine beetles appear to have rather narrow habitat requirements and their presence/absence was correlated with environmental differences. These traits make pselaphine beetles a suitable bioindicator taxon for assessing forest litter diversity and monitoring habitat change.  相似文献   

15.

Background

The diversity and complexity of invertebrate communities usually result in their exclusion from conservation activities. Here we provide a step process for assessing predominantly ground-dwelling Afrotemperate forest invertebrates'' (earthworms, centipedes, millipedes, ants, molluscs) potential as surrogates for conservation and indicators for monitoring. We also evaluated sampling methods (soil and litter samples, pitfall traps, active searching quadrats and tree beating) and temporal (seasonal) effects.

Methodology/Principal Findings

Lack of congruence of species richness across taxa indicated poor surrogacy potential for any of the focus taxa. Based on abundance and richness, seasonal stability, and ease of sampling, molluscs were the most appropriate taxon for use in monitoring of disturbance impacts. Mollusc richness was highest in March (Antipodal late summer wet season). The most effective and efficient methods were active searching quadrats and searching litter samples. We tested the effectiveness of molluscs as indicators for monitoring by contrasting species richness and community structure in burned relative to unburned forests. Both species richness and community structure changed significantly with burning. Some mollusc species (e.g. Macroptychia africana) showed marked negative responses to burning, and these species have potential for use as indicators.

Conclusions/Significance

Despite habitat type (i.e., Afrotemperate forest) being constant, species richness and community structure varied across forest patches. Therefore, in conservation planning, setting targets for coarse filter features (e.g., habitat type) requires fine filter features (e.g., localities for individual species). This is especially true for limited mobility taxa such as those studied here. Molluscs have high potential for indicators for monitoring, and this requires broader study.  相似文献   

16.
Some understory insectivorous birds manage to persist in tropical forest fragments despite significant habitat loss and forest fragmentation. Their persistence has been related to arthropod biomass. In addition, forest structure has been used as a proxy to estimate prey availability for understory birds and for calculating prey abundance. We used arthropod biomass and forest structural variables (leaf area index [LAI] and aerial leaf litter biomass) to explain the abundance of White‐breasted Wood‐Wrens (Henicorhina leucosticta), tropical understory insectivorous birds, in six forests in the Caribbean lowlands of Costa Rica. To estimate bird abundance, we performed point counts (100‐m radius) in two old‐growth forests, two second‐growth forests, and two selectively logged forests. Arthropod abundance was the best predictor of wood‐wren abundance (wi = 0.75). Wood‐wren abundance increased as the number of arthropods increased, and the estimated range of bird abundance obtained from the model varied from 0.51 (0.28 – 0.93 [95%CI]) to 3.70 (1.68 – 5.20 [95%CI]) within sites. LAI was positively correlated to prey abundance (P = 0.01), and explained part of the variation in wood‐wren abundance. In forests with high LAI, arthropods have more aerial leaf litter as potential habitat so more potential prey are available for wood‐wrens. Forests with a greater abundance of aerial leaf litter arthropods were more likely to sustain higher densities of wood‐wrens in a fragmented tropical landscape.  相似文献   

17.
天然次生林是川西亚高山林区经历大规模砍伐后形成的主要森林类型之一,是我国西南林区水源涵养林的重要组成部分。以不同经营模式(抚育经营、清林+补植经营以及封育经营)的川西亚高山次生桦木林和桦木、岷江冷杉混交林为研究对象,通过样方取样法获取和分析了林地苔藓、枯落物和土壤的水文指标。结果表明,与封山育林经营相比,抚育经营下的两种林型的苔藓最大持水率均显著升高(F=8.147,P=0.010;F=15.525,P=0.006)、桦木林的蓄积量显著降低(F=4.979,P=0.022),而苔藓最大持水量变化不显著;混交林则均无显著变化。在清林+补植经营下,混交林苔藓水文效应变化不显著(F=2.280,P=0.183),而桦木林虽然苔藓最大持水率无显著变化(F=4.072,P=0.098),但蓄积量的显著降低(F=3.536,P=0.044)导致了其最大持水量的降低(F=3.782,P=0.042)。两种经营方式基本上促进了天然林的枯落物最大持水率、降低了林下枯落物蓄积量;其中抚育经营效果更显著,但两种经营方式下枯落物最大持水量变化不显著。两种经营方式下,桦木林和混交林的林下土壤容重均降低(F=10.715,P0.01;F=5.148,P0.05),同时桦木林土壤最大持水量增加(F=4.499,P0.05),其中抚育经营的影响程度都更显著。从4年来的短期效应来看,两种经营方式均对天然林的林地持水能力具有促进作用,抚育经营较清林+补植经营更显著,但这仅是短期的结果,两种经营方式对于退化天然林水文以及其他生态功能恢复的长期影响还有待于进一步的观测研究。  相似文献   

18.
受人类活动干扰的增加,亚热带森林频繁转换为次生林和人工林,可能显著影响土壤无脊椎动物群落结构及其生态功能,但当前的认识并不一致。因此,于2022年7月调查了亚热带天然常绿阔叶林转换为次生林、米槠人工林、杉木人工林后土壤无脊椎动物群落结构特征。共捕获土壤无脊椎动物659只,丰度为26540只/m2,隶属1门6纲13目59科,其中蚁科和球角 虫 兆 科为优势类群。森林转换改变了土壤无脊椎动物群落组成和多样性。天然林向米槠人工林和杉木人工林转换后,土壤无脊椎动物丰度和类群均明显降低,其中大型土壤无脊椎动物丰度的响应更为敏感,在2种林型中分别显著降低了33.58%和36.53%。尽管林型转换对土壤无脊椎动物群落多样性指数无显著影响,但改变了土壤无脊椎动物群落组成,其中天然林与杉木人工林群落组成极不相似(J < 0.25),等节 虫 兆 科为杉木人工林优势类群,占比达到59.84%。冗余分析显示,土壤湿度、凋落物现存量和凋落物磷含量是影响土壤无脊椎动物群落的主要因子,对土壤无脊椎动物群落的解释率为69.30%。可见,林型转换可能通过改变土壤理化性质和凋落物质量,调控土壤无脊椎动物群落结构。  相似文献   

19.
Previous studies have proposed terrestrial amphipods as potential bioindicators of forest condition. In order to investigate the response of the exotic terrestrial amphipod Talitroides topitotum (Crustacea: Amphipoda: Talitridae) to anthropogenic disturbances and its potential as a bioindicator, we compared its abundance among three forest reserves in southeastern Brazil, under different types and intensities of disturbance. We observed significantly higher abundances in disturbed sites compared to undisturbed sites in two of the reserves sampled, corroborating previous studies. In the third reserve, in which both forest disturbance and the abundance of amphipods were much lower than in the other two reserves, there was no significant difference between the sampling sites. We also speculate about the potential use of terrestrial amphipods as global indicators of forest disturbance.  相似文献   

20.
Aim To examine the influence of climatic extinction filtering during the last glacial maximum (LGM; c. 18,000 yr bp ) and of the subsequent recolonization of forest faunas on contemporary assemblage composition in southern African forests. Location South Africa, Mozambique, Swaziland, Zimbabwe. Methods Data comprised presence/absence by quarter‐degree grid cell for forest‐dependent and forest‐associated birds, non‐volant mammals and frogs. Twenty‐one forest subregions were assigned to one of three previously identified forest types: Afrotemperate, scarp, and Indian Ocean coastal belt. Differences among forest types were examined through patterns and gradients of species richness and endemism, assemblage similarity, species turnover, and coefficients of species dispersal direction. The influence of contemporary environment on assemblage composition was investigated using partial canonical correspondence analysis. Several alternative biogeographical hypotheses for the recolonization of forest faunas were tested. Results Afrotemperate faunas are relatively species‐poor, have low species turnover, and are unsaturated and infiltrated by generalist species. In northern and central regions, communities are supplemented by recolonization from scarp forest refugia, and among frogs by autochthanous speciation in localized refugia. Scarp faunas are relatively species‐rich, contain many forest‐dependent species, have high species turnover, and overlap with coastal and Afrotemperate faunas. Coastal forests are relatively species‐rich with high species turnover. Main conclusions Afrotemperate communities were affected most by climatic extinction filtering events. Scarp forests were Afrotemperate refugia during the LGM and are a contemporary overlap zone between Afrotemperate and coastal forest. Coastal faunas derive from post‐LGM colonization along the eastern seaboard from tropical East African refugia. The greatest diversity is achieved in scarp and coastal forest faunas in northern KwaZulu–Natal province. This historical centre of diversity has influenced the faunal diversity of nearly all other forests in South Africa. The response of vertebrate taxa to large‐scale, historical processes is dependent on their relative mobility: forest birds best illustrate patterns resulting from post‐glacial faunal dispersal, while among mammals and frogs the legacy of climatic extinction filtering remains stronger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号