首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
SeqA protein negatively regulates replication initiation in Escherichia coli and is also proposed to organize maturation and segregation of the newly replicated DNA. The seqA mutants suffer from chromosomal fragmentation; since this fragmentation is attributed to defective segregation or nucleoid compaction, two‐ended breaks are expected. Instead, we show that, in SeqA's absence, chromosomes mostly suffer one‐ended DNA breaks, indicating disintegration of replication forks. We further show that replication forks are unexpectedly slow in seqA mutants. Quantitative kinetics of origin and terminus replication from aligned chromosomes not only confirm origin overinitiation in seqA mutants, but also reveal terminus under‐replication, indicating inhibition of replication forks. Pre‐/post‐labelling studies of the chromosomal fragmentation in seqA mutants suggest events involving single forks, rather than pairs of forks from consecutive rounds rear‐ending into each other. We suggest that, in the absence of SeqA, the sister‐chromatid cohesion ‘safety spacer’ is destabilized and completely disappears if the replication fork is inhibited, leading to the segregation fork running into the inhibited replication fork and snapping the latter at single‐stranded DNA regions.  相似文献   

3.
The S-phase checkpoint kinases Mec1 and Rad53 in the budding yeast, Saccharomyces cerevisiae, are activated in response to replication stress that induces replication fork arrest. In the absence of a functional S-phase checkpoint, stalled replication forks collapse and give rise to chromosome breakage. In an attempt to better understand replication dynamics in S-phase checkpoint mutants, we developed a replication origin array for budding yeast that contains 424 of 432 previously identified potential origin regions. As expected, mec1-1 and rad53-1 mutants failed to inhibit late origin activation. Surprisingly however, 17 early-firing regions were not replicated efficiently in these mutants. This was not due to a lack of initiation, but rather to problems during elongation, as replication forks arrested in close proximity to these origins, resulting in the accumulation of small replication intermediates and eventual replication fork collapse. Importantly, these regions were not only prone to chromosome breakage in the presence of exogenous stress but also in its absence, similar to fragile sites in the human genome.  相似文献   

4.
The complete and accurate duplication of genomic information is vital to maintain genome stability in all domains of life. In Escherichia coli, replication termination, the final stage of the duplication process, is confined to the “replication fork trap” region by multiple unidirectional fork barriers formed by the binding of Tus protein to genomic ter sites. Termination typically occurs away from Tus-ter complexes, but they become part of the fork fusion process when a delay to one replisome allows the second replisome to travel more than halfway around the chromosome. In this instance, replisome progression is blocked at the nonpermissive interface of the Tus-ter complex, termination then occurs when a converging replisome meets the permissive interface. To investigate the consequences of replication fork fusion at Tus-ter complexes, we established a plasmid-based replication system where we could mimic the termination process at Tus-ter complexes in vitro. We developed a termination mapping assay to measure leading strand replication fork progression and demonstrate that the DNA template is under-replicated by 15 to 24 bases when replication forks fuse at Tus-ter complexes. This gap could not be closed by the addition of lagging strand processing enzymes or by the inclusion of several helicases that promote DNA replication. Our results indicate that accurate fork fusion at Tus-ter barriers requires further enzymatic processing, highlighting large gaps that still exist in our understanding of the final stages of chromosome duplication and the evolutionary advantage of having a replication fork trap.  相似文献   

5.
The separation of DNA replication origin licensing and activation in the cell cycle is essential for genome stability across generations in eukaryotic cells. Pre‐replicative complexes (pre‐RCs) license origins by loading Mcm2‐7 complexes in inactive form around DNA. During origin firing in S phase, replisomes assemble around the activated Mcm2‐7 DNA helicase. Budding yeast pre‐RCs have previously been reconstituted in vitro with purified proteins. Here, we show that reconstituted pre‐RCs support replication of plasmid DNA in yeast cell extracts in a reaction that exhibits hallmarks of cellular replication initiation. Plasmid replication in vitro results in the generation of covalently closed circular daughter molecules, indicating that the system recapitulates the initiation, elongation, and termination stages of DNA replication. Unexpectedly, yeast origin DNA is not strictly required for DNA replication in vitro, as heterologous DNA sequences could support replication of plasmid molecules. Our findings support the notion that epigenetic mechanisms are important for determining replication origin sites in budding yeast, highlighting mechanistic principles of replication origin specification that are common among eukaryotes.  相似文献   

6.
7.
Summary Plasmid pTSO118 containing the Escherichia coli origin of replication, oriC, initiated replication simultaneously with the chromosome when temperature-sensitive host cells were synchronized by temperature shifts. Replicating intermediates of the plasmid as well as of the chromosome were isolated from the outer membrane fraction of the cell. Plasmid DNA with eye structures was enriched when cytosine-1--arabinofuranoside was introduced into the culture during replication. Electron microscopy of the replicating molecules, after digestion with restriction endonucleases, showed that the replication fork proceeds exclusively counter-clockwise towards the unc operon. We conclude that the replication of the oriC plasmid is unidirectional or, if bidirectional, is highly asymmetric.  相似文献   

8.
Noguchi C  Noguchi E 《Genetics》2007,175(2):553-566
Sap1 is involved in replication fork pausing at rDNA repeats and functions during mating-type switching in Schizosaccharomyces pombe. These two roles are dependent on the ability of Sap1 to bind specific DNA sequences at the rDNA and mating-type loci, respectively. In S. pombe, Swi1 and Swi3 form the replication fork protection complex (FPC) and play important roles in the activation of the replication checkpoint and the stabilization of stalled replication forks. Here we describe the roles of Sap1 in the replication checkpoint. We show that Sap1 is involved in the activation of the replication checkpoint kinase Cds1 and that sap1 mutant cells accumulate spontaneous DNA damage during the S- and G2-phases, which is indicative of fork damage. We also show that sap1 mutants have a defect in the resumption of DNA replication after fork arrest. Sap1 is localized at the replication origin ori2004 and this localization is required for the association of the FPC with chromatin. We propose that Sap1 is required to recruit the FPC to chromatin, thereby contributing to the activation of the replication checkpoint and the stabilization of replication forks.  相似文献   

9.
10.
Dia2 is an F‐box protein, which is involved in the regulation of DNA replication in the budding yeast Saccharomyces cerevisiae. The function of Dia2, however, remains largely unknown. In this study, we report that Dia2 is associated with the replication fork and regulates replication fork progression. Using modified yeast two‐hybrid screening, we have identified components of the replisome (Mrc1, Ctf4 and Mcm2), as Dia2‐binding proteins. Mrc1 and Ctf4 were ubiquitinated by SCFDia2 both in vivo and in vitro. Domain analysis of Dia2 revealed that the leucine‐rich repeat motif was indispensable for the regulation of replisome progression, whereas the tetratricopeptide repeat (TPR) motif was involved in the interaction with replisome components. In addition, the TPR motif was shown to be involved in Dia2 stability; deleting the TPR stabilized Dia2, mimicking the effect of DNA damage. ChIP‐on‐chip analysis illustrated that Dia2 localizes to the replication fork and regulates fork progression on hydroxyurea treatment. These results demonstrate that Dia2 is involved in the regulation of replisome activity through a direct interaction with replisome components.  相似文献   

11.
Reactivation of stalled replication forks requires specialized mechanisms that can recognize the fork structure and promote downstream processing events. Fork regression has been implicated in several models of fork reactivation as a crucial processing step that supports repair. However, it has also been suggested that regressed forks represent pathological structures rather than physiological intermediates of repair. To investigate the biological role of fork regression in bacteriophage T4, we tested several mechanistic models of regression: strand exchange‐mediated extrusion, topology‐driven fork reversal and helicase‐mediated extrusion. Here, we report that UvsW, a T4 branch‐specific helicase, is necessary for the accumulation of regressed forks in vivo, and that UvsW‐catalysed regression is the dominant mechanism of origin‐fork processing that contributes to double‐strand end formation. We also show that UvsW resolves purified fork intermediates in vitro by fork regression. Regression is therefore part of an active, UvsW‐driven pathway of fork processing in bacteriophage T4.  相似文献   

12.
We have investigated the possible role of Escherichia coli DNA polymerase (Pol) I in chromosomal replication fidelity. This was done by substituting the chromosomal polA gene by the polAexo variant containing an inactivated 3′→5′ exonuclease, which serves as a proofreader for this enzyme's misinsertion errors. Using this strain, activities of Pol I during DNA replication might be detectable as increases in the bacterial mutation rate. Using a series of defined lacZ reversion alleles in two orientations on the chromosome as markers for mutagenesis, 1.5‐ to 4‐fold increases in mutant frequencies were observed. In general, these increases were largest for lac orientations favouring events during lagging strand DNA replication. Further analysis of these effects in strains affected in other E. coli DNA replication functions indicated that this polAexo mutator effect is best explained by an effect that is additive compared with other error‐producing events at the replication fork. No evidence was found that Pol I participates in the polymerase switching between Pol II, III and IV at the fork. Instead, our data suggest that the additional errors produced by polAexo are created during the maturation of Okazaki fragments in the lagging strand.  相似文献   

13.
In Saccharomyces cerevisiae, genome stability depends on RNases H1 and H2, which remove ribonucleotides from DNA and eliminate RNA–DNA hybrids (R‐loops). In Schizosaccharomyces pombe, RNase H enzymes were reported to process RNA–DNA hybrids produced at a double‐strand break (DSB) generated by I‐PpoI meganuclease. However, it is unclear if RNase H is generally required for efficient DSB repair in fission yeast, or whether it has other genome protection roles. Here, we show that S. pombe rnh1? rnh201? cells, which lack the RNase H enzymes, accumulate R‐loops and activate DNA damage checkpoints. Their viability requires critical DSB repair proteins and Mus81, which resolves DNA junctions formed during repair of broken replication forks. “Dirty” DSBs generated by ionizing radiation, as well as a “clean” DSB at a broken replication fork, are efficiently repaired in the absence of RNase H. RNA–DNA hybrids are not detected at a reparable DSB formed by fork collapse. We conclude that unprocessed R‐loops collapse replication forks in rnh1? rnh201? cells, but RNase H is not generally required for efficient DSB repair.  相似文献   

14.
The replication terminus region of the Bacillus subtilis chromosome, comprising TerI and TerII plus the rtp gene (referred to as the terC region) was relocated to serC (257 degrees) and cym (10 degrees) on the anticlockwise- and clockwise-replicating segments of the chromosome, respectively. In both cases, it was found that only the orientation of the terC region that placed TerI in opposition to the approaching replication fork was functional in fork arrest. When TerII was opposed to the approaching fork, it was nonfunctional. These findings confirm and extend earlier work which involved relocations to only the clockwise-replicating segment, at metD (100 degrees) and pyr (139 degrees). In the present work, it was further shown that in the strain in which TerII was opposed to an approaching fork at metD, overproduction of the replication terminator protein (RTP) enabled TerII to function as an arrest site. Thus, chromosomal TerII is nonfunctional in arrest in vivo because of a limiting level of RTP. Marker frequency analysis showed that TerI at both cym and metD caused only transient arrest of a replication fork. Arrest appeared to be more severe in the latter situation and caused the two forks to meet at approximately 145 degrees (just outside or on the edge of the replication fork trap). The minimum pause time erected by TerI at metD was calculated to be approximately 40% of the time taken to complete a round of replication. This significant pause at metD caused the cells to become elongated, indicating that cell division was delayed. Further work is needed to establish the immediate cause of the delay in division.  相似文献   

15.
The DNA increment method, designed for measuring the increment in the amount of DNA after inhibition of initiation of fresh rounds of replication initiation was employed to measure the rate of deoxyribonucleic acid (DNA) chain growth in Mycobacterium tuberculosis H37Rv growing in Youman and Karlson's medium at 37°C with a generation time of 24 h and also in relatively fast growing species like Mycobacterium smegmatis and Escherichia coli. From the results obtained, the time required for a DNA replication fork to traverse the chromosome from origin to terminus (C period) was calculated. The chain elongation rates of DNA of the three organisms was determined from the C period and the known genome sizes assuming that all these genomes have a single replication origin and bidirectional replication fork. The rate for M. tuberculosis was 3,200 nucleotides per min about 11 times slower than that of M. smegmatis and about 13–18 times slower than that of E. coli.Abbreviations DNA deoxyribonucleic acid - td delay in initiation - OD optical density - CAM chloramphenicol - RIF rifampicin  相似文献   

16.
Joseph Germino  Deepak Bastia 《Cell》1981,23(3):681-687
The replication terminus of the drug resistance factor R6K has been cloned into the plasmid vectors pBR313 and pBR322. When the exogenously added DNA is replicated in vitro using cell extracts prepared from Escherichia coli, the plasmid replication terminus temporarily arrests the progression of the unidirectionally moving replication fork at or near the cloned terminator sequence. When the relative location of the terminator sequence is changed with respect to the replication origin, the point of arrest of the replication fork shifts correspondingly to the new location of the terminator. Termination of replication takes place in vitro regardless of whether the cell extracts used in the in vitro reaction are prepared from E. coli with a resident terminus sequence containing plasmid. From these observations we conclude that the termination of replication in vitro is identical or very similar to that observed in vivo, membrane association is not necessary for the activity of the replication terminus and the terminus sequence does not code for a transacting factor necessary for termination of replication. Therefore, any transacting factor which may be needed for the termination of replication must be coded by the host chromosome.  相似文献   

17.
Proteins essential for homologous recombination play a pivotal role in the repair of DNA double strand breaks, DNA inter-strand crosslinks and replication fork stability. Defects in homologous recombination also play a critical role in the development of cancer and the sensitivity of these cancers to chemotherapy. RAD51, an essential factor for homologous recombination and replication fork protection, accumulates and forms immunocytochemically detectable nuclear foci at sites of DNA damage. To identify kinases that may regulate RAD51 localization to sites of DNA damage, we performed a human kinome siRNA library screen, using DNA damage-induced RAD51 foci formation as readout. We found that NEK8, a NIMA family kinase member, is required for efficient DNA damage-induced RAD51 foci formation. Interestingly, knockout of Nek8 in murine embryonic fibroblasts led to cellular sensitivity to the replication inhibitor, hydroxyurea, and inhibition of the ATR kinase. Furthermore, NEK8 was required for proper replication fork protection following replication stall with hydroxyurea. Loading of RAD51 to chromatin was decreased in NEK8-depleted cells and Nek8-knockout cells. Single-molecule DNA fiber analyses revealed that nascent DNA tracts were degraded in the absence of NEK8 following treatment with hydroxyurea. Consistent with this, Nek8-knockout cells showed increased chromosome breaks following treatment with hydroxyurea. Thus, NEK8 plays a critical role in replication fork stability through its regulation of the DNA repair and replication fork protection protein RAD51.  相似文献   

18.
Werner syndrome (WS) is a human chromosomal instability disorder associated with cancer predisposition and caused by mutations in the WRN gene. WRN helicase activity is crucial in limiting breakage at common fragile sites (CFS), which are the preferential targets of genome instability in precancerous lesions. However, the precise function of WRN in response to mild replication stress, like that commonly used to induce breaks at CFS, is still missing. Here, we establish that WRN plays a role in mediating CHK1 activation under moderate replication stress. We provide evidence that phosphorylation of CHK1 relies on the ATR-mediated phosphorylation of WRN, but not on WRN helicase activity. Analysis of replication fork dynamics shows that loss of WRN checkpoint mediator function as well as of WRN helicase activity hamper replication fork progression, and lead to new origin activation to allow recovery from replication slowing upon replication stress. Furthermore, bypass of WRN checkpoint mediator function through overexpression of a phospho-mimic form of CHK1 restores fork progression and chromosome stability to the wild-type levels. Together, these findings are the first demonstration that WRN regulates the ATR-checkpoint activation upon mild replication stress, preventing chromosome fragility.  相似文献   

19.
The high-affinity binding of the Tus protein to specific 21-bp sequences, called Ter, causes site-specific, and polar, DNA replication fork arrest in E coli. The Tus-Ter complex serves to coordinate DNA replication with chromosome segregation in this organism. A number of recent and ongoing studies have demonstrated that Tus-Ter can be used as a heterologous tool to generate site-specific perturbation of DNA replication when reconstituted in eukaryotes. Here, we review these recent findings and explore the molecular mechanism by which Tus-Ter mediates replication fork (RF) arrest in the budding yeast, S. cerevisiae. We propose that Tus-Ter is a versatile, genetically tractable, and regulatable RF blocking system that can be utilized for disrupting DNA replication in a diverse range of host cells.  相似文献   

20.
During telomere replication in yeast, chromosome ends acquire a long single-stranded extension of the strand making the 3' end. Previous work showed that these 3' tails are generated late in S-phase, when conventional replication is virtually complete. In addition, the extensions were also observed in cells that lacked telomerase. Therefore, a model was proposed that predicted an activity that recessed the 5' ends at yeast telomeres after conventional replication was complete. Here, we demonstrate that this processing activity is dependent on the passage of a replication fork through yeast telomeres. A non-replicating linear plasmid with telomeres at each end does not acquire single-stranded extensions, while an identical construct containing an origin of replication does. Thus, the processing activity could be associated with the enzymes at the replication fork itself, or the passage of the fork through the telomeric sequences allows a transient access for the activity to the telomeres. We therefore propose that there is a mechanistic link between the conventional replication machinery and telomere maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号