首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The Shigella type III secretion machinery is responsible for delivering to host cells the set of effectors required for invasion. The type III secretion complex comprises a needle composed of MxiH and MxiI and a basal body made up of MxiD, MxiG, and MxiJ. In S. flexneri, the needle length has a narrow range, with a mean of approximately 45 nm, suggesting that it is strictly regulated. Here we show that Spa32, encoded by one of the spa genes, is an essential protein translocated via the type III secretion system and is involved in the control of needle length as well as type III secretion activity. When the spa32 gene was mutated, the type III secretion complexes possessed needles of various lengths, ranging from 40 to 1,150 nm. Upon introduction of a cloned spa32 into the spa32 mutant, the bacteria produced needles of wild-type length. The spa32 mutant overexpressing MxiH produced extremely long (>5 microm) needles. Spa32 was secreted into the medium via the type III secretion system, but secretion did not depend on activation of the system. The spa32 mutant and the mutant overexpressing MxiH did not secrete effectors such as Ipa proteins into the medium or invade HeLa cells. Upon introduction of Salmonella invJ, encoding InvJ, which has 15.4% amino acid identity with Spa32, into the spa32 mutant, the bacteria produced type III needles of wild-type length and efficiently entered HeLa cells. These findings suggest that Spa32 is an essential secreted protein for a functional type III secretion system in Shigella spp. and is involved in the control of needle length. Furthermore, its function is interchangeable with that of Salmonella InvJ.  相似文献   

2.
Type III secretion machinery (TTSM), composed of a needle, a basal body, and a C-ring compartment, delivers a subset of effectors into host cells. Here, we show that Shigella Spa33 is an essential component of the C-ring compartment involved in mediating the transit of various TTSM-associated translocated proteins. Electron microscopic analysis and pull-down assay revealed Spa33 to be localized beneath the TTSM via interaction with MxiG and MxiJ (basal body components). Spa33 is also capable of interacting with Spa47 (TTSM ATPase), MxiK, MxiN (required for the transit of MxiH, the needle component), Spa32 (required for determining needle length), and several effectors. Genetic and functional analyses of the Spa33 C-terminal region, which is highly conserved in the SpaO-YscQ-HrcQ(B)-FliN family, indicate that some of the conserved residues are crucial for needle formation via interactions with MxiN. Thus, Spa33 plays a central role as the C-ring component in recruiting/exporting TTSM-associated proteins.  相似文献   

3.
The type III secretion (TTS) pathway is used by numerous Gram-negative pathogens to inject virulence factors into eukaryotic cells. The Shigella flexneri TTS apparatus (TTSA) spans the bacterial envelope and its assembly requires the products of approximately 20 mxi and spa genes. We present a functional analysis of the mxiK, mxiN and mxiL genes. Inactivation of mxiK and mxiN, but not mxiL, resulted in the assembly of a non-functional TTSA that lacked the outer needle. The amounts of needle components MxiH and MxiI were drastically reduced in mxiK and mxiN mutants and in the secretion defective spa47 mutant, indicating that MxiH and MxiI are degraded if they do not transit through the TTSA. Remarkably, expression of MxiH-His in the mxiN mutant and MxiI-His in the mxiK mutant restored assembly of a functional TTSA, as shown by the ability of these strains to enter into epithelial cells and to secrete Ipa proteins in response to activation by Congo red. Using a two-hybrid screen in yeast and immunoprecipitation assays from S. flexneri extracts, we identified interactions between MxiK and Spa33 and Spa47 and between MxiN and Spa33 and Spa47. These results suggest that transit of the needle components MxiH and MxiI through the TTSA involves the concerted action of the cytoplasmic proteins Spa47, Spa33, MxiK and MxiN. They also show that neither MxiK nor MxiN are absolutely required for secretion of Ipa proteins, provided that the TTSA is correctly assembled.  相似文献   

4.
Genes required for entry of Shigella flexneri into epithelial cells in vitro are clustered in two adjacent loci, one of which encodes secretory proteins, the IpaA–D proteins, and the other their dedicated secretion apparatus, the Mxi–Spa translocon. Ipa secretion, which is induced upon contact of bacteria with epithelial cells, is prevented during growth in vitro. Here, we show that ipaB and ipaD mutations lead to enhanced secretion of a set of about 15 proteins. These extracellular proteins and some Ipas associate in organized structures consisting of extended sheets. Growth of the wild-type strain in the presence of Congo red is shown to induce protein secretion through the Mxi–Spa translocon. Cultures grown to stationary phase in the presence of Congo red contain extracellular filaments whose composition and morphology are similar to those produced by the hyper-secreting ipaB and ipaD mutants.  相似文献   

5.
The type III secretion (TTS) pathway is used by numerous Gram-negative pathogens to inject virulence factors into eukaryotic cells. In addition to a functional TTS apparatus, secretion of effector proteins depends upon specific chaperones. Using a two-hybrid screen in yeast and a co-purification assay in Shigella flexneri, we demonstrated that Spa15, which is encoded by an operon for components of the TTS apparatus, is associated in the cytoplasm with three proteins that are secreted by the TTS pathway, IpaA, IpgB1 and OspC3. Spa15 was found to be necessary for stability of IpgB1 but not IpaA, and for secretion of IpaA molecules that were stored in the cytoplasm but not those that were synthesized while the secretion apparatus was active. The ability of Spa15 to associate with several non-homologous secreted proteins, the presence of Spa15 homologues in other TTS systems and the location of the corresponding genes within operons for components of the TTS apparatus suggest that Spa15 belongs to a new class of TTS chaperones.  相似文献   

6.
Flagellar type III secretion systems (T3SS) contain an essential cytoplasmic‐ring (C‐ring) largely composed of two proteins FliM and FliN, whereas an analogous substructure for the closely related non‐flagellar (NF) T3SS has not been observed in situ. We show that the spa33 gene encoding the putative NF‐T3SS C‐ring component in Shigella flexneri is alternatively translated to produce both full‐length (Spa33‐FL) and a short variant (Spa33‐C), with both required for secretion. They associate in a 1:2 complex (Spa33‐FL/C2) that further oligomerises into elongated arrays in vitro. The structure of Spa33‐C2 and identification of an unexpected intramolecular pseudodimer in Spa33‐FL reveal a molecular model for their higher order assembly within NF‐T3SS. Spa33‐FL and Spa33‐C are identified as functional counterparts of a FliM–FliN fusion and free FliN respectively. Furthermore, we show that Thermotoga maritima FliM and FliN form a 1:3 complex structurally equivalent to Spa33‐FL/C2, allowing us to propose a unified model for C‐ring assembly by NF‐T3SS and flagellar‐T3SS.  相似文献   

7.
Type III Secretion Systems (T3SSs) are structurally conserved nanomachines that span the inner and outer bacterial membranes, and via a protruding needle complex contact host cell membranes and deliver type III effector proteins. T3SS are phylogenetically divided into several families based on structural basal body components. Here we have studied the evolutionary and functional conservation of four T3SS proteins from the Inv/Mxi‐Spa family: a cytosolic chaperone, two hydrophobic translocators that form a plasma membrane‐integral pore, and the hydrophilic ‘tip complex’ translocator that connects the T3SS needle to the translocon pore. Salmonella enterica serovar Typhimurium (S. Typhimurium), a common cause of food‐borne gastroenteritis, possesses two T3SSs, one belonging to the Inv/Mxi‐Spa family. We used invasion‐deficient S. Typhimurium mutants as surrogates for expression of translocator orthologs identified from an extensive phylogenetic analysis, and type III effector translocation and host cell invasion as a readout for complementation efficiency, and identified several Inv/Mxi‐Spa orthologs that can functionally substitute for the S. Typhimurium chaperone and translocator proteins. Functional complementation correlates with amino acid sequence identity between orthologs, but varies considerably between the four proteins. This is the first in‐depth survey of the functional interchangeability of Inv/Mxi‐Spa T3SS proteins acting directly at the host‐pathogen interface.  相似文献   

8.
A molecular ruler, FliK, controls the length of the flagellar hook. FliK measures hook length and catalyses the secretion‐substrate specificity switch from rod‐hook substrate specificity to late substrate secretion, which includes the filament subunits. Here, we show normal hook‐length control and filament assembly in the complete absence of the C‐ring thus refuting the previous ‘cup’ model for hook‐length control. Mutants of C‐ring components, which are reported to produce short hooks, show a reduced rate of hook–basal body assembly thereby allowing for a premature secretion‐substrate specificity switch. Unlike fliK null mutants, hook‐length control in an autocleavage‐defective mutant of flhB, the protein responsible for the switch to late substrate secretion, is completely abolished. FliK deletion variants that retain the ability to measure hook length are secreted thus demonstrating that FliK directly measures rod‐hook length during the secretion process. Finally, we present a unifying model accounting for all published data on hook‐length control in which FliK acts as a molecular ruler that takes measurements of rod‐hook length while being intermittently secreted during the assembly process of the hook–basal body complex.  相似文献   

9.
Like many Gram-negative pathogens, Shigella rely on a type three secretion system (T3SS) for injection of effector proteins directly into eukaryotic host cells to initiate and sustain infection. Protein secretion through the needle-like type three secretion apparatus (T3SA) requires ATP hydrolysis by the T3SS ATPase Spa47, making it a likely target for in vivo regulation of T3SS activity and an attractive target for small molecule therapeutics against shigellosis. Here, we developed a model of an activated Spa47 homo-hexamer, identifying two distinct regions at each protomer interface that we hypothesized to provide intermolecular interactions supporting Spa47 oligomerization and enzymatic activation. Mutational analysis and a series of high-resolution crystal structures confirm the importance of these residues, as many of the engineered mutants are unable to form oligomers and efficiently hydrolyze ATP in vitro. Furthermore, in vivo evaluation of Shigella virulence phenotype uncovered a strong correlation between T3SS effector protein secretion, host cell membrane disruption, and cellular invasion by the tested mutant strains, suggesting that perturbation of the identified interfacial residues/interactions influences Spa47 activity through preventing oligomer formation, which in turn regulates Shigella virulence. The most impactful mutations are observed within the conserved Site 2 interface where the native residues support oligomerization and likely contribute to a complex hydrogen bonding network that organizes the active site and supports catalysis. The critical reliance on these conserved residues suggests that aspects of T3SS regulation may also be conserved, providing promise for the development of a cross-species therapeutic that broadly targets T3SS ATPase oligomerization and activation.  相似文献   

10.
The length of the needle of the Yersinia Ysc injectisome is determined by a protein called YscP. This protein, which acts both as a molecular ruler and as a substrate-specificity switch for type III secretion is itself secreted by the injectisome. In this report, we address the question why YscP is secreted. By a systematic deletion analysis and by fusing different parts of the molecule to the adenylate cyclase reporter, we identified two independent secretion signals. One of them is encompassed within the 35 N-terminal residues while the second one spans residues 97-137. These two signals are functionally different from Yop secretion signals. When both secretion signals were removed, Yops could still be secreted but the needle length control was lost. YscP possessing only one signal did not control needle length properly but the control was improved when more YscP was produced and secreted. YscP deprived of both signals could not control length, even when overproduced. We conclude from this that YscP needs to be secreted to exert its length control function but not its substrate-specificity switch function.  相似文献   

11.
The length of the Yersinia injectisome needle is determined by the protein YscP, which could act as a molecular ruler. The analysis of the correlation between the size of YscP and the needle length in seven wild-type strains of Yersinia enterocolitica reinforced this hypothesis but hinted that the secondary structure of YscP might influence needle length. Hence, 11 variants of YscP515 were generated by multiple Pro or Gly substitutions. The needle length changed in inverse function of the helical content, indicating that not only the number of residues but also their structure controls length. Taking the secondary motifs into account, Pro/Gly-variants were subjected to in silico modelling to simulate the extension of YscP upon needle growth. The calculated lengths when the helical content is preserved correlated strikingly with the measured needle length, with a constant difference of ∼29 nm, which corresponds approximately to the size of the basal body. These data support the ruler model and show that the functional ruler has a helical structure.  相似文献   

12.
The length of the needle ending the Yersinia Ysc injectisome is determined by YscP, a protein acting as a molecular ruler. In addition, YscP is required for Yop secretion. In the present paper, by a systematic deletion analysis, we localized accurately the region required for Yop secretion between residues 405 and 500. As this C-terminal region of YscP has also been shown to control needle length it probably represents the substrate specificity switch of the machinery. By a bioinformatics analysis, we show that this region has a globular structure, an original alpha/beta fold, a P-x-L-G signature and presumably no catalytic activity. In spite of very limited sequence similarities, this structure is conserved among the proteins that are presumed to control the needle length in many different injectisomes and also among members of the FliK family, which control the flagellar hook length. This region thus represents a new protein domain that we called T3S4 for Type III secretion substrate specificity switch. The T3S4 domain of YscP can be replaced by the T3S4 domain of AscP (Aeromonas salmonicida) or PscP (Pseudomonas aeruginosa) but not by the one from FliK, indicating that in spite of a common global structure, these domains need to fit their partner proteins in the secretion apparatus.  相似文献   

13.
Two‐partner secretion (TPS) systems use β‐barrel proteins of the Omp85‐TpsB superfamily to transport large exoproteins across the outer membranes of Gram‐negative bacteria. The Bordetella FHA/FhaC proteins are prototypical of TPS systems in which the exoprotein contains a large C‐terminal prodomain that is removed during translocation. Although it is known that the FhaB prodomain is required for FHA function in vivo, its role in FHA maturation has remained mysterious. We show here that the FhaB prodomain is required for the extracellularly located mature C‐terminal domain (MCD) of FHA to achieve its proper conformation. We show that the C‐terminus of the prodomain is retained intracellularly and that sequences within the N‐terminus of the prodomain are required for this intracellular localization. We also identify sequences at the C‐terminus of the MCD that are required for release of mature FHA from the cell surface. Our data support a model in which the intracellularly located prodomain affects the final conformation of the extracellularly located MCD. We hypothesize that maturation triggers cleavage and degradation of the prodomain.  相似文献   

14.
M Watarai  T Tobe  M Yoshikawa    C Sasakawa 《The EMBO journal》1995,14(11):2461-2470
The invasion of colonic epithelial cells by Shigella, an early essential step for causing bacillary dysentery, is mediated by the IpaB, IpaC and IpaD proteins. Secretion of the Ipa proteins from Shigella requires functions encoded by the mxi and spa loci. In this study, we show that contact between the bacteria and epithelial cell triggers release of the Ipa proteins into the external medium, which results in a rapid decrease in levels of Ipa proteins presented on the cell surface. When the bacteria were used to infect polarized Caco-2 cells, release of Ipa proteins occurred efficiently from bacteria interacting with the basolateral surface rather than with the apical surface. Moreover, the interaction of bacteria with components of the extracellular matrix, such as fibronectin, laminin or collagen type IV, also stimulates the release of Ipa proteins. The release of Ipa proteins from Shigella required the surface-located Spa32 protein encoded by one of the spa genes on the large plasmid.  相似文献   

15.
The type 3 secretion system (T3SS) and the bacterial flagellum are related pathogenicity-associated appendages found at the surface of many disease-causing bacteria. These appendages consist of long tubular structures that protrude away from the bacterial surface to interact with the host cell and/or promote motility. A proposed “ruler” protein tightly regulates the length of both the T3SS and the flagellum, but the molecular basis for this length control has remained poorly characterized and controversial. Using the Pseudomonas aeruginosa T3SS as a model system, we report the first structure of a T3SS ruler protein, revealing a “ball-and-chain” architecture, with a globular C-terminal domain (the ball) preceded by a long intrinsically disordered N-terminal polypeptide chain. The dimensions and stability of the globular domain do not support its potential passage through the inner lumen of the T3SS needle. We further demonstrate that a conserved motif at the N terminus of the ruler protein interacts with the T3SS autoprotease in the cytosolic side. Collectively, these data suggest a potential mechanism for needle length sensing by ruler proteins, whereby upon T3SS needle assembly, the ruler protein''s N-terminal end is anchored on the cytosolic side, with the globular domain located on the extracellular end of the growing needle. Sequence analysis of T3SS and flagellar ruler proteins shows that this mechanism is probably conserved across systems.  相似文献   

16.
Type III secretion apparatus (T3SA) are complex nanomachines that insert a translocation pore into the host cell membrane through which effector proteins are injected into the cytosol. In Shigella, the pore is inserted by a needle tip complex that also controls secretion. IpaD is the key protein that rules the composition of the tip complex before and upon cell contact or Congo red (CR) induction. However, how IpaD is involved in secretion control and translocon insertion remains not fully understood. Here, we report the phenotypic analysis of 20 10‐amino acids deletion variants all along the coiled‐coil and the central domains of IpaD (residues 131–332). Our results highlight three classes of T3S phenotype; (i) wild‐type secretion, (ii) constitutive secretion of all classes of effectors, and (iii) constitutive secretion of translocators and early effectors, but not of late effectors. Our data also suggest that the composition of the tip complex defines both the T3SA inducibility state and late effectors secretion. Finally, we shed light on a new aspect regarding the contact of the needle tip with cell membrane by uncoupling the Shigella abilities to escape macrophage vacuole, and to insert the translocation pore or to invade non‐phagocytic cells.  相似文献   

17.
Gram‐negative pathogens often use conserved type three secretion systems (T3SS) for virulence. The Shigella type three secretion apparatus (T3SA) penetrates the host cell membrane and provides a unidirectional conduit for injection of effectors into host cells. The protein Spa47 localizes to the base of the apparatus and is speculated to be an ATPase that provides the energy for T3SA formation and secretion. Here, we developed an expression and purification protocol, producing active Spa47 and providing the first direct evidence that Spa47 is a bona fide ATPase. Additionally, size exclusion chromatography and analytical ultracentrifugation identified multiple oligomeric species of Spa47 with the largest greater than 8 fold more active for ATP hydrolysis than the monomer. An ATPase inactive Spa47 point mutant was then engineered by targeting a conserved Lysine within the predicted Walker A motif of Spa47. Interestingly, the mutant maintained a similar oligomerization pattern as active Spa47, but was unable to restore invasion phenotype when used to complement a spa47 null S. flexneri strain. Together, these results identify Spa47 as a Shigella T3SS ATPase and suggest that its activity is linked to oligomerization, perhaps as a regulatory mechanism as seen in some related pathogens. Additionally, Spa47 catalyzed ATP hydrolysis appears to be essential for host cell invasion, providing a strong platform for additional studies dissecting its role in virulence and providing an attractive target for anti‐infective agents.  相似文献   

18.
Hydrophobins are amphipathic proteins secreted by filamentous fungi. When the industrial fungus Aspergillus oryzae is grown in a liquid medium containing the polyester polybutylene succinate co‐adipate (PBSA), it produces RolA, a hydrophobin, and CutL1, a PBSA‐degrading cutinase. Secreted RolA attaches to the surface of the PBSA particles and recruits CutL1, which then condenses on the particles and stimulates the hydrolysis of PBSA. Here, we identified amino acid residues that are required for the RolA–CutL1 interaction by using site‐directed mutagenesis. We quantitatively analyzed kinetic profiles of the interactions between RolA variants and CutL1 variants by using a quartz crystal microbalance (QCM). The QCM analyses revealed that Asp142, Asp171 and Glu31, located on the hydrophilic molecular surface of CutL1, and His32 and Lys34, located in the N‐terminus of RolA, play crucial roles in the RolA–CutL1 interaction via ionic interactions. RolA immobilized on a QCM electrode strongly interacted with CutL1 (KD = 6.5 nM); however, RolA with CutL1 variants, or RolA variants with CutL1, showed markedly larger KD values, particularly in the interaction between the double variant RolA‐H32S/K34S and the triple variant CutL1‐E31S/D142S/D171S (KD = 78.0 nM). We discuss a molecular prototype model of hydrophobin‐based enzyme recruitment at the solid–water interface.  相似文献   

19.
Type III secretion systems (TTSS) are essential virulence determinants of many gram-negative bacteria and serve, upon physical contact with target cells, to translocate bacterial proteins directly across eukaryotic cell membranes. The Shigella TTSS is encoded by the mxi/spa loci located on its virulence plasmid. By electron microscopy secretons are visualized as tripartite with an external needle, a transmembrane domain, and a cytoplasmic bulb. In the present study, we generated a Shigella spa32 mutant and studied its phenotype. The spa32 gene shows low sequence homology to Salmonella TTSS1 invJ/spaN and to flagellar fliK. The spa32 mutant, like the wild-type strain, secreted the Ipas and IpgD, which are normally secreted via the TTSS, at low levels into the growth medium. However, unlike the wild-type strain, the spa32 mutant could neither be induced to secrete the Ipas and IpgD instantaneously upon addition of Congo red nor penetrate HeLa cells in vitro. Additionally, the Spa32 protein is secreted in large amounts by the TTSS during exponential growth but not upon Congo red induction. Interestingly, electron microscopy analysis of the spa32 mutant revealed that the needle of its secretons were up to 10 times longer than those of the wild type. In addition, in the absence of induction, the spa32 mutant secreted normal levels of MxiI but a large excess of MxiH. Taken together, our data indicate that the spa32 mutant presents a novel phenotype and that the primary defect of the mutant may be its inability to regulate or control secretion of MxiH.  相似文献   

20.
Bacterial flagella play an essential role in the pathogenesis of numerous enteric pathogens. The flagellum is required for motility, colonization, and in some instances, for the secretion of effector proteins. In contrast to the intensively studied flagella of Escherichia coli and Salmonella typhimurium, the flagella of Campylobacter jejuni, Helicobacter pylori and Vibrio cholerae are less well characterized and composed of multiple flagellin subunits. This study was performed to gain a better understanding of flagellin export from the flagellar type III secretion apparatus of C. jejuni. The flagellar filament of C. jejuni is comprised of two flagellins termed FlaA and FlaB. We demonstrate that the amino‐termini of FlaA and FlaB determine the length of the flagellum and motility of C. jejuni. We also demonstrate that protein‐specific residues in the amino‐terminus of FlaA and FlaB dictate export efficiency from the flagellar type III secretion system (T3SS) of Yersinia enterocolitica. These findings demonstrate that key residues within the amino‐termini of two nearly identical proteins influence protein export efficiency, and that the mechanism governing the efficiency of protein export is conserved among two pathogens belonging to distinct bacterial classes. These findings are of additional interest because C. jejuni utilizes the flagellum to export virulence proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号