首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
小RNA病毒科是一类大的动物病毒科,小RNA病毒蛋白的合成需要自身蛋白酶裂解形成多个结构蛋白和功能蛋白,3C蛋白酶是一些小RNA病毒的自身蛋白水解酶之一,3C蛋白酶还可以裂解一些宿主的蛋白,利于病毒的复制。3C蛋白酶结构特点、活性中心、酶切位点如何,裂解的底物功能怎样,是进一步了解3C蛋白酶作用机制的关键。就这些问题进行综述。  相似文献   

2.
已知丙型肝炎病毒非结构蛋白(NS5B)具有RNA依赖的RNA聚合酶的功能,负责病毒基因组的复制。通过体外表达及晶体衍射分析,目前对NS5B的三维结构已有了清晰的描述,对顺B催化该病毒基因组复制的分子机制也有了初步了解;对RNA聚合酶抑制物的研究将为人工设计特异性的抗该病毒药物奠定扎实基础。  相似文献   

3.
昆虫小RNA病毒依据基因组结构特点分为家蚕软化病毒组、蟋蟀痹病毒组和豌豆蚜病毒组。昆虫小RNA病毒蛋白质翻译具有独特性:不依赖于帽子结构,不需要启始因子eIF1、eIF1A和帽子结合蛋白eIF4E;而且蟋蟀痹病毒组和豌豆蚜病毒组结构蛋白翻译从内部核糖体进入位点独立启始,启始密码子是CUU。该文还简介了昆虫小RNA病毒复制机理及与其它动、植物小RNA病毒或类小RNA病毒的亲缘关系等的研究进展。  相似文献   

4.
PA、PB1和PB2以及NS1蛋白作为甲型流感病毒的非结构蛋白,虽然不直接参与病毒颗粒的组装,但是在病毒的复制周期中起到非常重要的调控作用.由PA、PB1和PB2组成的RNA聚合酶主要参与病毒mRNA的合成以及病毒基因组RNA的复制,而NS1蛋白则通过抑制宿主细胞的干扰素应激系统来拮抗宿主的抗病毒反应.通过研究甲型流感病毒非结构蛋白的结构与功能,对了解流感病毒复制及开发新型抗流感病毒药物有重要意义.  相似文献   

5.
小RNA病毒蛋白翻译调控元件研究进展   总被引:3,自引:0,他引:3  
真核生物的起始复合物并不是在起始AUG处形成 ,而是在mRNA的 5′末端形成 ,其识别信号就是 5′末端的帽子结构。小RNA病毒科成员RNA 5′末端没有帽子结构 ,而有一个病毒编码的小蛋白质与基因组共价相连。小RNA病毒的蛋白翻译起始于 5′非翻译区中的内部顺式调控元件 ,称为内部核糖体进入位点 (IRES)。口蹄疫病毒 (foot and mouthdiseasevirus,FMDV)是该科病毒的典型代表 ,引起偶蹄动物的急性接触性传染病。完整FMDV含有单链正股RNA、衣壳蛋白及少量装配过程中夹带的非结构蛋白和宿主细胞肌动蛋白 ,其基因组RNA全长约 8 5kb ,可直接作为信使RNA。对IRES的一、二级结构进行了比较 ,对IRES与翻译起始因子的相互作用以及对病毒毒力的影响作了综述。  相似文献   

6.
小RNA病毒3C蛋白酶研究进展   总被引:1,自引:0,他引:1  
小RNA病毒科病毒包括数目众多的小RNA病毒,其中很多小RNA病毒是人畜重要的病原体。不同种属的小RNA病毒的3C蛋白酶具有典型的G-X-C-G基序和Cys-His-Asp/Glu催化中心;小RNA病毒3Cpro完成P1区VP2~VP3、VP3~VP1;P2区的2A~2B、2B~2C以及整个P3区成熟剪切;小RNA病毒多聚前体蛋白3Cpro成熟剪切分析显示,3Cpro作用底物具有明显的Q-G/S/A/V/H/R和E-S/G/R/M喜好性及种属特异性;固有免疫应答重要配体分子TRIF、MAVS、IRF3、IRF7和NEMO的3Cpro酶切位点预测显示,不同配体分子具有数目各异的可能酶切位点,其中TRIF和NEMO的3Cpro可能作用位点具有多样性。上述问题的探究,为基于小RNA病毒3Cpro的广谱抗病毒药物研制和小RNA病毒免疫逃逸机制提供资料。  相似文献   

7.
脑心肌炎病毒(Encephalomyocarditis virus,EMCV)是一种无囊膜的单股RNA病毒,属于小RNA病毒科,能够引起多种哺乳动物乃至人的感染。其非结构蛋白2A是重要的毒力因子,能够通过阻断翻译起始复合物的形成、结合翻译起始复合物因子及核糖体40s小亚基等方式竞争性地抑制宿主细胞蛋白的合成,还可通过抑制宿主细胞凋亡促进病毒扩散,并通过激活NF-κB引起宿主发生强烈的炎症反应[1]。此外,根据EMCV 2A蛋白的生物学特性,近年来,细胞生物学、病毒学领域均将其作为真核细胞与病毒互作的生物学工具展开了深入研究。  相似文献   

8.
鸡传染性法氏囊病病毒(IBDV)属双链双节段RNA病毒科,禽双链RNA病毒属.IBDV基因组由A、B两个RNA片段组成.VP2是最主要的IBDV结构蛋白,由A片段编码,它的变异最有可能导致IBDV血清型变异.最近的研究表明:B片段对病毒的毒力也有一定的影响.而我国对B片段的研究还未见报道.为此,我们克隆了我国甘肃地区IBDV分离强毒株Ts毒株的B片段全序列,并与报道的序列进行了比较分析.  相似文献   

9.
T4病毒科由一类单股正链RNA病毒组成,分为松天蛾β样病毒属和松天蛾ω样病毒属。这2个属的病毒具有不同的基因组结构,β样病毒含单组分基因组,其结构蛋白由一亚基因组RNA表达; 而ω样病毒含双组分基因组,2个RNA分子分别编码复制酶蛋白和结构蛋白。在T4病毒基因组RNA 3′端有类似tRNA的二级结构。ω样病毒壳蛋白的氨基酸序列一致性高达66%~86%, 而β样病毒壳蛋白的氨基酸同源性则要低得多。在昆虫细胞中表达壳蛋白基因时都能形成病毒类似粒子。该文还介绍了T4病毒复制机理以及T4病毒与其他病毒的进化关系。  相似文献   

10.
RNA复制子是一种能自主复制的RNA载体,保留了病毒非结构蛋白(复制/转录酶)基因,而结构蛋白基因缺失或由外源抗原基因替代,复制/转录酶可控制载体RNA在细胞质中高水平复制以及外源基因的高水平表达。在黄病毒属病毒感染性克隆基础上,其复制子载体得到了成功的构建。黄病毒属病毒复制子为病毒基因组结构功能研究、表达载体构建、假病毒包装及新型疫苗制备等提供了新的技术平台。本文综述黄病毒属病毒复制子的构建原理、方法及应用。  相似文献   

11.
Virus infections can result in a variety of cellular injuries, and these often involve the permeabilization of host membranes by viral proteins of the viroporin family. Prototypical viroporin 2B is responsible for the alterations in host cell membrane permeability that take place in enterovirus-infected cells. 2B protein can be localized at the endoplasmic reticulum (ER) and the Golgi complex, inducing membrane remodeling and the blockade of glycoprotein trafficking. These findings suggest that 2B has the potential to integrate into the ER membrane, but specific information regarding its biogenesis and mechanism of membrane insertion is lacking. Here, we report experimental results of in vitro translation-glycosylation compatible with the translocon-mediated insertion of the 2B product into the ER membrane as a double-spanning integral membrane protein with an N-/C-terminal cytoplasmic orientation. A similar topology was found when 2B was synthesized in cultured cells. In addition, the in vitro translation of several truncated versions of the 2B protein suggests that the two hydrophobic regions cooperate to insert into the ER-derived microsomal membranes.  相似文献   

12.
Viroporins are a family of low-molecular-weight hydrophobic transmembrane proteins that are encoded by various animal viruses. Viroporins form transmembrane pores in host cells via oligomerization, thereby destroying cellular homeostasis and inducing cytopathy for virus replication and virion release. Among the Picornaviridae family of viruses, the 2B protein encoded by enteroviruses is well understood, whereas the viroporin activity of the 2B protein encoded by the foot-and-mouth disease virus (FMDV) has not yet been described. An analysis of the FMDV 2B protein domains by computer-aided programs conducted in this study revealed that this protein may contain two transmembrane regions. Further biochemical, biophysical and functional studies revealed that the protein possesses a number of features typical of a viroporin when it is overexpressed in bacterial and mammalian cells as well as in FMDV-infected cells. The protein was found to be mainly localized in the endoplasmic reticulum (ER), with both the N- and C-terminal domains stretched into the cytosol. It exhibited cytotoxicity in Escherichia coli, which attenuated 2B protein expression. The release of virions from cells infected with FMDV was inhibited by amantadine, a viroporin inhibitor. The 2B protein monomers interacted with each other to form both intracellular and extracellular oligomers. The Ca2+ concentration in the cells increased, and the integrity of the cytoplasmic membrane was disrupted in cells that expressed the 2B protein. Moreover, the 2B protein induced intense autophagy in host cells. All of the results of this study demonstrate that the FMDV 2B protein has properties that are also found in other viroporins and may be involved in the infection mechanism of FMDV.  相似文献   

13.
The family Picornaviridae consists of a large group of plus-strand RNA viruses that share a similar genome organization. The nomenclature of the picornavirus proteins is based on their position in the viral RNA genome but does not necessarily imply a conserved function of proteins of different genera. The enterovirus 2B protein is a small hydrophobic protein that, upon individual expression, is localized to the endoplasmic reticulum (ER) and the Golgi complex, reduces ER and Golgi complex Ca(2+) levels, most likely by forming transmembrane pores, and inhibits protein trafficking through the Golgi complex. At present, little is known about the function of the other picornavirus 2B proteins. Here we show that rhinovirus 2B, which is phylogenetically closely related to enterovirus 2B, shows a similar subcellular localization and function to those of enterovirus 2B. In contrast, 2B proteins of hepatitis A virus, foot-and-mouth disease virus, and encephalomyocarditis virus, all of which are more distantly related to enteroviruses, show a different localization and have little, if any, effects on Ca(2+) homeostasis and intracellular protein trafficking. Our data suggest that the 2B proteins of enterovirus and rhinovirus share the same function in virus replication, while the other picornavirus 2B proteins support the viral life cycle in a different manner. Moreover, we show that an enterovirus 2B protein that is retained in the ER is unable to modify Ca(2+) homeostasis and inhibit protein trafficking, demonstrating the importance of Golgi complex localization for its functioning.  相似文献   

14.
Madan V  García Mde J  Sanz MA  Carrasco L 《FEBS letters》2005,579(17):3607-3612
The viroporin activity of the E protein from murine hepatitis virus (MHV), a member of the coronaviruses, was analyzed. Viroporins are a growing family of viral proteins able to enhance membrane permeability, promoting virus budding. Initially, the MHV E gene was inducibly expressed in Escherichia coli cells, leading to the arrest of bacterial growth, cell lysis and permeabilization to different compounds. Thus, exit of labeled nucleotides from E. coli cells to the cytoplasm was apparent upon expression of MHV E. In addition, enhanced entry of the antibiotic hygromycin B occurred at levels comparable to those observed with the viroporin 6K from Sindbis virus. Mammalian cells are also readily permeabilized by the expression of MHV E protein. Finally, brefeldin A powerfully blocks the viroporin activity of the E protein in BHK cells, suggesting that an intact vesicular system is necessary for this coronavirus to permeabilize mammalian cells.  相似文献   

15.
Enterovirus nonstructural 2B protein is involved in cell membrane permeabilization during late viral infection. Here we analyze the pore forming activity of poliovirus 2B and several of its variants. Solubilization of 2B protein was achieved by generating a fusion protein comprised of poliovirus 2B attached to a maltose-binding protein (MBP) as an N-terminal solubilization partner. MBP-2B was assayed using large unilamellar vesicles as target membranes. This fusion protein was able to assemble into discrete structures that disrupted the permeability barrier of vesicles composed of anionic phospholipids. The transbilayer aqueous connections generated by MBP-2B were stable over time, allowing the passage of solutes of molecular mass under 1,000 Da. Oligomerization was investigated using fluorescence resonance energy transfer. Our data indicate that MBP-2B aggregation occurs at the membrane surface. Moreover, MBP-2B binding to membranes promoted the formation of SDS-resistant tetramers. We conclude that MBP-2B forms oligomers capable of generating a tetrameric aqueous pore in lipid bilayers. These findings are the first evidence of viroporin activity shown by a protein from a naked animal virus.  相似文献   

16.
Nonstructural 2B viroporin is an intracellularly produced pore-forming protein required for effective enteroviral and rhinoviral replication. The sequence of 2B displays two putative interconnected transmembrane domains, which are predicted to insert into the negatively charged membranes of target organelles forming an integral hairpin. The use of an overlapping peptide library that spanned the complete 2B sequence has recently allowed the mapping of the cell plasma membrane porating activity to the partially amphipathic, amino-terminal transmembrane domain (TM1, residues 35-55). We describe here that although the TM1 peptide was effective in permeabilizing uncharged membranes, it induced marginal lysis of anionic bilayers. In fact, only the peptide representing the highly conserved carboxy-terminal transmembrane domain (TM2, residues 59-82) reproduced the capacity of the full 2B protein to efficiently permeabilize bilayers made of anionic phospholipids. Insertion into lipid monolayers and circular dichroism determinations were, however, consistent with penetration of the TM1 helix into both anionic and zwitterionic membranes, while TM2 interacting with membranes assumed a mixture of conformations. Moreover, addition of TM1 strongly stimulated TM2-induced permeabilization of the anionic membranes. In combination, TM1 and TM2 formed a complex that had structural properties, including a high proportion of extended nonhelical secondary structure, that were distinct from those of the individual peptides. Finally, a comparison of antimicrobial and hemolytic activities further underscored the TM1 domain's cytolytic character. Overall, our data support the idea that the cytolytic activity of TM1 in the negatively charged cell endomembranes targeted by 2B viroporin requires the cooperation of both transmembrane domains.  相似文献   

17.
Among its many roles, the HIV-1 accessory protein Vpu performs a viroporin function and also antagonizes the host cell restriction factor tetherin through its transmembrane domain. BIT225 is a small molecule inhibitor that specifically targets the Vpu viroporin function, which, in macrophages, resulted in late stage inhibition of virus release and decreased infectivity of released virus, a phenotype similar to tetherin-mediated restriction. Here, we investigated whether BIT225 might mediate its antiviral function, at least in part, via inhibition of Vpu-mediated tetherin antagonism. Using T-cell lines inducible for tetherin expression, we found that BIT225 does not exert its antiviral function by inhibiting Vpu-mediated tetherin downmodulation from the cell surface, the main site of action of tetherin activity. In addition, results from a bioluminescence resonance energy transfer (BRET) assay showed that the Vpu-tetherin interaction was not affected by BIT225. Our data provide support for the concept that tetherin antagonism and viroporin function are separable on the Vpu transmembrane and that viroporin function might be cell-type dependent. Further, this work contributes to the characterization of BIT225 as an inhibitor that specifically targets the viroporin function of Vpu.  相似文献   

18.
Viroporins from RNA viruses induce caspase-dependent apoptosis   总被引:1,自引:0,他引:1  
The virus-encoded viroporins are known to modify membrane permeability and play an essential role in virus budding. Here, a comparative analysis of the membrane permeabilization capacity of a number of viroporins was performed in baby hamster kidney cells. Synthesis of 6K protein from Sindbis virus, E from mouse hepatitis virus, M2 from influenza A virus, and 2B and 3A from poliovirus enhanced membrane permeability to different extents. We show that two proteins from hepatitis C virus, p7 and NS4A, also display viroporin activity to a level comparable to 6K protein. In addition to their capacity to disrupt ionic cellular homeostasis and promote bacterial cell lysis, the expressed viroporins were able to induce cell death. Degradation of internucleosomal DNA and generation of apoptotic bodies were observed upon viroporin expression. Consistently, cleavage of translation initiation factor 4GI and poly-(ADP-ribose) polymerase indicated activation of effector caspase-3. We found that poliovirus 2B localizes partially in mitochondria and induces an anomalous perinuclear distribution of these organelles. Mitochondria morphology was also altered after expression of other viroporins. Finally, detection of cytochrome c release from mitochondria suggests involvement of the mitochondrial pathway in viroporin-induced apoptosis. These findings suggest that viroporins induce caspase-dependent programmed cell death.  相似文献   

19.
Escherichia coli-based whole-cell biocatalysts are widely used for the sustainable production of value-added chemicals. However, weak acids present as substrates and/or products obstruct the growth and fermentation capability of E. coli. Here, we show that a viroporin consisting of the influenza A matrix-2 (M2) protein, is activated by low pH and has proton channel activity in E. coli. The heterologous expression of the M2 protein in E. coli resulted in a significant increase in the intracellular pH and cell viability in the presence of various weak acids with different lengths of carbon chains. In addition, the feasibility of developing a robust and efficient E. coli-based whole-cell biocatalyst via introduction of the proton-selective viroporin was explored by employing (Z)-11-(heptanolyoxy)undec-9-enoic acid (ester) and 2-fucosyllactose (2′-FL) as model products, whose production is hampered by cytosolic acidification. The engineered E. coli strains containing the proton-selective viroporin exhibited approximately 80% and 230% higher concentrations of the ester and 2′-FL, respectively, than the control strains without the M2 protein. The simple and powerful strategy developed in this study can be applied to produce other valuable chemicals whose production involves substrates and/or products that cause cytosolic acidification.  相似文献   

20.
Nonstructural protein 4 (NSP4) viroporin activity is critical for the replication and assembly of serogroup A rotavirus (RVA); however, the dramatic primary sequence divergence of NSP4s across serogroups raises the possibility that viroporin activity is not a common feature among RVs. We tested for NSP4 viroporin activity from divergent strains, including RVA (EC and Ty-1), RVB (IDIR), and RVC (Cowden). Canonical viroporin motifs were identified in RVA, RVB, and RVC NSP4s, but the arrangement of basic residues and the amphipathic α-helices was substantially different between serogroups. Using Escherichia coli and mammalian cell expression, we showed that each NSP4 tested had viroporin activity, but serogroup-specific viroporin phenotypes were identified. Only mammalian RVA and RVC NSP4s induced BL21-pLysS E. coli cell lysis, a classical viroporin activity assay. In contrast, RVA, RVB, and RVC NSP4 expression was universally cytotoxic to E. coli and disrupted reduction-oxidation activities, as measured by a new redox dye assay. In mammalian cells, RVB and RVC NSP4s were initially localized in the endoplasmic reticulum (ER) and trafficked into punctate structures that were mutually exclusive with RVA NSP4. The punctate structures partially localized to the ER-Golgi intermediate compartment (ERGIC) but primarily colocalized with punctate LC3, a marker for autophagosomes. Similar to RVA NSP4, expression of RVB and RVC NSP4s significantly elevated cytosolic calcium levels, demonstrating that despite strong primary sequence divergence, RV NSP4 has maintained viroporin activity across serogroups A to C. These data suggest that elevated cytosolic calcium is a common critical process for all rotavirus strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号