首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Severe category 4 Tropical Cyclone Larry, which crossed north‐east Queensland on 20 March 2006, provided a unique opportunity to examine the short‐term impacts of a major disturbance event on the population of a highly mobile threatened species, Pteropus conspicillatus. As we had recorded, the species’ population distribution in colonial roosts (camps) across the region each month for almost 2 years prior to Cyclone Larry, we continued monthly surveying of P. conspicillatus camp‐sites for a year post‐cyclone. Here we report on how P. conspicillatus responded and redistributed immediately after the cyclone, and over the subsequent year. Post‐cyclone, P. conspicillatus typically roosted in smaller camps than pre‐cyclone, suggesting that these animals had largely dispersed to locate available blossoms and fruit. For 6 months after Cyclone Larry, up to 90% of the pre‐cyclone P. conspicillatus population (ca. 250 000) was unaccounted for across the region. Information provided by the general public assisted us in locating six small camps of P. conspicillatus at ‘new’ locations, but contributed little to increase our overall population estimate for the species at this time. After November 2006, the number of P. conspicillatus built up at located camp‐sites until a post‐cyclone peak of 209 000 at the end of the study in March 2007, comparable with the population estimates in March 2005 and 2006. There is no evidence that the cyclone caused significant direct mortality among P. conspicillatus, although there may yet be longer‐term and indirect effects on population size. We suggest that redistribution by P. conspicillatus makes sense ecologically in the face of major habitat disturbance and short‐ to long‐term food resource limitation, and is not unlike the response of other Australian mainland Pteropus species to seasonal changes in food availability.  相似文献   

2.
Abstract Cyclones have been instrumental in shaping the structural and floristic composition of tropical forests, including tropical rainforests of north Queensland, Australia. The response of tropical riparian rehabilitation sites to cyclonic wind damage, however, is currently unknown. This lack of knowledge may severely hamper long‐term success of riparian restoration efforts, particularly in light of predictions that cyclones in north Queensland may become less frequent but more severe. In this study, we examined the extent, type and magnitude of damage inflicted on revegetation works in the Tully‐Murray floodplain of north Queensland by Severe Tropical Cyclone Larry. We compared wind damaged in 20 paired revegetated and associated rainforest remnant sites, using (i) gross community damage scores, (ii) mean weighted damage scores, and (iii) type of damage sustained by individual plants. Overall, wind damage due to Severe Tropical Cyclone Larry was surprisingly similar in revegetated and remnant sites. Both gross community damage scores and mean weighted damage scores did not differ between paired revegetated and remnant sites. In contrast, the type of damage sustained by individual plants was not independent of site, with a larger proportion in revegetated sites sustaining severe damage compared with remnant sites. This larger proportion of severely damaged individuals in revegetated sites was at least in part due to the significantly higher proportion of pioneers at these sites. The pioneer species Homalanthus novoguineensis was particularly susceptible to wind damage. The potential effects of spatial differences, such as consistent bias due to size, shape or exposure between the remnants and revegetated sites, on our results are discussed. In light of our results, we recommend that future revegetation sites include fewer pioneer species that are highly susceptible to wind damage, more pioneer species that are resistant to wind damage, and alteration of pioneer species distribution within planting matrices.  相似文献   

3.
Abstract The effect of Severe Tropical Cyclone Larry on tooth‐billed bowerbird court attendance and decoration was assessed for 32 courts located on the southern Atherton Tablelands. Numbers of active courts and the number of leaves on courts were compared with the two previous court attendance seasons. Compared with the 2004/2005 and 2005/2006 seasons, when court attendance was well established by mid‐September, tooth‐billed bowerbirds commenced court attendance late in the 2006/2007 season that followed Cyclone Larry. There were no courts active in mid‐September, and few were active in the first week of October. Twenty‐five percent fewer courts were active over the course of the 2006/2007 season than in the 2005/2006 season. For most of the 2006/2007 season, the average number of leaves on courts was significantly lower than in the previous two seasons. The 2006/2007 tooth‐billed bowerbird court attendance season appears to have been affected by direct disturbance to court sites and by the fruit shortage that followed the cyclone.  相似文献   

4.
5.
Abstract Severe Tropical Cyclone Larry damaged a large swathe of rainforest to the west of Innisfail in north‐eastern Queensland on 20 March 2006. Within the path of the most destructive core of the cyclone were sites previously established along human‐made (powerlines and highways) and natural (streams) linear canopy openings for a study of edge effects on adjacent rainforest plant communities and associated microclimates. Vegetation damage and understorey microclimate parameters were measured 6 months after the passage of Cyclone Larry and compared with results before the cyclone. We examined the spatial patterns of vegetation damage in relation to natural and artificial linear clearing edges and the vegetation structural factors influencing these patterns as well as resulting alterations to microclimate regimes experienced in the rainforest understorey. Vegetation damage was spatially patchy and not elevated near linear clearing edges relative to the forest interior and did not differ between edge types. Vegetation damage was influenced, albeit relatively weakly, by structural traits of individual trees and saplings, especially size (diameter at breast height, d.b.h.) and successional status: tree damage was greater in pioneer species and in larger trees, while sapling damage was greater in canopy tree species than in understorey tree or shrub species. Changes in the understorey microclimate mirrored the degree of damage to vegetation. Where vegetation damage appeared greater, the understorey microclimate was brighter, warmer, drier and windier than below less‐damaged areas of the forest canopy. Overall, understorey light availability, wind speed and the diurnal ranges of air temperature and vapour pressure deficit increased dramatically after Cyclone Larry, while pre‐cyclone edge gradients in light availability were lost and temperature and vapour pressure deficit gradients were reversed.  相似文献   

6.
Data on the fish fauna of the Leschenault Estuary on the lower west coast of Australia were collected and used as a model to elucidate the characteristics of permanently open estuaries with a reverse salinity gradient, which undergo seasonal changes similar to many other estuaries with Mediterranean climate. Focus was placed on determining (1) the relationships of the number of species, density, life cycle category and species composition of fishes with region (within estuary), season and year and salinity, (2) whether species are partitioned along the lengths of such systems and (3) the extent and significance of any inter‐decadal changes in species composition. The analyses and interpretation involved using multi‐factorial permutational multivariate analysis of variance (PERMANOVA) and analysis of similarity (ANOSIM) designs, and three new or recently published visualization tools, i.e. modified non‐metric multidimensional scaling (nMDS) plots, coherent species curves and segmented bubble plots. The base, lower, upper and apex regions of the Leschenault Estuary, along which the salinity increased in each season except in winter when most rainfall occurs, were sampled seasonally for the 2 years between winter 2008 and autumn 2010. Estuarine residents contributed twice as many individuals, but less than half the number of species as marine taxa. While the numbers of marine species and estuarine residents declined between the base or lower and apex regions, the individuals of marine species dominated the catches in the base region and estuarine residents in the other three regions. Ichthyofaunal composition in each region underwent conspicuous annual cyclical changes, due to time‐staggered differences in recruitment among species, and changed sequentially along the estuary, both paralleling salinity trends. Different groups of species characterized the fauna in the different regions and seasons, thereby partitioning resources among species. The ichthyofauna of the apex region, in which salinities reached 54 and temperatures 36° C, recorded the highest maximum density and, in terms of abundance, was dominated (90%) by three atherinid species, emphasizing the ability of this family to tolerate extreme conditions. Comparisons between the data for 2008–2010 and 1994 demonstrate that the spotted hardyhead Craterocephalus mugiloides and the common hardyhead Atherinomorus vaigiensis had colonized and become abundant in the Leschenault Estuary in the intervening period. This represents a southwards extension of the distribution of these essentially tropical species during a period of increasing coastal water temperatures as a result of climate change. The abundance of weed‐associated species, e.g. the western gobbleguts Ostorhinchus rueppellii and the soldier Gymnapistes marmoratus, increased, whereas that of the longfinned goby Favonigobius lateralis decreased, probably reflecting increases in eutrophication and siltation, respectively.  相似文献   

7.
8.
Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance‐induced mechanisms and processes to also operate in an extreme context. The paucity of well‐defined studies currently renders a quantitative meta‐analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land‐cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground‐based observational case studies reveals that many regions in the (sub‐)tropics are understudied. Hence, regional investigations are needed to allow a global upscaling of the impacts of climate extremes on global carbon–climate feedbacks.  相似文献   

9.
The mainland portion of the Adelaide Geosyncline (Mount Lofty and Flinders Ranges) has been postulated as an important arid‐zone climate refugium for Australia. To test the sensitivity of this putative Australian arid biome refugium to contemporary climate change, we compared Generalized Additive Modelling and MaxEnt distribution models for 20 vascular plant species. We aimed to identify shared patterns to inform priority areas for management. Models based on current climate were projected onto a hypothetical 2050 climate with a 1.5°C increase in temperature and 8% decrease in rainfall. Individual comparisons and combined outputs of logistic models for all 20 species showed range contraction to shared refugia in the Flinders Ranges and southern Mount Lofty Ranges. Modelling suggests the Flinders Ranges will experience species turnover while suitable climatic habitat will be retained in the Mount Lofty Ranges for the current suite of species. Fragmentation of the southern Mount Lofty Ranges poses management challenges for conserving species diversity with warming and drying. Although projected models must be interpreted carefully, they suggest the region will remain an important but threatened refugium for mesic species at a continental scale.  相似文献   

10.
The sensitivity of early plant regeneration to environmental change makes regeneration a critical stage for understanding species response to climate change. We investigated the spatial and temporal response of eucalypt trees in the Central Highland region of south eastern Australia to high and low climate change scenarios. We developed a novel mechanistic model incorporating germination processes, TACA‐GEM, to evaluate establishment probabilities of five key eucalypt species, Eucalyptus pauciflora, Eucalyptus delegatensis, Eucalyptus regnans, Eucalyptus nitens and Eucalyptus obliqua. Changes to regeneration potential at landscape and site levels were calculated to determine climate thresholds. Model results demonstrated that climate change is likely to impact plant regeneration. We observed increases and decreases in regeneration potential depending on the ecosystem, indicating that some species will increase in abundance in some forest types, whilst other forest types will become inhabitable. In general, the dry forest ecosystems were most impacted, whilst the wet forests were least impacted. We also observed that species with seed dormancy mechanisms, like E. pauciflora and E. delegatensis, are likely to be at higher risk than those without. Landscape‐ and site‐level analysis revealed heterogeneity in species response at different scales. On a landscape scale, a 4.3 °C mean temperature increase and 22% decline in precipitation (predicted for 2080) is predicted to be a threshold for large spatial shifts in species regeneration niches across the study region, while a 2.6 °C increase and 15% decline in precipitation (predicted for 2050) will likely result in local site‐level shifts. Site‐level analysis showed that considerable declines in regeneration potential for E. delegatensis, E. pauciflora and E. nitens were modelled to occur in some ecosystems by 2050. While overall model performance and accuracy was good, better understanding of effects from extreme events and other underlying processes on regeneration will improve modelling and development of species conservation strategies.  相似文献   

11.
Terrestrial ecosystems are an important sink for atmospheric carbon dioxide (CO2), sequestering ~30% of annual anthropogenic emissions and slowing the rise of atmospheric CO2. However, the future direction and magnitude of the land sink is highly uncertain. We examined how historical and projected changes in climate, land use, and ecosystem disturbances affect the carbon balance of terrestrial ecosystems in California over the period 2001–2100. We modeled 32 unique scenarios, spanning 4 land use and 2 radiative forcing scenarios as simulated by four global climate models. Between 2001 and 2015, carbon storage in California's terrestrial ecosystems declined by ?188.4 Tg C, with a mean annual flux ranging from a source of ?89.8 Tg C/year to a sink of 60.1 Tg C/year. The large variability in the magnitude of the state's carbon source/sink was primarily attributable to interannual variability in weather and climate, which affected the rate of carbon uptake in vegetation and the rate of ecosystem respiration. Under nearly all future scenarios, carbon storage in terrestrial ecosystems was projected to decline, with an average loss of ?9.4% (?432.3 Tg C) by the year 2100 from current stocks. However, uncertainty in the magnitude of carbon loss was high, with individual scenario projections ranging from ?916.2 to 121.2 Tg C and was largely driven by differences in future climate conditions projected by climate models. Moving from a high to a low radiative forcing scenario reduced net ecosystem carbon loss by 21% and when combined with reductions in land‐use change (i.e., moving from a high to a low land‐use scenario), net carbon losses were reduced by 55% on average. However, reconciling large uncertainties associated with the effect of increasing atmospheric CO2 is needed to better constrain models used to establish baseline conditions from which ecosystem‐based climate mitigation strategies can be evaluated.  相似文献   

12.
First‐generation biofuels are an existing, scalable form of renewable energy of the type urgently required to mitigate climate change. In this study, we assessed the potential benefits, costs, and trade‐offs associated with biofuels agriculture to inform bioenergy policy. We assessed different climate change and carbon subsidy scenarios in an 11.9 million ha (5.48 million ha arable) region in southern Australia. We modeled the spatial distribution of agricultural production, full life‐cycle net greenhouse gas (GHG) emissions and net energy, and economic profitability for both food agriculture (wheat, legumes, sheep rotation) and biofuels agriculture (wheat, canola rotation for ethanol/biodiesel production). The costs, benefits, and trade‐offs associated with biofuels agriculture varied geographically, with climate change, and with the level of carbon subsidy. Below we describe the results in general and provide (in parentheses) illustrative results under historical mean climate and a carbon subsidy of A$20 t?1 CO2?e. Biofuels agriculture was more profitable over an extensive area (2.85 million ha) of the most productive arable land and produced large quantities of biofuels (1.7 GL yr?1). Biofuels agriculture substantially increased economic profit (145.8 million $A yr?1 or 30%), but had only a modest net GHG abatement (?2.57 million t CO2?e yr?1), and a negligible effect on net energy production (?0.11 PJ yr?1). However, food production was considerably reduced in terms of grain (?3.04 million t yr?1) and sheep meat (?1.89 million head yr?1). Wool fiber production was also substantially reduced (?23.19 kt yr?1). While biofuels agriculture can produce short‐term benefits, it also has costs, and the vulnerability of biofuels to climatic warming and drying renders it a myopic strategy. Nonetheless, in some areas the profitability of biofuels agriculture is robust to variation in climate and level of carbon subsidy and these areas may form part of a long‐term diversified mix of land‐use solutions to climate change if trade‐offs can be managed.  相似文献   

13.
In an earlier special issue of this journal, Marsh & Greer summarized forest land use in Sabah at that time and gave an introduction to the Danum Valley Conservation Area. Since that assessment, during the period 1990-2010, the forests of Sabah and particularly those of the ca 10 000 km(2) concession managed on behalf of the State by Yayasan Sabah (the Sabah Foundation) have been subject to continual, industrial harvesting, including the premature re-logging of extensive tracts of previously only once-logged forest and large-scale conversion of natural forests to agricultural plantations. Over the same period, however, significant areas of previously unprotected pristine forest have been formally gazetted as conservation areas, while much of the forest to the north, the south and the east of the Danum Valley Conservation Area (the Ulu Segama and Malua Forest Reserves) has been given added protection and new forest restoration initiatives have been launched. This paper analyses these forest-management and land-use changes in Sabah during the period 1990-2010, with a focus on the Yayasan Sabah Forest Management Area. Important new conservation and forest restoration and rehabilitation initiatives within its borders are given particular emphasis.  相似文献   

14.
Fire regimes have a major influence on biodiversity in many ecosystems around the globe, yet our understanding of the longer‐term response of fauna is typically poor. We sampled bats with ultrasonic detectors in three different years in dry sclerophyll forests of south‐eastern Australia in a long‐term, management‐scale experiment. Frequent low‐intensity burning (every 2 or 4 years plus unburnt) and logging (with 33% retention of the original unlogged tree basal area) were manipulated to assess their effects on bats. We found that both the fire regime and regrowth after logging influenced the local bat community. The routine burning treatment (burnt every 4 years) in unlogged forest was consistently related to higher total bat activity (2–3 times) and species richness when compared to unburnt controls and logging treatments. Foraging activity was more variable, but it was typically lowest in Unlogged Unburnt Controls. These patterns were evident at both the detector site scale and the block scale and were probably due to a reduction in understorey stem density with burning, especially in unlogged forest. Bat activity was significantly lower across the entire study area (including controls) in 1 year, when sampling occurred within 6 months of burning. When pooled across burning treatments, unlogged forest supported higher bat activity (1.5 times) and species richness than logged forest (12‐ to 17‐year‐old regrowth), again most likely because of a negative association with high stem density in regrowth after logging. We conclude that low‐intensity burning had positive benefits for echolocating bats, most notably in unlogged forest. However, careful planning is required to generate heterogeneous vegetation patterns that are likely to be most suitable for a range of taxa.  相似文献   

15.
Determining the drivers of shifting forest disturbance rates remains a pressing global change issue. Large‐scale forest dynamics are commonly assumed to be climate driven, but appropriately scaled disturbance histories are rarely available to assess how disturbance legacies alter subsequent disturbance rates and the climate sensitivity of disturbance. We compiled multiple tree ring‐based disturbance histories from primary Picea abies forest fragments distributed throughout five European landscapes spanning the Bohemian Forest and the Carpathian Mountains. The regional chronology includes 11,595 tree cores, with ring dates spanning the years 1750–2000, collected from 560 inventory plots in 37 stands distributed across a 1,000 km geographic gradient, amounting to the largest disturbance chronology yet constructed in Europe. Decadal disturbance rates varied significantly through time and declined after 1920, resulting in widespread increases in canopy tree age. Approximately 75% of current canopy area recruited prior to 1900. Long‐term disturbance patterns were compared to an historical drought reconstruction, and further linked to spatial variation in stand structure and contemporary disturbance patterns derived from LANDSAT imagery. Historically, decadal Palmer drought severity index minima corresponded to higher rates of canopy removal. The severity of contemporary disturbances increased with each stand's estimated time since last major disturbance, increased with mean diameter, and declined with increasing within‐stand structural variability. Reconstructed spatial patterns suggest that high small‐scale structural variability has historically acted to reduce large‐scale susceptibility and climate sensitivity of disturbance. Reduced disturbance rates since 1920, a potential legacy of high 19th century disturbance rates, have contributed to a recent region‐wide increase in disturbance susceptibility. Increasingly common high‐severity disturbances throughout primary Picea forests of Central Europe should be reinterpreted in light of both legacy effects (resulting in increased susceptibility) and climate change (resulting in increased exposure to extreme events).  相似文献   

16.
Elevated nitrogen (N) deposition may increase net primary productivity in N‐limited terrestrial ecosystems and thus enhance the terrestrial carbon (C) sink. To assess the magnitude of this N‐induced C sink, we performed a meta‐analysis on data from forest fertilization experiments to estimate N‐induced C sequestration in aboveground tree woody biomass, a stable C pool with long turnover times. Our results show that boreal and temperate forests responded strongly to N addition and sequestered on average an additional 14 and 13 kg C per kg N in aboveground woody biomass, respectively. Tropical forests, however, did not respond significantly to N addition. The common hypothesis that tropical forests do not respond to N because they are phosphorus‐limited could not be confirmed, as we found no significant response to phosphorus addition in tropical forests. Across climate zones, we found that young forests responded more strongly to N addition, which is important as many previous meta‐analyses of N addition experiments rely heavily on data from experiments on seedlings and young trees. Furthermore, the C–N response (defined as additional mass unit of C sequestered per additional mass unit of N addition) was affected by forest productivity, experimental N addition rate, and rate of ambient N deposition. The estimated C–N responses from our meta‐analysis were generally lower that those derived with stoichiometric scaling, dynamic global vegetation models, and forest growth inventories along N deposition gradients. We estimated N‐induced global C sequestration in tree aboveground woody biomass by multiplying the C–N responses obtained from the meta‐analysis with N deposition estimates per biome. We thus derived an N‐induced global C sink of about 177 (112–243) Tg C/year in aboveground and belowground woody biomass, which would account for about 12% of the forest biomass C sink (1,400 Tg C/year).  相似文献   

17.
Climate change is causing rapid changes to forest disturbance regimes worldwide. While the consequences of climate change for existing disturbance processes, like fires, are relatively well studied, emerging drivers of disturbance such as snow loss and subsequent mortality are much less documented. As the climate warms, a transition from winter snow to rain in high latitudes will cause significant changes in environmental conditions such as soil temperatures, historically buffered by snow cover. The Pacific coast of North America is an excellent test case, as mean winter temperatures are currently at the snow–rain threshold and have been warming for approximately 100 years post‐Little Ice Age. Increased mortality in a widespread tree species in the region has been linked to warmer winters and snow loss. Here, we present the first high‐resolution range map of this climate‐sensitive species, Callitropsis nootkatensis (yellow‐cedar), and document the magnitude and location of observed mortality across Canada and the United States. Snow cover loss related mortality spans approximately 10° latitude (half the native range of the species) and 7% of the overall species range and appears linked to this snow–rain transition across its range. Mortality is commonly >70% of basal area in affected areas, and more common where mean winter temperatures is at or above the snow–rain threshold (>0 °C mean winter temperature). Approximately 50% of areas with a currently suitable climate for the species (相似文献   

18.
Several lines of evidence point to European managed grassland ecosystems being a sink of carbon. In this study, we apply ORCHIDEE‐GM a process‐based carbon cycle model that describes specific management practices of pastures and the dynamics of carbon cycling in response to changes in climatic and biogeochemical drivers. The model is used to simulate changes in the carbon balance [i.e., net biome production (NBP)] of European grasslands over 1991–2010 on a 25 km × 25 km grid. The modeled average trend in NBP is 1.8–2.0 g C m?2 yr?2 during the past two decades. Attribution of this trend suggests management intensity as the dominant driver explaining NBP trends in the model (36–43% of the trend due to all drivers). A major change in grassland management intensity has occurred across Europe resulting from reduced livestock numbers. This change has ‘inadvertently’ enhanced soil C sequestration and reduced N2O and CH4 emissions by 1.2–1.5 Gt CO2‐equivalent, offsetting more than 7% of greenhouse gas emissions in the whole European agricultural sector during the period 1991–2010. Land‐cover change, climate change and rising CO2 also make positive and moderate contributions to the NBP trend (between 24% and 31% of the trend due to all drivers). Changes in nitrogen addition (including fertilization and atmospheric deposition) are found to have only marginal net effect on NBP trends. However, this may not reflect reality because our model has only a very simple parameterization of nitrogen effects on photosynthesis. The sum of NBP trends from each driver is larger than the trend obtained when all drivers are varied together, leaving a residual – nonattributed – term (22–26% of the trend due to all drivers) indicating negative interactions between drivers.  相似文献   

19.
1. A major limitation to effective management of narrow‐range crayfish populations is the paucity of information on the spatial distribution of crayfish species and a general understanding of the interacting environmental variables that drive current and future potential distributional patterns. 2. Maximum Entropy Species Distribution Modeling Software (MaxEnt) was used to predict the current and future potential distributions of four endemic crayfish species in the Ouachita Mountains. Current distributions were modelled using climate, geology, soils, land use, landform and flow variables thought to be important to lotic crayfish. Potential changes in the distribution were forecast by using models trained on current conditions and projecting onto the landscape predicted under climate‐change scenarios. 3. The modelled distribution of the four species closely resembled the perceived distribution of each species but also predicted populations in streams and catchments where they had not previously been collected. Soils, elevation and winter precipitation and temperature most strongly related to current distributions and represented 65–87% of the predictive power of the models. Model accuracy was high for all models, and model predictions of new populations were verified through additional field sampling. 4. Current models created using two spatial resolutions (1 and 4.5 km2) showed that fine‐resolution data more accurately represented current distributions. For three of the four species, the 1‐km2 resolution models resulted in more conservative predictions. However, the modelled distributional extent of Orconectes leptogonopodus was similar regardless of data resolution. Field validations indicated 1‐km2 resolution models were more accurate than 4.5‐km2 resolution models. 5. Future projected (4.5‐km2 resolution models) model distributions indicated three of the four endemic species would have truncated ranges with low occurrence probabilities under the low‐emission scenario, whereas two of four species would be severely restricted in range under moderate–high emissions. Discrepancies in the two emission scenarios probably relate to the exclusion of behavioural adaptations from species‐distribution models. 6. These model predictions illustrate possible impacts of climate change on narrow‐range endemic crayfish populations. The predictions do not account for biotic interactions, migration, local habitat conditions or species adaptation. However, we identified the constraining landscape features acting on these populations that provide a framework for addressing habitat needs at a fine scale and developing targeted and systematic monitoring programmes.  相似文献   

20.
Climate and other global environmental changes are major threats to ecosystem functioning and biodiversity. However, the importance of plant diversity in mitigating the responses of functioning of natural ecosystems to long‐term environmental change remains unclear. Using inventory data of boreal forests of western Canada from 1958 to 2011, we found that aboveground biomass growth increased over time in species‐rich forests but decreased in species‐poor forests, and importantly, aboveground biomass loss from tree mortality was smaller in species‐rich than species‐poor forests. A further analysis indicated that growth of species‐rich (but not species‐poor) forests was statistically positively associated with rising CO2, and that mortality in species‐poor forests increased more as climate moisture availability decreased than it did in species‐rich forests. In contrast, growth decreased and mortality increased as the climate warmed regardless of species diversity. Our results suggest that promoting high tree diversity may help reduce the climate and environmental change vulnerability of boreal forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号