首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The freezing tolerance of Arabidopsis thaliana is enhanced by cold acclimation, resulting in changes in the compositions and function of the plasma membrane. Here, we show that a dynamin‐related protein 1E (DRP1E), which is thought to function in the vesicle trafficking pathway in cells, is related to an increase in freezing tolerance during cold acclimation. DRP1E accumulated in sphingolipid and sterol‐enriched plasma membrane domains after cold acclimation. Analysis of drp1e mutants clearly showed that DRP1E is required for full development of freezing tolerance after cold acclimation. DRP1E fused with green fluorescent protein was visible as small foci that overlapped with fluorescent dye‐labelled plasma membrane, providing evidence that DRP1E localizes non‐uniformly in specific areas of the plasma membrane. These results suggest that DRP1E accumulates in sphingolipid and sterol‐enriched plasma membrane domains and plays a role in freezing tolerance development during cold acclimation.  相似文献   

4.
5.
To investigate the molecular mechanisms controlling the process of cold acclimation and to identify genes involved in plant freezing tolerance, mutations that impaired the cold acclimation capability of Arabidopsis thaliana (L.) Heynh. were screened for. A new mutation, frs1 (freezing sensitive 1), that reduced both the constitutive freezing tolerance as well as the freezing tolerance of Arabidopsis after cold acclimation was characterized. This mutation also produced a wilty phenotype and excessive water loss. Plants with the frs1 mutation recovered their wild-type phenotype, their capability to tolerate freezing temperatures and their capability to retain water after an exogenous abscisic acid (ABA) treatment. Measurements of ABA revealed that frs1 mutants were ABA deficient, and complementation tests indicated that frs1 mutation was a new allele of the ABA3 locus showing that a mutation in this locus leads to an impairment of freezing tolerance. These results constitute the first report showing that a mutation in ABA3 leads to an impairment of freezing tolerance, and not only strengthen the conclusion that ABA is required for full development of freezing tolerance in cold-acclimated plants, but also demonstrate that ABA mediates the constitutive freezing tolerance of Arabidopsis. Gene expression in frs1 mutants was altered in response to dehydration, suggesting that freezing tolerance in Arabidopsis depends on ABA-regulated proteins that allow plants to survive the challenges imposed by subzero temperatures, mainly freeze-induced cellular dehydration. Received: 16 December 1999 / Accepted: 31 March 2000  相似文献   

6.
To elucidate the contribution of dehydrins (DHNs) to freezing stress tolerance in Arabidopsis, transgenic plants overexpressing multiple DHN genes were generated. Chimeric double constructs for expression of RAB18 and COR47 (pTP9) or LTI29 and LTI30 (pTP10) were made by fusing the coding sequences of the respective DHN genes to the cauliflower mosaic virus 35S promoter. Overexpression of the chimeric genes in Arabidopsis resulted in accumulation of the corresponding dehydrins to levels similar or higher than in cold-acclimated wild-type plants. Transgenic plants exhibited lower LT50 values and improved survival when exposed to freezing stress compared to the control plants. Post-embedding immuno electron microscopy of high-pressure frozen, freeze-substituted samples revealed partial intracellular translocation from cytosol to the vicinity of the membranes of the acidic dehydrin LTI29 during cold acclimation in transgenic plants. This study provides evidence that dehydrins contribute to freezing stress tolerance in plants and suggests that this could be partly due to their protective effect on membranes.  相似文献   

7.
The cold tolerance abilities of only a few nematode species have been determined. This study shows that the oatmeal nematode, Panagrellus redivivus, has modest cold tolerance with a 50% survival temperature (S 50) of −2.5°C after cooling at 0.5°C min−1 and freezing for 1 h. It can survive low temperatures by freezing tolerance and cryoprotective dehydration; although freezing tolerance appears to be the dominant strategy. Freezing survival is enhanced by low temperature acclimation (7 days at 5°C), with the S 50 being lowered by a small but significant amount (0.42°C). There is no cold shock or rapid cold hardening response under the conditions tested. Cryoprotective dehydration enhances the ability to survive freezing (the S 50 is lowered by 0.55°C, compared to the control, after 4 h freezing at −1°C) and this effect is in addition to that produced by acclimation. Breeding from survivors of a freezing stress did not enhance the ability to survive freezing. The cold tolerance abilities of this nematode are modest, but sufficient to enable it to survive in the cold temperate environments it inhabits.  相似文献   

8.
9.
Freezing injury is a major factor limiting the geographical distribution of plant species and the growth and yield of crop plants. Plants from temperate climates are able to increase their freezing tolerance during exposure to low but non‐freezing temperatures in a process termed cold acclimation. Damage to cellular membranes is the major cause of freezing injury in plants, and membrane lipid composition is strongly modified during cold acclimation. Forward and reverse genetic approaches have been used to probe the role of specific lipid‐modifying enzymes in the freezing tolerance of plants. In the present paper we describe an alternative ecological genomics approach that relies on the natural genetic variation within a species. Arabidopsis thaliana has a wide geographical range throughout the Northern Hemisphere with significant natural variation in freezing tolerance that was used for a comparative analysis of the lipidomes of 15 Arabidopsis accessions using ultra‐performance liquid chromatography coupled to Fourier‐transform mass spectrometry, allowing the detection of 180 lipid species. After 14 days of cold acclimation at 4°C the plants from most accessions had accumulated massive amounts of storage lipids, with most of the changes in long‐chain unsaturated triacylglycerides, while the total amount of membrane lipids was only slightly changed. Nevertheless, major changes in the relative amounts of different membrane lipids were also evident. The relative abundance of several lipid species was highly correlated with the freezing tolerance of the accessions, allowing the identification of possible marker lipids for plant freezing tolerance.  相似文献   

10.
11.
12.
Extracellular freezing results in cellular dehydration caused by water efflux, which is likely regulated by aquaporins (AQPs). In a seasonal cold acclimation (CA) study of Rhododendron catawbiense , two AQP cDNAs, RcPIP2;1 and RcPIP2;2 , were down-regulated as the leaf freezing tolerance (FT) increased from −7 to ∼−50 °C. We hypothesized this down-regulation to be an adaptive component of CA process allowing cells to resist freeze-induced dehydration. Here, we characterize full-length cDNAs of the two Rhododendron PIP s, and demonstrate that RcPIP2s have water channel activity. Moreover, RcPIP2 s were over-expressed in Arabidopsis , and FT of transgenic plants was compared with that of wild-type (WT) controls. Data indicated a significantly lower constitutive FT and CA ability of RcPIP2 -OXP plants (compared with WT) due, presumably, to their lower ability to resist freeze desiccation. A relatively higher dehydration rate of RcPIP2 -OXP leaves (than WT) supports this notion. Phenotypic and microscopic observations revealed bigger leaf size and mesophyll cells of RcPIP2 -OXP plants than WT. It is proposed that lower FT of transgenic plants may be associated with their leaf cells' propensity to greater mechanical stress, that is, volume strain per unit surface, during freeze–thaw-induced contraction or expansion. Additionally, greater freeze injury in RcPIP2 -OXP plants could also be attributed to their susceptibility to potentially faster rehydration (than WT) during a thaw.  相似文献   

13.
14.
Membrane fluidity change has long been suggested as the primary mechanism by which, plants adapt to cold stress, but the underlying molecular mechanisms are not completely established. In this study, we found that a knockout of acyl‐lipid/CoA desaturase 1 gene (ADS1; EC 1.14.99) enhances freezing tolerance after cold acclimation (CA). Fatty acid composition analysis demonstrated that 18:1 content in ads1 mutant plants was 20% lower than in wild‐type (WT) grown at 23°C. Lipidomics revealed that 34C‐species of monogalactosyl diacylglycerol (MGDG) content in ads1 mutants were 3.3–14.9% lower than in WT. Lipid positional analysis identified 10% lower 18:1 fatty acid content at the sn‐2 position of MGDG. The cytosolic calcium content in ads1 mutant plants was also approximately two‐times higher than that of WT in response to cold shock. Each of these biochemical differences between WT and ads1 mutant disappeared after CA. Subcellular localization of C‐ and N‐terminal enhanced‐fluorescence‐fusion proteins indicated that ADS1 localized exclusively to chloroplasts. These observations suggest that ADS1‐mediated alteration of chloroplast membrane fluidity is required to prime a CA response, and is the upstream event of cytosolic calcium signaling.  相似文献   

15.
Barley ( Hordeum vulgare L.) exposed to low temperature increases its freezing tolerance. This increase has been associated with several metabolic changes caused by low temperature, including expression of dehydrins (DHN), a family of proteins induced by dehydration and cold acclimation. DHNs play an undetermined role in dehydration responses during freezing. We have studied the accumulation of an 80-kDa DHN-like protein (P-80) in barley under cold acclimation 6/4°C (day/night), postulating that it is localized in tissues where primary ice nucleation occurs. P-80 was absent in nonacclimated plants and was detectable after 48 h of cold acclimation, reaching a stable level after 6 days. P-80 decreased when plants were returned to 20–25°C. Drought, ABA and high temperature did not increase the levels of P-80, suggesting that its expression could be specifically regulated by cold. Immunolocalization by tissue printing and fresh cross sections of leaves showed the protein to be associated with vascular tissues and epidermis. The localization of P-80 is consistent with our hypothesis because vascular tissue and the epidermis are preferential ice nucleation zones during the onset of freezing. The differential accumulation of P-80 may have an adaptive value by participating in tolerance mechanisms during freeze-induced dehydration.  相似文献   

16.
17.
18.
A new rare cold-inducible (RCI) gene designated Cbrci35 was cloned from Capsella bursa-pastoris, an edible wild herb, using the rapid amplification of cDNA ends (RACE) method. The full-length cDNA of Cbrci35 (Database Accession No.: AY566573) was 1300 bp and contained a 978 bp ORF encoding a precursor of 326 amino acid residues with a 23 amino acids signal peptide. The predicted Cbrci35 protein contained a peroxidase active site and proximal heme-ligand signatures, an RGD cell attachment sequence motif and two leucine zipper pattern motifs. Bioinformatics analysis revealed that Cbrci35 has a high level of similarity with RCI genes from Arabidopsis thaliana and peroxidases genes from other plants. RT-PCR analysis revealed that Cbrci35 expressed only in root. A cold acclimation assay showed that Cbrci35 was expressed immediately after cold triggering, but this expression was transient, suggesting that it concerns cold acclimation. But expression was not induced exposed to dehydration, salt stress or abscisic acid, indicating that it might be subjected specifically to cold regulation. These results indicate that Cbrci35 is an analogue of RCI genes and may participate in cold-response or increasing the freezing tolerance of plants.  相似文献   

19.
20.
In the present study the cold acclimation potential of two accessions of Arabidopsis thaliana was investigated. Significant variation was found for basic tolerance as well as the capacity to acclimate to freezing temperatures. During cold acclimation, levels of soluble sugars increased in both genotypes, but raffinose accumulation discriminated the more tolerant accession Col‐0 from C24. Concentrations of other compatible solutes such as proline and glutamine were also higher in cold‐acclimated Col‐0 than C24 plants. Changes of invertase activity during cold exposure corresponded to changes in sucrose and fructose, but not glucose concentrations and were consistent with an initial chilling response and a later decline in hexose metabolization. When vacuolar invertase was suppressed by siRNA expression, reduced sucrolytic activity resulted in elevated leaf sucrose concentration, whereas the fructose content was strongly reduced. This led to elevated freezing tolerance in the cold‐tolerant genotype Col‐0, but not in C24. The most pronounced metabolic changes in invertase‐inhibited Col‐0 plants occurred for proline and glutamine concentrations, indicating indirect metabolic effects of altered sugar concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号