首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
This study investigated the effects of airborne interaction between different barley cultivars on the behaviour of bird cherry-oat aphid Rhopalosiphum padi, the ladybird Coccinella septempunctata and the parasitoid Aphidius colemani. In certain cultivar combinations, exposure of one cultivar to air passed over a different cultivar caused barley to have reduced aphid acceptance and increased attraction of ladybirds and parasitoids. Parasitoids attacked aphids that had developed on plants under exposure more often than those from unexposed plants, leading to a higher parasitisation rate. Ladybirds, but not parasitoids, were more attracted to combined odours from certain barley cultivars than either cultivar alone. The results show that airborne interactions between undamaged plants can affect higher trophic levels, and that odour differences between different genotypes of the same plant species may be sufficient to affect natural enemy behaviour.  相似文献   

2.
The type and quantity of fertilizer supplied to a crop will differ between organic and conventional farming practices. Altering the type of fertilizer a plant is provided with can influence a plant’s foliar nitrogen levels, as well as the composition and concentration of defence compounds, such as glucosinolates. Many natural enemies of insect herbivores can respond to headspace volatiles emitted by the herbivores’ host plant in response to herbivory. We propose that manipulating fertilizer type may also influence the headspace volatile profiles of plants, and as a result, the tritrophic interactions that occur between plants, their insect pests and those pests’ natural enemies. Here, we investigate a tritrophic system consisting of cabbage plants, Brassica oleracea, a parasitoid, Diaeretiella rapae, and one of its hosts, the specialist cabbage aphid Brevicoryne brassicae. Brassica oleracea plants were provided with either no additional fertilization or one of three types of fertilizer: Nitram (ammonium nitrate), John Innes base or organic chicken manure. We investigated whether these changes would alter the rate of parasitism of aphids on those plants and whether any differences in parasitism could be explained by differences in attractivity of the plants to D. rapae or attack rate of aphids by D. rapae. In free‐choice experiments, there were significant differences in the percentage of B. brassicae parasitized by D. rapae between B. oleracea plants grown in different fertilizer treatments. In a series of dual‐choice Y‐tube olfactometry experiments, D. rapae females discriminated between B. brassicae‐infested and undamaged plants, but parasitoids did not discriminate between similarly infested plants grown in different fertilizer treatments. Correspondingly, in attack rate experiments, there were no differences in the rate that D. rapae attacked B. brassicae on B. oleracea plants grown in different fertilizer treatments. These findings are of direct relevance to sustainable and conventional farming practices.  相似文献   

3.
Two groups of brussels sprout plants of one variety given different fertilizer treatments proved ‘resistant’ and ‘susceptible’ to both Myzus persicae and Breicoryrie brassicae, as measured by aphid mean relative growth rate. The hypothesis that leaf disc would fail to reflect differences in ‘nutritionallybased’ plant resistance was confirmed with B.brussicue but not M.persicae. Both aphids grew more slowly on discs than leaves of ‘susceptible’ plants; the reverse tendency showed on ‘resistant’ material. Total:(, amino nitrogen proved poorly correlated with aphid performance. Previously published (van Emden & Bashford, 1971) equations relating individual amino acids to aphid performance gave a better fit to the results, but still failed to account for the reduced performance of the aphids on ‘susceptible’ discs.  相似文献   

4.
Aphidius colemani Viereck, emerging from Myzus persicae (Sulzer) mummies on the Brussels sprout cultivar ‘Bedford Winter Harvest’ (BWH), responds positively in the olfactometer to the odour of that cultivar in comparison with air. Responses to the odours of other sprout cultivars, cabbage and broad bean could be explained by the humidity from plant leaves. In a choice between BWH and other sprout cultivars, the BWH odour is preferred, or that of cv. ‘Red Delicious’ (RD) if the parasitoids are reared on RD. This confirms previous work showing that the secondary chemistry of a cultivar is learnt from the mummy cuticle during emergence. Adults emerging from pupae excised from the mummy show a similar but less pronounced preference. Parasitoids developing in aphids on an artificial diet do not discriminate between the odours of BWH and RD, unless allowed contact with a mummy from the same cultivar that the mother develops on. This suggests a cultivar‐specific maternal cue. This cue is speculated to consist of a small amount of the secondary chemistry (probably glucosinolates in the present study) that are left in or on the egg at oviposition, which subsequently induces enzymes that detoxify plant‐derived toxins in the aphid host. Indeed, when parasitoids emerging from diet‐reared aphids are released on aphid‐infested sprout plants, fewer mummies are produced than by parasitoids emerging from mummies of plant‐reared aphids or from excised pupae. Only parasitoids that emerge from mummies of plant‐reared aphids prefer the cultivar of origin as shown by the number of mummified hosts.  相似文献   

5.
We showed the effect of aphid infesting on the volatile organic compounds (VOCs) emitted by the infested Artemisia annua and Chrysanthemum morifolium cultivar ‘Nan nong hong feng’ plants by using headspace solid-phase microextraction (HS-SPME) method combined with gas chromatography mass spectrometry (GC–MS). In olfactometer bioassay experiment, aphids showed a preference for the odour of both healthy and infested chrysanthemum, while we found an opposite result in A. annua. Aphids tend to healthy plants compared with the infested, and the phenomenon became obvious with time. Different extracts were tested with the healthy plants and aphid infested plants. Eucalyptol, β-caryophyllene, (E)-β-farnesene, and germacrene D were released as the major constituents in both species. After aphid infesting, we observed a great increase in artemisia ketone and (E)-β-farnesene and a decrease in germacrene D in A. annua; comparatively, eucalyptol, isoborneol and β-caryophyllene increased in chrysanthemum. Combined with the GC–MS data and olfactometer bioassay results we concluded that (E)-β-farnesene and artemisia ketone emitted from A. annua might act as a potential volatile compound to resist aphids, and the two compounds would be useful for future ecological control of aphid in chrysanthemum cultivation.  相似文献   

6.
Abstract The olfactory responses of Aphidius gifuensis to odors from two host plants (Nicotiana tabacum and Brassica napus ssp.) and their complexes with different infestation levels of two host aphids (Myzus persicae and Lipaphis erysimi) were respectively examined in an olfactometer. The results showed that female A. gifuensis did not respond to odors of undamaged or mechanically damaged host plants, but significantly responded to odors of aphid/plant complexes. Moreover, A. gifuensis responded significantly to odors of both M. persicae and L. erysimi/plant complexes when host plants were infested by high levels of aphids, suggesting that quantity of aphid‐induced volatiles could be important for attracting A. gifuensis. When tested between aphid/plant complexes, A. gifuensis did not show its preference for either complex. The efficiency of A. gifuensis against aphids in open fields potentially could be improved by using its olfactory response to aphid/plant complexes.  相似文献   

7.
Intraguild relations between beneficial insects have become a major research topic in biological pest control. In order to understand the intraguild competitions between aphidophagous populations in natural conditions, a field experiment was carried out in the experimental farm of the Gembloux Agricultural University. As biological control of pests involve a community of diverse natural enemies, this experiment firstly aimed to assess the aphidophagous predator diversity and abundance in green pea (Pisum sativum) field and secondly to investigate the impact of the large natural occurrence of C. septempunctata on the aphidophagous beneficial dispersion and efficiency as aphid biological control agents in pea field. Visual observations were weekly performed throughout the 2006 growing season. The pea aphids were attacked by several predatory groups, mainly ladybird beetles and hoverflies. Higher densities of ladybirds and hoverflies were recorded in the beginning of July, associated with an aphid occurrence peak. Using net cage system in the field, the particular intraguild relations between added C. septempunctata or E. balteatus and the natural beneficial arrivals and dispersion were observed. The E. batteatus (eggs and larvae) presence inhibited other aphidophagous predators presence on the aphid infested plants. Lower abundance of E. balteatus was observed on aphid infested plants already colonised by C. septempunctata. To explore more accurately the oviposition and predation behaviours of ladybirds and hoverflies and to determine the chemical factors that could influence these behaviours, current researches are performed in laboratory and will be discussed to promote efficient biological control of aphids by natural enemies.  相似文献   

8.
Evolutionary ecological theory predicts that among insect herbivores ‘mothers know best’ when selecting a plant to deposit their eggs. Host‐plant selection is usually studied for the adult stage exclusively, although mothers have not always been reported to know best. Here, we investigate the host‐plant selection behaviour of caterpillars, which are considered to be completely dependent on their mothers’ choices. We use a system that offers a biologically relevant framework to compare the degree of participation of adults and juveniles in host‐plant selection. Our results show that neonate Pieris brassicae caterpillars can actively discriminate between conspecific Brassica oleracea plants with or without aphid (Brevicoryne brassicae) infestation. The caterpillars prefer aphid‐infested plants on which their performance is significantly better, while their mothers, the female butterflies, did not discriminate. We compared caterpillar preferences of individuals released individually or in groups, because P. brassicae is a gregarious species. We found that the strength of the preference for aphid‐infested plants was not affected by the degree of grouping. Caterpillar choices were made before contact with the plants, indicating that plant odours were used for orientation. However, the composition of the volatile blends emitted by plants with and without aphids did not show strong differences. Similarly, like with aphid‐infested plants, plants treated with salicylic acid (SA) were also preferred by neonates over untreated control, indicating that the infestation by aphids may have rendered the plants more attractive to the neonates via changes related to interference with JA‐signaling. The main parasitoid of the caterpillars did not discriminate between plants with hosts in the presence or absence of aphids, showing that top–down forces do not influence the relative suitability of the different food sources for the caterpillars. These data are discussed in the context of mothers and offspring having both important, but different roles in the process of host‐plant selection. Butterflies may select the plant species patch, while their offspring adjust and/or update the choices of their mothers at the local scale, within the micro‐habitat selected by the adult.  相似文献   

9.
Potato leafroll virus (PLRV; genus Polerovirus, family Luteoviridae) is a persistently transmitted circulative virus that depends on aphids for spreading. The primary vector of PLRV is the aphid Myzus persicae (Sulzer) (Homoptera: Aphididae). Solanum tuberosum L. potato cv. Kardal (Solanaceae) has a certain degree of resistance to M. persicae: young leaves seem to be resistant, whereas senescent leaves are susceptible. In this study, we investigated whether PLRV‐infection of potato plants affected aphid behaviour. We found that M. persicae's ability to differentiate headspace volatiles emitted from PLRV‐infected and non‐infected potato plants depends on the age of the leaf. In young apical leaves, no difference in aphid attraction was found between PLRV‐infected and non‐infected leaves. In fact, hardly any aphids were attracted. On the contrary, in mature leaves, headspace volatiles from virus infected leaves attracted the aphids. We also studied the effect of PLRV‐infection on probing and feeding behaviour (plant penetration) of M. persicae using the electrical penetration graph technique (DC system). Several differences were observed between plant penetration in PLRV‐infected and non‐infected plants, but only after infected plants showed visual symptoms of PLRV infection. The effects of PLRV‐infection in plants on the behaviour of M. persicae, the vector of the virus, and the implications of these effects on the transmission of the virus are thoroughly discussed.  相似文献   

10.
The preference‐performance hypothesis predicts that insect preference should correspond to host suitability for offspring development. We studied the pattern of within‐plant preference in the aphid Sipha flava and its consequences for offspring performance on the host‐plant Sorghum halepense, regarding the role of induced responses of plants to aphid feeding. The consequences of within‐plant preference on aphid population growth and host‐plant traits were also evaluated. Our results showed that winged and wingless aphids preferred to settle on mature rather than young leaves. In contrast, aphid individual growth rate was higher on young leaves when compared with mature leaves, suggesting that the outcome of this test rejected the preference‐performance hypothesis. However, the inclusion of the factor ‘previous aphid infestation’ changed the outcome from a maladaptive choice to a neutral one. Thus, individual growth rates of S. flava increased when aphids developed on leaves that had been previously infested. Interestingly, aphid growth rate on previously infested leaves did not differ between young and mature leaves. On the other hand, aphid population reproductive rate was higher and the percentage of winged aphids lower when infestation occurred on mature rather than young leaves. Aphid infestation reduced plant and shoot biomass, and increased leaf mortality. These negative effects on plant traits related to plant fitness were greater when aphid infestation occurred on young leaves. Likewise, whereas infestation on mature leaves did not cause a significant reduction in the number of flowering plants compared with control plants, aphid infestation on young leaves did reduce the number of plants at the flowering stage. Consequently, if both the reproductive rate of aphids in the mid‐term, and host‐plant fitness are taken into account, the results indicate that aphid preference for mature leaves may be an adaptive choice, thus supporting the preference‐performance hypothesis.  相似文献   

11.
1. To maximise their reproductive success, the females of most parasitoids must not only forage for hosts but must also find suitable food sources. These may be nectar and pollen from plants, heamolymph from hosts and/or honeydew from homopterous insects such as aphids. 2. Under laboratory conditions, females of Cotesia vestalis, a larval parasitoid of the diamondback moth (Plutella xylostella) which does not feed on host blood, survived significantly longer when held with cruciferous plants infested with non‐host green peach aphids (Myzus persicae) than when held with only uninfested plants. 3. Naïve parasitoids exhibited no preference between aphid‐infested and uninfested plants in a dual‐choice test, but those that had been previously fed aphid honeydew significantly preferred aphid‐infested plants to uninfested ones. 4. These results suggest that parasitoids that do not use aphids as hosts have the potential ability to learn cues from aphid‐infested plants when foraging for food. This flexible foraging behaviour could allow them to increase their lifetime reproductive success.  相似文献   

12.
Abstract

The blend of volatile compounds emitted by tomato plants (Solanum lycopersicum) infested with the potato aphid (Macrosiphum euphorbiae) has been studied comparatively with undamaged plants and aphids themselves. Aphid-infested plants were significantly more attractive towards Aphidius ervi than undamaged plants and aphids themselves. Oriented response towards host-damaged plant, from which aphids were removed just before running the bioassay, did not differ from that recorded for infested plants. Collection of the volatiles and analysis by gas chromatography revealed only quantitative differences between uninfested and aphid-infested plants. Nine compounds, α-pinene, (Z)-3-hexen-1-ol, α-phellandrene, limonene, (E)-β-ocimene, p-cymene, methyl salicylate, (E)-β-caryophyllene and an unknown compound, were emitted at higher levels from aphid-infested plants than from undamaged control plants, whilst no differences were noted for hexanal, 6-methyl-5-hepten-2-one, and humulene (=α-caryophyllene). Synthetic standards of these compounds were tested in wind tunnel bioassays and all elicited a significant increase in oriented flight and landings on the target by the aphid parasitoid Aphidius ervi. (E)-β-caryophyllene resulted the most attractive towards female wasps. These results corroborate the hypothesis that the volatiles produced by the plant in response to aphid attack derive from both jasmonic and salicylic acid pathways, and are exploited by A. ervi as olfactory cues to locate its hosts.  相似文献   

13.
Herbivore-induced plant volatiles provide foraging cues for herbivores and for herbivores’ natural enemies. Aphids induce plant volatile emissions and also utilize plant-derived olfactory volatile cues, but the chemical ecology of aphids and other phloem-feeding insects is less extensively documented than that of chewing insects. Here, we characterize the volatile cues emitted by turnip plants (Brassica rapa) under attack by an aphid (Myzus persicae) or by the chewing lepidopteran larva Heliothis virescens. We also tested the behavioral responses of M. persicae individuals to the odors of undamaged and herbivore-damaged plants presented singly or in combination, as well as to the odor of crushed conspecifics (simulating predation). Gas chromatographic analysis of the volatile blend of infested turnips revealed distinct profiles for both aphid- and caterpillar-induced plants, with induced compounds including green-leaf alcohols, esters, and isothiocyanates. In behavioral trials, aphids exhibited increased activity in the presence of plant odors and positive attraction to undamaged turnip plants. However, aphids exhibited a strong preference for the odors of healthy versus plants subjected to herbivore damage, and neither aphid- or caterpillar-damaged plants were attractive compared to clean-air controls. Reduced aphid attraction to herbivore-infested plants may be mediated by changes in the volatile blend constituent composition, including large amounts of isothiocyanates and green-leaf volatiles or, in the case of aphid-infested plants, of the aphid alarm pheromone, (E)-β-farnesene.  相似文献   

14.
In response to herbivory by insects, several plant species have been shown to produce volatiles that attract the natural enemies of those herbivores. Using a Y‐tube olfactometer, we investigated responses of the aphid parasitoid Diaeretiella rapae MacIntosh (Hymenoptera: Aphidiidae) to volatiles from Arabidopsis thaliana Columbia (Brassicaceae) plants that were either undamaged, infested by the peach‐potato aphid, Myzus persicae Sulzer (Homoptera: Aphididae), or mechanically damaged, as well as to volatiles from just the aphid or its honeydew. In dual‐choice experiments, female D. rapae given oviposition experience on A. thaliana infested with M. persicae were significantly attracted to volatiles from A. thaliana infested with M. persicae over volatiles from undamaged A. thaliana and similarly were significantly attracted to plants that had been previously infested by M. persicae, but from which the aphids were removed, over undamaged plants. Diaeretiella rapae did not respond to volatiles from M. persicae alone, their honeydew, or plants mechanically damaged with either a pin or scissors. We conclude that an interaction between the plant and the aphid induces A. thaliana to produce volatiles, which D. rapae can learn and respond to. Poor responses of D. rapae to volatiles from an A. thaliana plant that had two leaves infested with M. persicae, with the two infested leaves being removed before testing, suggested the possibility that, at this stage of infestation, the majority of volatile production induced by M. persicae may be localized to the infested tissues of the plant. We conclude that this tritrophic interaction is a suitable model system for future investigations of the biochemical pathways involved in the production of aphid‐induced volatiles attractive to natural enemies.  相似文献   

15.
Susceptible and resistance wheat cultivars, Triticum aestivum L, were presented to two biotypes of Russian wheat aphid, Diuraphis noxia (Mordvilko), in multiple choice tests to assay their relative acceptability as host plants. Both apterae (third and fourth instars) and alate adults were offered plants at the two-leaf stage in different cultivar combinations at 22±1℃ and 16:8 (L: D) hour photoperiod. Apterae were released from Petri dishes in the center of a circle of test plants, whereas alatae dispersed from a mature aphid colony to settle on plants arranged in rows. Both alatae and apterous nymphs of both biotypes readily colonized all cultivars tested:‘2137', ‘Akron',‘Ankor’,‘ Halt’ ,‘ Jagger’ ,‘ Prairie Red’ , ‘Stanton',‘TAM 107',‘TAM 110',‘Trego', ‘ Yuma', and ‘Yumar'. Fewer biotype I apterae responded (settled and fed) in the combination containing more resistant (Dn4- and Dny-expressing) cultivars, compared to the combinations that had fewer. The reverse was true for biotype 2 apterae; more aphids responded in the combination containing the largest number of Dn4 expressing cultivars. Differential colonization of cultivars was observed in only one combination, in which biotype 2 apterae colonized Akron and Yumar in larger numbers than they did Stanton and Yuma. A separate experiment confirmed that, 48 hours after infestation, more biotype 2 apterae abandoned plants of Yuma than plants of Yumar. This differential response was likely due to genetic differences between the two ' near isogenic' lines that include the lack of Dn4 expression in Yuma. Choice tests with alatae did not result in differential rates of cultivar colonization by either biotype in any combination tested. These results suggest that young wheat plants appear to lack any meaningful antixenosis toward D. noxia, even though the aphids appear to perceive, and sometimes respond to, certain differences in cultivar suitability.  相似文献   

16.
Activities of the detoxification enzymes esterase, glutathione S‐transferase, and of superoxide dismutase in aphids and aphid‐infested cereal leaves were assayed using polyacrylamide gel electrophoresis and a spectrophotometer to elucidate the enzymatic mechanisms of aphid resistance in cereal plants. A chlorosis‐eliciting Russian wheat aphid, Diuraphis noxia (Mordvilko), and non‐chlorosis‐eliciting bird cherry‐oat aphid, Rhopalosiphum padi (L.), and four cereals were used in this study. The four cereal genotypes were ‘Arapahoe’ (susceptible) and ‘Halt’ (resistant) wheat (Triticum aestivum L.), ‘Morex’ (susceptible) barley (Hordeum vulgare L.), and ‘Border’ (resistant) oat (Avena sativa L.). Esterase isozymes differed between the two aphid species, although glutathione S‐transferase and superoxide dismutase did not. Esterase, glutathione S‐transferase, and superoxide dismutase activities in either aphid species were not affected by the level of resistance of a cereal to D. noxia. The assays of cereal leaf samples showed that D. noxia feeding elicited an increase in esterase activity in all four cereal genotypes, although R. padi feeding did not. The increase of esterase activity in cereals, however, was not correlated to aphid resistance in the cereals. The time‐series assays of aphid‐infested cereal leaves showed that D. noxia‐infested Morex barley had a significant increase in esterase activity on all sampling dates (3, 6, and 9 days) in comparison with either uninfested or R. padi‐infested barley. No difference in glutathione S‐transferase activity was detected among either aphid infestations or sampling dates. The electrophoretic assays, however, revealed that aphid feeding elicited a significant increase in superoxide dismutase activity, which served as the control of glutathione S‐transferase activity assays. The increase in esterase and superoxide dismutase activities suggested that D. noxia feeding imposes not only toxic, but also oxidative stresses on the cereals. The ramification of using these enzyme activity data to understand the etiology of D. noxia‐elicited chlorosis is discussed.  相似文献   

17.
The oviposition response of predacious hoverflies (Diptera: Syrphidae) to Brevicoryne brassicae L. and Myzus persicae (Sulzer) (Homoptera: Aphididae) in commercial broccoli, Brassica oleracea var. italica L., Plenck (Brassicaceae), fields was investigated at two sites over the course of a growing season. The hoverfly oviposition responses to these aphid species on different parts of the broccoli plant canopy were also examined. There were no hoverfly eggs on broccoli plants without aphids, egg numbers were very low on plants with fewer than 50 aphids, and no peak in oviposition relative to aphid numbers was observed. Within individual plants that were colonized by aphids, there was some oviposition on individual leaves without aphids, and no hoverfly eggs were seen on leaves that had more than 400 aphids. Leaves in the broccoli plant canopy, and the datasets associated with them, were divided into three sections vertically, ‘upper’, ‘middle’, and ‘lower’. Brevicoryne brassicae was more abundant in the upper and middle canopy sections, while M. persicae was found mostly in the lower section. The rate of hoverfly oviposition per aphid was higher in the upper section than in the two other sections. Modeling of the oviposition response using logistic regression showed that the presence of hoverfly eggs was positively correlated with numbers of each aphid species and sampling date.  相似文献   

18.
The enzyme myrosinase (EC 3.2.3.1.147) is present in specialised myrosin cells and forms part of the glucosinolate–myrosinase system, also known as ‘the mustard oil bomb’, which has an important role in the defence system of cruciferous plants against insect pests. Transgenic Brassica napus MINELESS have been produced by transgenic ablation of myrosin cells. This prompted us to investigate the importance of myrosin cells in plant–aphid interactions. In order to study this, we challenged transgenic MINELESS and wild‐type cultivar Westar seedlings with the aphids Brevicoryne brassicae (a specialist) and Myzus persicae (a generalist). Our study included aphid free‐choice and aphid fecundity experiments. Data from these experiments showed that B. brassicae prefers wild‐type seedlings and M. persicae prefers MINELESS. Bbrassicae and Mpersicae showed significant variation in establishment on plants regardless of whether they were wild type or MINELESS and also differed significantly in affecting plant parts. Myrosinase activity in MINELESS control seedlings was 83.6% lower than the wild‐type control seedlings. Infestation with either of the two aphid species induced myrosinase levels in both wild‐type and MINELESS seedlings. Infestation with Mpersicae reduced the concentration of most glucosinolates while Bbrassicae had the opposite effect. B. brassicae enhanced the formation of glucosinolate hydrolysis products both in wild‐type and MINELESS seedlings. However, Mpersicae decreased All ITC but increased 3,4ETBut NIT in wild‐type seedlings. Taken together, the investigation shows that the presence of myrosin cells affects the preference of generalist and specialist aphid species for Brassica napus plants.  相似文献   

19.
Plants face various abiotic and biotic environmental factors and therefore need to adjust their phenotypic traits on several levels. UV‐B radiation is believed to impact herbivorous insects via host plant changes. Plant responses to abiotic challenges (UV‐B radiation) and their interaction with two aphid species were explored in a multifactor approach. Broccoli plants [Brassica oleracea L. convar. botrytis (L.), Brassicaceae] were grown in two differently covered greenhouses, transmitting either 80% (high UV‐B) or 4% (low UV‐B) of ambient UV‐B. Three‐week‐old plants were infested with either specialist cabbage aphids [Brevicoryne brassicae (L.), Sternorrhyncha, Aphididae] or generalist green peach aphids [Myzus persicae (Sulzer), Sternorrhyncha, Aphididae]. Plants grown under high‐UV‐B intensities were smaller and had higher flavonoid concentrations. Furthermore, these plants had reduced cuticular wax coverage, whereas amino acid concentrations of the phloem sap were little influenced by different UV‐B intensities. Cabbage aphids reproduced less on plants grown under high UV‐B than on plants grown under low UV‐B, whereas reproduction of green peach aphids in both plant light sources was equally poor. These results are likely related to the different specialisation‐dependent sensitivities of the two species. The aphids also affected plant chemistry. High numbers of cabbage aphid progeny on low‐UV‐B plants led to decreased indolyl glucosinolate concentrations. The induced change in these glucosinolates may depend on an infestation threshold. UV‐B radiation considerably impacts plant traits and subsequently affects specialist phloem‐feeding aphids, whereas aphid growth forces broccoli to generate specific defence responses.  相似文献   

20.
The challenge of using ladybird beetles for biological control of insect pests such as aphids is that the adult beetles tend to fly away from the host plants. Therefore, flightless ladybirds might improve biocontrol. There are several artificial ways to obtain flightless beetles, but it may be preferable to use natural variation in flight ability. We investigated, for the first time, biocontrol by inundative augmentation of natural flightless morphs of the ladybird beetle Adalia bipunctata. Microcosm experiments using single leaves with one of three species of aphid revealed no differences in consumption behavior between flightless and winged beetles. Monitoring for 48 h of single, caged pepper plants infested with aphids of Myzus persicae nicotianae or Aulacorthum solani showed that flightless beetles had a longer residence time on the plants than winged beetles. This only translated into significantly better biocontrol of M. persicae. Despite their difference in residence time, both beetle morphs reduced the population growth of A. solani. This is probably explained by the tendency of A. solani to drop from the plant upon disturbance, and we predict that flightless beetles may outperform winged ones in the long term. Overall, our results provide a proof of principle that natural flightless A. bipunctata can improve biocontrol of aphids by ladybird beetles. However, we recognize that the effect of biocontrol will vary with the species of aphid used and that further examination in long term and large scale experiments is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号