首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the heavily degraded ecosystem on the Chinese Loess Plateau, it would be of great significance if vegetation restoration could be accelerated anthropogenically. However, one major concern is that if the late successional species were planted or sown in degraded habitats, would they still be competitive in terms of some critical plant traits associated with specific habitats? Water use efficiency (WUE) is a major plant trait shaping the pattern of species turnover in vegetation secondary succession on the Loess Plateau. We hypothesized that if late successional stage plants could still hold a competitive advantage in terms of WUE, the prospects for an acceleration of succession by sowing these species in newly abandoned fields would be good. We tested this hypothesis by comparing the leaf C isotope ratio (δ13C) value (a surrogate of WUE) of dominant species from different successional stages at given soil C and N levels. Results indicated that leaf δ13C of the two dominant species that co-dominated in the second and third stages were significantly more positive than that of the dominant species from the first stage regardless of changing soil C and N. Yet the dominant species from the climax stage is a C4 grass assumed to have the highest WUE. In addition, increasing soil nutrition had no effects on leaf δ13C of two dominant species in the late successional stage, indicating that dominant species from the late successional stages could still have a competitive advantage in terms of WUE in soil C- and N-poor habitats. Therefore, from the perspective of plant WUE, there are great opportunities for ecosystem restoration by sowing both dominant species and other species that co-occur in late successional stages in newly abandoned fields, for the purpose of enhancing species diversity and optimising species composition.  相似文献   

2.
Herbivory has significant impacts on individual plants and plant communities, both at ecological and evolutionary time scales. In this context, this study aims to evaluate herbivore damage and its relationship with leaf chemical and structural traits, nutritional status, and forest structural complexity along a successional gradient. We predicted that trees in early successional stages support conservative traits related to drought tolerance (high specific leaf mass and phenolics), whereas trees in light-limited, late successional stages tend to enhance light acquisition strategies (high nitrogen content). We sampled 261 trees from 26 species in 15 plots (50 × 20 m; five per successional stage). From each tree, twenty leaves were collected for leaf trait measures. Phenolic content increased whereas specific leaf mass and nitrogen content decreased from early to late stages. However, leaf damage did not differ among successional stages. Our results partially corroborate the hypothesis that early successional plants in tropical dry forests exhibit leaf traits involved in the conservative use of water. The unexpected decrease in nitrogen content along the chronosequence is likely related to the fact that thinner leaves with low specific leaf mass could have less nitrogen-containing mesophyll per unit area. Mechanisms affecting herbivory intensity varied across scales: at the species level, leaf damage was negatively correlated with tannin concentration and specific leaf mass; at the plot level, leaf damage was positively affected by forest structural complexity. Herbivory patterns in tropical forests are difficult to detect because abiotic factors and multiple top-down and bottom-up forces directly and indirectly affect herbivores.  相似文献   

3.
Physiological and morphological plasticity are essential for growth and reproduction in contrasting light environments. In dry forest ecosystems, light generalists must also cope with the trade-offs involved in synchronous acclimation to light availability and drought. To understand how the broadleaf evergreen tree-shrub Buxus sempervirens L. (common box) inhabits both understory and successional terrain of Mediterranean forest, we measured photosynthesis–fluorescence light response, morphological traits and architectural characteristics across a light gradient. Our results show that B. sempervirens exhibits stress resistance syndrome, with little change in net photosynthesis rate across a light availability gradient, due to compensatory physiological and morphological acclimation. Light energy processing and dissipation potential were highest in leaves of well-illuminated plants, with higher electron transport rate, fraction of open photosystem II reaction centres, non-photochemical quenching, photorespiration and dark respiration. In contrast, traits reducing light capture efficiency were observed in high light shrubs, including higher leaf mass per unit area, leaf clumping, leaf inclination and branch inclination. We suggest that both physiological and morphological plasticity are required for B. sempervirens to survive across a light gradient in a dry forest ecosystem, while exhibiting homoeostasis in photosynthetic gas exchange. We further speculate that the low growth rate of B. sempervirens is effective in full sun only due to a lack of competition in low resource microsites.  相似文献   

4.
Unlike other species of the genus Blechnum, the fern Blechnum chilense occurs in a wide range of habitats in Chilean temperate rainforest, from shaded forest understories to abandoned clearings and large gaps. We asked if contrasting light environments can exert differential selection on ecophysiological traits of B. chilense. We measured phenotypic selection on functional traits related to carbon gain: photosynthetic capacity (A max), dark respiration rate (R d), water use efficiency (WUE), leaf size and leaf thickness in populations growing in gaps and understorey environments. We assessed survival until reproductive stage and fecundity (sporangia production) as fitness components. In order to determine the potential evolutionary response of traits under selection, we estimated the genetic variation of these traits from clonally propagated individuals in common garden experiments. In gaps, survival of B. chilense was positively correlated with WUE and negatively correlated with leaf size. In contrast, survival in shaded understories was positively correlated with leaf size. We found positive directional fecundity selection on WUE in gaps population. In understories, ferns of lower R d and greater leaf size showed greater fecundity. Thus, whereas control of water loss was optimized in gaps, light capture and net carbon balance were optimized in shaded understories. We found a significant genetic component of variation in WUE, R d and leaf size. This study shows the potential for evolutionary responses to heterogeneous light environments in functional traits of B. chilense, a unique fern species able to occupy a broad successional niche in Chilean temperate rainforest.  相似文献   

5.
为探究不同演替阶段森林优势种叶片资源获取策略的差异以及叶片构建成本与机械抗性的关系,对我国南亚热带不同演替阶段森林14优势种的叶片构建成本、机械抗性、角质层厚度和比叶重等结构性状进行测定。结果表明,与演替早期相比,演替晚期优势种具有更高的单位面积叶片构建成本、叶片撕裂力以及穿透力,但其叶片最大光合速率较低;同时,单位面积叶片构建成本与机械抗性呈显著正相关关系,而叶片角质层厚度、比叶重等结构性状也与叶片构建成本、机械抗性均呈显著正相关。因此,从叶片能量投资策略上反映了南亚热带森林演替进程中叶片构建成本与机械抗性的协同关系。  相似文献   

6.
Hawaiian endemic tree Acacia koa is a model for heteroblasty with bipinnately compound leaves and phyllodes. Previous studies suggested three hypotheses for their functional differentiation: an advantage of leaves for early growth or shade tolerance, and an advantage of phyllodes for drought tolerance. We tested the ability of these hypotheses to explain differences between leaf types for potted plants in 104 physiological and morphological traits, including gas exchange, structure and composition, hydraulic conductance, and responses to varying light, intercellular CO2, vapour pressure deficit (VPD) and drought. Leaf types were similar in numerous traits including stomatal pore area per leaf area, leaf area‐based gas exchange rates and cuticular conductance. Each hypothesis was directly supported by key differences in function. Leaves had higher mass‐based gas exchange rates, while the water storage tissue in phyllodes contributed to greater capacitance per area; phyllodes also showed stronger stomatal closure at high VPD, and higher maximum hydraulic conductance per area, with stronger decline during desiccation and recovery with rehydration. While no single hypothesis completely explained the differences between leaf types, together the three hypotheses explained 91% of differences. These findings indicate that the heteroblasty confers multiple benefits, realized across different developmental stages and environmental contexts.  相似文献   

7.
We characterized the leaf anatomical characteristics and maximum assimilation rates of five neotropical Moraceae of different genera and successional positions. Plants were grown under different light levels and transferred to high light, simulating canopy openings. Total blade thickness increased with irradiance among all species, and thicker blades were developed when plants were switched. However, blade thickness, and the extent to which it was modified, was independent of the species’ successional position and did not predict photosynthetic performance. Palisade thickness was a good predictor of maximum photosynthetic rate, but only on a species-specific basis. Overall, leaf thickening with increasing irradiance was associated more with structural than with photosynthetic changes. The early successionals Cecropia obtusifolia and Ficus insipida exhibited similarly high photosynthetic plasticity and acclimation values, but differed in their leaf anatomical traits. The late successional Poulsenia armata produced the most anatomically plastic leaves, but failed to acclimate either anatomically or photosynthetically when transferred to higher light levels.  相似文献   

8.
Robin L. Chazdon 《Oecologia》1992,92(4):586-595
Summary Photosynthetic plasticity of two congeneric shrub species growing under natural field conditions was compared along transects spanning two canopy gaps in a Costa Rican rain forest. Piper arieianum is a shadetolerant species common in successional and mature forests, whereas P. sancti-felicis is a pioneer species abundant in abandoned clearings and large gaps. Twenty potted cuttings of each species were placed at regular intervals along two east-west transects crossing a small branch-fall gap and a large tree-fall gap. Along the transects, the percent of full sun photon flux density varied from less than 2% to 45%. After six months of growth under these conditions, leaves were monitored for incident photon flux density, photographic measures of light availability, photosynthetic capacity (Amax), leaf nitrogen content, leaf chlorophyll content, and specific leaf mass. Although both species demonstrated considerable plasticity in Amax across gap transects, P. sancti-felicis leaves had a superior capacity to track closely variation in light availability, particularly in the larger gap. For regressions of Amax on measures of light availability, P. sancti-felicis consistently showed a 3.5 to 5-fold higher coefficient of determination (R2) and a 3 to 4-fold higher slope than P. arieianum. In both species leaf nitrogen content per leaf area increased significantly with light availability, although P. sancti-felicis, again, showed a much stronger relationship between these variables. Across the transects, mean chlorophyll content per unit leaf area did not differ significantly between the species, whereas mean chlorophyll content per unit leaf dry mass was 3-times greater in leaves of P. sancti-felicis. Piper arieianum exhibited highly significant increases in chlorophyll a:b ratio with increased light availability, whereas P. sancti-felicis lacked significant variation in this trait across a gradient of light availability. Mean specific leaf mass did not vary significantly between species across the gap transects. The nature of the light acclimatory response differs quantitatively and qualitatively between these species. An important constraint on light acclimation of the shade-tolerant P. arieianum is its inability to increase photosynthetic nitrogen-use efficiency under conditions of high light availability. The lack of plasticity in chlorophyll a:b ratios does not restrict light acclimation of Amax in P. sancti-felicis. Leaves of P. arieianum exhibited symptoms of chronic photoinhibition in exposed microsites within the large gap. Species differences in the capacity to finely adjust Amax across a wide range of light conditions may be attributed to their maximum growth potential. Light acclimation in species with low maximum growth potential may be constrained at the cellular level by rates of protein and chlorophyll synthesis and at the whole-plant level by low maximum rates of uptake and supply of nutrients and water. For P. arieianum, restriction of photosynthetic plasticity is likely to limit competitive abilities of plants in high-light conditions of large gaps and clearings, whereas observed habitat restrictions for P. sancti-felicis do not appear to depend upon the highly-developed capacity for adjustment of Amax observed in this species.  相似文献   

9.
Bunce  J.A.  Sicher  R.C. 《Photosynthetica》2001,39(1):95-101
Midday measurements of single leaf gas exchange rates of upper canopy leaves of soybeans grown in the field at 350 (AC) and 700 (EC) µmol(CO2) mol–1 in open topped chambers sometimes indicated up to 50 % higher net photosynthetic rates (P N) measured at EC in plants grown at AC compared to EC. On other days mean P N were nearly identical in the two growth [CO2] treatments. There was no seasonal pattern to the variable photosynthetic responses of soybean to growth [CO2]. Even on days with significantly lower P N in the plants grown at EC, there was no reduction in ribulose-1,5-bisphosphate carboxylase/oxygenase, chlorophyll, or soluble protein contents per unit of leaf area. Over three years, gas exchange evidence of acclimation occurred on days when either soil was dry or the water vapor pressure deficit was high (n = 12 d) and did not occur on days after rain or on days with low water vapor pressure deficit (n = 9 d). On days when photosynthetic acclimation was evident, midday leaf water potentials were consistently 0.2 to 0.3 MPa lower for the plants grown at EC than at AC. This suggested that greater susceptibility to water stress in plants grown at EC cause the apparent photosynthetic acclimation. In other experiments, plants were grown in well-watered pots in field chambers and removed to the laboratory early in the morning for gas exchange measurements. In these experiments, the amount of photosynthetic acclimation evident in the gas exchange measurements increased with the maximum water vapor pressure deficit on the day prior to the measurements, indicating a lag in the recovery of photosynthesis from water stress. The apparent increase in susceptibility to water stress in soybean plants grown at EC is opposite to that observed in some other species, where photosynthetic acclimation was evident under wet but not dry conditions, and may be related to the observation that hydraulic conductance is reduced in soybeans when grown at EC. The day-to-day variation in photosynthetic acclimation observed here may account for some of the conflicting results in the literature concerning the existence of acclimation to EC in field-grown plants.  相似文献   

10.
Paphiopedilum and Cypripedium are closely related in phylogeny, but have contrasting leaf traits and habitats. To understand the divergence in leaf traits of Paphiopedilum and Cypripedium and their adaptive significance, we analyzed the leaf anatomical structures, leaf dry mass per area (LMA), leaf lifespan (LL), leaf nitrogen concentration (N mass), leaf phosphorus concentration (P mass), mass-based light-saturated photosynthetic rate (A mass), water use efficiency (WUE), photosynthetic nitrogen use efficiency (PNUE) and leaf construction cost (CC) for six species. Compared with Cypripedium, Paphiopedilum was characterized by drought tolerance derived from its leaf anatomical structures, including fleshy leaves, thick surface cuticles, huge adaxial epidermis cells, lower total stoma area, and sunken stomata. The special leaf structures of Paphiopedilum were accompanied by longer LL; higher LMA, WUE, and CC; and lower N mass, P mass, A mass, and PNUE compared with Cypripedium. Leaf traits in Paphiopedilum helped it adapt to arid and nutrient-poor karst habitats. However, the leaf traits of Cypripedium reflect adaptations to an environment characterized by rich soil, abundant soil water, and significant seasonal fluctuations in temperature and precipitation. The present results contribute to our understanding of the divergent adaptation of leaf traits in slipper orchids, which is beneficial for the conservation of endangered orchids.  相似文献   

11.
This study examined the photosynthetic acclimation of pre-existing Shorea johorensis (Dipterocarpaceae) seedlings to the change in conditions that occurs at the time of logging in Central Kalimantan, Indonesia. The hypothesis was that the seedlings would be unable to acclimate beyond partially open conditions after canopy disturbance caused by logging, therefore limiting the potential for regeneration in the most open areas. Bleaching and reductions in the predawn ratio of variable to maximum fluorescence (F v /F m) indicated chronic photoinhibition and damage to the previously shade-adapted leaves of seedlings in an area logged 2 weeks earlier. The majority of seedlings in partially open and open environments of an area logged 3 months earlier were already growing fast. Leaves that had developed in the new environment showed only small reductions in predawn F v /F m and large increases in the light saturated rate of photosynthesis (A max) per unit area when compared to shaded seedlings. Leaves in the most open environments had higher but more variable nitrogen concentrations, A max per unit area and A max per unit mass when compared to seedlings in partially open environments. Increases in dark respiration were disproportionately large compared to increases in A max, and may have been the result of increased investment in photoprotective mechanisms. The response of stomatal conductance to the vapour pressure deficit and leaf temperature was examined, but it suggested only a 10% reduction in daily leaf level carbon gain in open environments. The ratio of leaf area to fine root mass was highest in shade-suppressed and newly exposed seedlings, suggesting a potential hydraulic limitation to transpiration during acclimation. However, rainfall during this period was high and leaf water potentials did not differ between disturbed and undisturbed environments. S. johorensis seedlings were capable of significant acclimation to conditions more extreme than partial canopy opening. Low seedling density after logging during the wet season cannot be explained by a limited potential for photosynthetic acclimation. Received: 14 September 1998 / Accepted: 12 August 1999  相似文献   

12.
Plants can avoid freezing damage by preventing extracellular ice formation below the equilibrium freezing temperature (supercooling). We used Olea europaea cultivars to assess which traits contribute to avoid ice nucleation at sub‐zero temperatures. Seasonal leaf water relations, non‐structural carbohydrates, nitrogen and tissue damage and ice nucleation temperatures in different plant parts were determined in five cultivars growing in the Patagonian cold desert. Ice seeding in roots occurred at higher temperatures than in stems and leaves. Leaves of cold acclimated cultivars supercooled down to ?13 °C, substantially lower than the minimum air temperatures observed in the study site. During winter, leaf ice nucleation and leaf freezing damage (LT50) occurred at similar temperatures, typical of plant tissues that supercool. Higher leaf density and cell wall rigidity were observed during winter, consistent with a substantial acclimation to sub‐zero temperatures. Larger supercooling capacity and lower LT50 were observed in cold‐acclimated cultivars with higher osmotically active solute content, higher tissue elastic adjustments and lower apoplastic water. Irreversible leaf damage was only observed in laboratory experiments at very low temperatures, but not in the field. A comparative analysis of closely related plants avoids phylogenetic independence bias in a comparative study of adaptations to survive low temperatures.  相似文献   

13.
Summary Cottonwood saplings were exposed to ozone or charcoal-filtered air in a closed chamber. After leaf abscission, decomposition of individual leaf discs was measured in containers of stream water. Exposure of plants to 200 ppb ozone for 5 h caused early leaf abscission and changes in the chemical composition of leaves at time of abscission. Early-abscised leaves from O3-exposed plants had higher nitrogen, but decomposed more slowly than leaves from control plants. Leaves from O3-exposed plants that abscised at the normal time had lower nitrogen content and lower specific leaf mass than control leaves, but decomposed at the same rate as leaves from control plants. The results imply that O3 exposure can alter fundamental processes important to the functioning of detritus-based aquatic ecosystems.  相似文献   

14.
While foliar photosynthetic relationships with light, nitrogen, and water availability have been well described, environmental factors driving vertical gradients of foliar traits within forest canopies are still not well understood. We, therefore, examined how light availability and vapour pressure deficit (VPD) co-determine vertical gradients (between 12 and 42 m and in the understorey) of foliar photosynthetic capacity (Amax), 13C fractionation (∆), specific leaf area (SLA), chlorophyll (Chl), and nitrogen (N) concentrations in canopies of Fagus sylvatica and Abies alba growing in a mixed forest in Switzerland in spring and summer 2017. Both species showed lower Chl/N and lower SLA with higher light availability and VPD at the top canopy. Despite these biochemical and morphological acclimations, Amax during summer remained relatively constant and the photosynthetic N-use efficiency (PNUE) decreased with higher light availability for both species, suggesting suboptimal N allocation within the canopy. ∆ of both species were lower at the canopy top compared to the bottom, indicating high water-use efficiency (WUE). VPD gradients strongly co-determined the vertical distribution of Chl, N, and PNUE in F. sylvatica, suggesting stomatal limitation of photosynthesis in the top canopy, whereas these traits were only related to light availability in A. alba. Lower PNUE in F. sylvatica with higher WUE clearly indicated a trade-off in water vs. N use, limiting foliar acclimation to high light and VPD at the top canopy. Species-specific trade-offs in foliar acclimation to environmental canopy gradients may thus be considered for scaling photosynthesis from leaf to canopy to landscape levels.  相似文献   

15.
叶片和根系是植物获取资源的最重要的器官,其性状随环境梯度的变化反映了植物光合碳获取和水分与养分的吸收能力及其对环境变化适应的生态对策。羌塘高原降水梯度带高寒草地群落叶片和根系成对性状关系研究不仅能揭示环境梯度对植物性状的塑造作用,也可为理解寒、旱和贫瘠等极端环境下植物的适应策略提供依据。为此,选择3组具有代表性的叶片和根系成对性状:比叶面积(SLA)和比根长(SRL);单位质量叶氮含量(LNmass)和单位质量根氮含量(RNmass);单位面积叶氮含量(LNarea)和单位长度根氮含量(RNlength),分析不同优势植物地上、地下成对性状变异特征及其与环境因子的关系,探讨植物性状对高寒生态系统水分和养分限制因素的适应策略。研究表明,区域气候和土壤环境导致的叶片性状变异大于根系性状的变异,干旱端的植物既具有高的SRL,又具有高的叶片和根系的养分含量(LNmass,LNarea和RNmass)。SLA-SRL、LNmass  相似文献   

16.
A whole-plant carbon balance model incorporating a light acclimation response was developed for Alocasia macrorrhiza based on empirical data and the current understanding of light acclimation in this species. The model was used to predict the relative growth rate (RGR) for plants that acclimated to photon flux density (PFD) by changing their leaf type, and for plants that produced only sun or shade leaves regardless of PFD. The predicted RGR was substantially higher for plants with shade leaves than for those with sun leaves at low PFD. However, the predicted RGR was not higher, and in fact was slightly lower, for plants with sun leaves than for those with shade leaves at high PFD. The decreased leaf area ratios (LARs) of the plants with sun leaves counteracted their higher photosynthetic capacities per unit leaf area (Amax). The model was manipulated by changing parameters to examine the sensitivity of RGR to variation in single factors. Overall, RGR was most sensitive to LAR and showed relatively little sensitivity to variation in Amax or maintenance respiration. Similarly, RGR was relatively insensitive to increases in leaf life-span beyond those observed. Respiration affected RGR only at low PFD, whereas Amax was moderately important only at high PFD.  相似文献   

17.
Changes in specific leaf area (SLA, projected leaf area per unit leaf dry mass) and nitrogen partitioning between proteins within leaves occur during the acclimation of plants to their growth irradiance. In this paper, the relative importance of both of these changes in maximizing carbon gain is quantified. Photosynthesis, SLA and nitrogen partitioning within leaves was determined from 10 dicotyledonous C3 species grown in photon irradiances of 200 and 1000 µmol m?2 s?1. Photosynthetic rate per unit leaf area measured under the growth irradiance was, on average, three times higher for high‐light‐grown plants than for those grown under low light, and two times higher when measured near light saturation. However, light‐saturated photosynthetic rate per unit leaf dry mass was unaltered by growth irradiance because low‐light plants had double the SLA. Nitrogen concentrations per unit leaf mass were constant between the two light treatments, but plants grown in low light partitioned a larger fraction of leaf nitrogen into light harvesting. Leaf absorptance was curvilinearly related to chlorophyll content and independent of SLA. Daily photosynthesis per unit leaf dry mass under low‐light conditions was much more responsive to changes in SLA than to nitrogen partitioning. Under high light, sensitivity to nitrogen partitioning increased, but changes in SLA were still more important.  相似文献   

18.
林波  刘庆 《生态学报》2008,28(10):4665-4675
以青藏高原东缘亚高山针叶林群落演替后期种岷江冷杉、演替中后期种粗枝云杉和青榨槭、及先锋树种红桦为材料,研究了不同光强下生长的4种树苗生长、生物量分配、叶片形态和光合特性,探讨植物幼苗的形态和生理特征的表型可塑性与光适应的关系。结果表明:(1)弱光环境中生长的4种植物的基茎、相对生长速率、叶片厚度、根重比、最大净光合速率、光饱和点、光补偿点、暗呼吸速率较低,而比叶面积、地上/地下生物量、茎长/茎重、叶重比和茎重比较高。(2)大部分光环境下岷江冷杉幼苗的最大净光合速率和暗呼吸速率低于粗枝云杉,青榨槭幼苗的最大净光合速率和暗呼吸速率略低于红桦。(3)高光强下生长的粗枝云杉和红桦幼苗的相对生长速率分别大于岷江冷杉和青榨槭,但在低光强下则与之相反。(4)粗枝云杉和红桦幼苗的11种可塑性指数平均值则分别大于岷江冷杉和青榨槭。岷江冷杉适应弱光环境的能力略强于粗枝云杉和红桦,但适应强光的能力较差。生理适应的可塑性指数大于形态适应的可塑性指数,表明前者在4种植物幼苗光适应方面起到了重要的作用。研究结果支持树种的生理生态特性决定了其演替状况和生境选择的假说。  相似文献   

19.
Acclimation of foliage to growth temperature involves both structural and physiological modifications, but the relative importance of these two mechanisms of acclimation is poorly known, especially for isoprene emission responses. We grew hybrid aspen (Populus tremula x P. tremuloides) under control (day/night temperature of 25/20 °C) and high temperature conditions (35/27 °C) to gain insight into the structural and physiological acclimation controls. Growth at high temperature resulted in larger and thinner leaves with smaller and more densely packed chloroplasts and with lower leaf dry mass per area (MA). High growth temperature also led to lower photosynthetic and respiration rates, isoprene emission rate and leaf pigment content and isoprene substrate dimethylallyl diphosphate pool size per unit area, but to greater stomatal conductance. However, all physiological characteristics were similar when expressed per unit dry mass, indicating that the area‐based differences were primarily driven by MA. Acclimation to high temperature further increased heat stability of photosynthesis and increased activation energies for isoprene emission and isoprene synthase rate constant. This study demonstrates that temperature acclimation of photosynthetic and isoprene emission characteristics per unit leaf area were primarily driven by structural modifications, and we argue that future studies investigating acclimation to growth temperature must consider structural modifications.  相似文献   

20.
Elevated atmospheric ozone concentrations (70 ppb) reduced the sensitivity of stomatal closure to abscisic acid (ABA) in Leontodon hispidus after at least 24 h exposure (1) when detached leaves were fed ABA, and (2) when intact plants were sprayed or injected with ABA. They also reduced the sensitivity of stomatal closure to soil drying around the roots. Such effects could already be occurring under current northern hemisphere peak ambient ozone concentrations. Leaves detached from plants which had been exposed to elevated ozone concentrations generated higher concentrations of ethylene, although leaf tissue ABA concentrations were unaffected. When intact plants were pretreated with the ethylene receptor binding antagonist 1-methylcyclopropene, the stomatal response to both applied ABA and soil drying was fully restored in the presence of elevated ozone. Implications of ethylene's antagonism of the stomatal response to ABA under oxidative stress are discussed. We suggest that this may be one mechanism whereby elevated ozone induces visible injury in sensitive species. We emphasize that drought linked to climate change and tropospheric ozone pollution, are both escalating problems. Ozone will exacerbate the deleterious effects of drought on the many plant species including valuable crops that respond to this pollutant by emitting more ethylene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号