首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Most crickets first demonstrated positive phonotaxis to 65 dB CSs having a 53-62 ms SP by day 3 following the imaginal molt (Fig. 3B). The onset of copulatory readiness occurred on average at 3.2 days. 2. The attractive range of SPs for most females became progressively broader as they aged (Fig. 4). Three to 4-day-old females were attracted to a smaller number of CS SPs than were 20-21 day old females (Fig. 4). 3. Older, less selective females did not typically respond to the same range of CS SPs (Fig. 6). However, they were more likely to respond to some SPs (especially 50 ms) than to others (Fig. 7). 4. The phonotactic threshold decreased from 95 dB or greater on day 0 to a mean of 55 dB by day 3, during a period of increasing JHIII biosynthesis, and thereafter remained at that level (Fig. 8). 5. During a period of maximal JHIII production, 3-5 day-old females usually responded to 4 of the 7 SPs presented (Fig. 8). Females older than 12 days were unselective for CS SP, and JHIII synthesis remained at a level below the peak production on day 4 (Fig. 8). 6. Older females, that were unselective for CS SP, became as selective as 3 to 5-day-old females within 4 days of topical application of JHIII (Figs. 9-11).  相似文献   

2.
3.
SYNOPSIS. Phonotaxis by female crickets to the calling songof males, is an important model for investigating the neuralbasis of auditory behavior. Recent advances make it possibleto explain some components of this behavior and its hormonalcontrol, at the level of identified neurons and molecular expressionwithin those neurons Tonotopically arranged afferents from the cricket's ear, projectto local and intersegmental prothoracic interneurons. Bilateralprocessing of signals and some temporal-pattern specific processingoccurs in the prothoracic ganglion and influences acoustic informationthat is sent to the brain via ascending interneurons that aredemonstrably involved in phonotaxis. High, low and band- passinterneurons in the brain continue temporal pattern processingwhich matches the selectivity of phonotaxis and may be filtersfor recognition of the calling song. Neurons descending fromthe brain and prothoracic ganglion, direct multimodal signals(including auditory) to more posterior regions, possibly theleg motor neurons that are responsible for phonotaxis Age-related changes or artificially induced changes in JuvenileHormone III levels regulate the threshold for phonotaxis inAcheta domesticus, by varying the threshold of LI, a prothoracicascending interneuron that is necessary for phonotaxis to lowintensity calling songs. Results from in situ hybridizationsuggest that this might be accomplished, in part, by controllingthe levels of nicotinic acetylcholine receptor-like mRNA expressedin LI, presumably by increasing its neurotransmitter receptordensity. L3 is a prothoracic ascending interneuron that exhibitsbandselective response properties to the syllable period ofthe calling song. L3's response is age and JHIII related, andis correlated to phonotactic selectivity. These changes in L3might be accomplished, at least in part by JHIII regulatingthe expression of nicotinic acetylcholine receptor-like mRNAin L3  相似文献   

4.
Sound processing properties for calling song (CS) models, as described for the prothoracic L3 auditory neurone in Acheta domesticus, are investigated for the homologous auditory neurone 2 (AN2) in female Gryllus bimaculatus De Geer. AN2 of G. bimaculatus responds selectively to the syllable period (SP) of models of a male CS. The selectiveness of this response parallels the selectivity of phonotaxis females perform in response to the same SPs. Both, the responses of AN2 and female behaviour show clear interindividual variability. The SP‐selective responses of AN2 result from an SP‐dependent reduction in the spiking to subsequent syllables of the model CSs, measured as the percentage decrement. This SP‐dependent response does not primarily result from inbuilt properties of the AN2 membrane. Rather, it is dependent on inhibitory input to the AN2. However, clear inhibitory postsynaptic potentials in dendritic recordings of the AN2 are not encountered. This immediate response of AN2 to CSs is followed by an increased rate of tonic firing between stimulus CSs, which is termed the prolonged response, and is dependent on the carrier frequencies that make up the male CSs. With stimulation on the contralateral side of the soma of AN2s, more than 50% of AN2s exhibit a prolonged response. However, with stimulation from the ipsilateral side of the soma, most AN2s exhibit a prolonged response. The prolonged response of AN2 at 5 kHz may be even more sensitive than the immediate response. Thus, the AN2 neurone could provide a basis for phonotaxis that is selective for both the SPs and the carrier frequencies of potentially attractive calling songs.  相似文献   

5.
Summary Omega-type I-neurons (ON/1) (Fig. 1A) were recorded intracellularly with the prothoracic ganglion kept at temperatures of either 8–9°, or 20–22° or 30–33 °C and the forelegs with the tympanal organs kept at ambient temperature (20–22 °C). The neurons were stimulated with synthetic calling songs (5 kHz carrier frequency) with syllable periods (SP in ms) varying between 20 and 100, presented at sound intensities between 40 and 80 dB SPL. The amplitude and duration of spikes as well as response latency decreased at higher temperatures (Figs. 1 B, 2, 6). At lower prothoracic temperatures (8–9 °C) the neuron's responses to songs with short SP (20 ms) failed to copy single syllables, or with moderate SP (40 ms) copied the syllable with low signal to noise ratio (Fig. 3). The auditory threshold of the ON/1 type neuron, when tested with the song model, was temperature-dependent. At 9° and 20 °C it was between 40 and 50 dB SPL and at 33 °C it was less than 40 dB SPL (Fig. 4). For each SP, the slope of the intensity-response function was positively correlated with temperature, however, at low prothoracic temperatures the slope was lower for songs with shorter SPs (Fig. 5). The poor copying of the syllabic structure of the songs with short SPs at low prothoracic temperatures finds a behavioral correlate because females when tested for phonotaxis on a walking compensator responded best to songs with longer SPs at a similar temperature.Abbreviations epsps excitatory postsynaptic potentials - ON/1 omega-type I-neuron - SP syllable period - SPL sound pressure level  相似文献   

6.
L3, an auditory interneuron in the prothoracic ganglion of female crickets (Acheta domesticus) exhibited two kinds of responses to models of the male's calling song (CS): a previously described, phasically encoded immediate response; a more tonically encoded prolonged response. The onset of the prolonged response required 3-8 sec of stimulation to reach its maximum spiking rate and 6-20 sec to decay once the calling song ceased. It did not encode the syllables of the chirp. The prolonged response was sharply selective for the 4-5 kHz carrier frequency of the male's calling songs and its threshold tuning matched the threshold tuning of phonotaxis, while the immediate response of the same neuron was broadly tuned to a wide range of carrier frequencies. The thresholds for the prolonged response covaried with the changing phonotactic thresholds of 2- and 5-day-old females. Treatment of females with juvenile hormone reduced the thresholds for both phonotaxis and the prolonged response by equivalent amounts. Of the 3 types of responses to CSs provided by the ascending L1 and L3 auditory interneurons, the threshold for L3's prolonged response, on average, best matched the same females phonotactic threshold. The prolonged response was stimulated by inputs from both ears while L3's immediate response was driven only from its axon-ipsilateral ear. The prolonged response was not selective for either the CS's syllable period or chirp rate.  相似文献   

7.
The phonotactic response by female crickets is influenced by Juvenile Hormone III, which affects selectivity to the syllable period of the calling song. This pathway is influenced by an inhibitory input in the prothoracic ganglion, possibly chloride-mediated inhibition. In order to identify potential neurotransmitters involved in such pathway, we performed nanoinjection of five neurotransmitters into the prothoracic ganglion of virgin female Acheta domesticus. Phonotaxis for these females was evaluated before and after injections. All five neurotransmitters that were nanoinjected are known to bind to chloride channels. Nanoinjection of histamine significantly decreased phonotactic selectivity to the syllable period of the calling song while glycine, gamma aminobutyric acid, serotonin and saline controls did not. Octopamine significantly decreased phonotactic responses overall. The effect of histamine was tested further by nanoinjecting the antihistamine pyrilamine into the prothoracic ganglion of older unselected females, which resulted in increased phonotactic selectivity.  相似文献   

8.
In young virginAcheta domesticus females, the spiking response of the prothoracic L3 auditory interneuron discriminates between calling songs (CSs) with phonotactically attractive and unattractive syllable periods (SPs), which parallels phonotactic discrimination. Presentation of a CS with an originally attractive SP, but with the intensity modulated so as to minimize L3's selective response, results in a CS with little phonotactic attractiveness. Conversely, a CS with an originally unattractive SP becomes much more attractive when the CS is intensity modulated in ways that duplicate L3's selective response. L3's discriminatory response to CS SP deteriorates with age, in parallel with decreased phonotactic selectiveness (females, older than 14 days, typically are unselective for CS SPs). SP-selective processing, which was not apparent in these old L3s, is immediately restored by removing the contralateral ear. SP-specific information is resident in a network of neurons within the prothoracic ganglion that results in the SP selective responses of the L3 neuron in young females. Changes in the SP-selective responses of the L3 neuron are highly correlated with corresponding changes in the female's phonotactically selective behavior.  相似文献   

9.
Syllable period (SP) selective calling song processing has been demonstrated for the prothoracic, AN2 auditory neurone that correlates very well with SP‐selective phonotaxis by female cricket Gryllus bimaculatus De Geer. Both SP‐selective processing by the AN2 and the phonotactic behaviour of the female exhibit substantial plasticity. Thus, the question remains as to whether the selective responses of the AN2 neurone and the selective behaviour of the female match in an individual female. The present study is designed to answer that question. The SP‐selective phonotactic behaviour of individual females is evaluated, followed immediately by measuring the SP‐selective responses of the same female's AN2 neurone. Very significant correlations are found between the selective responses of the AN2 neurone and the same female's selective behaviour. In 208 possible comparisons (26 females, eight behavioural and neuronal tests each), 186 resulted in matches between behaviour and neuronal processing. Dividing the SP‐selective females into two groups (one group that responded phonotactically to the shortest SP tested and a second group that did not respond to this SP) resulted in significantly more selective responses to this shortest SP by the AN2 neurone in the females that responded phonotactically to the SP than for the females who did not respond to the shortest SP. The behavioural responses by these two groups to the other SPs tested are shown to be essentially identical.  相似文献   

10.
Earlier studies of phonotaxis by female crickets describe this selective behavioural response as being important in the females' choices of conspecific males, leading to reproduction. In the present study, moderate (30+) to very large data sets of phonotactic behaviour by female Acheta domesticus L., Gryllus bimaculatus DeGeer, Gryllus pennsylvanicus Burmeister and Gryllus veletis Alexander demonstrate substantially greater plasticity in the behavioural choices, as made by females of each species, for the syllable periods (SP) of model calling songs (CS) than has been previously described. Phonotactic choices by each species range from the very selective (i.e. responding to only one or two SPs) to very unselective (i.e. responding to all SPs presented). Some females that do not respond to all SPs prefer a range that includes either the longest or shortest SP tested, which fall outside the range of SPs produced by conspecific males. Old female A. domesticus and G. pennsylvanicus are more likely to be unselective for SPs than are young females. Each species includes females that do not respond to a particular SP when responding to CSs with longer and shorter SPs. The results suggest that the plasticity of phonotactic behaviour collectively exhibited by the females of each species does not ensure that choices of a male's CS effectively focus the female's phonotactic responses on CSs that represent the conspecific male. The phonotactic behaviour collectively exhibited by females of each species does not readily fit any of the models for selective processing by central auditory neurones that have been proposed to underlie phonotactic choice.  相似文献   

11.
Summary One foreleg was amputated at mid-femur in adultGryllus bimaculatus females. In phonotaxis tests these monaural crickets show course deviations and circling towards the intact side (Fig. 1). Mean course stability is best at 60 and 70 dB (Fig. 2). Here it differs significantly from a threshold value for orientated walking in females operated on the day of adult moult, but not in those operated two weeks later. The orientational performance improves with the interval between amputation and test (Fig. 3).Centripetal cobalt backfills reveal degeneration of tympanal nerve fibers on the amputated side (Fig. 4B, C). The mean number of intact afferents crossing the midline of the prothoracic ganglion is increased in monaural versus binaural crickets. Maximum transmidline extension is not correlated with the period of deafferentation (Fig. 5).Intracellular recording and staining of prothoracic auditory interneurons shows some axonal sprouts in ON1i (intact side) and ON2, but no significant physiological changes (Figs. 6A, D; 8A, C, E, G). Apart from axonal sprouts ON1a (amputated side) may show a few dendritic sprouts into the intact auditory neuropil (Figs. 6C, 7). Excitation in some ON1a-cells reveals functional contacts to intact auditory afferents (via crossing dendrites or possibly crossing afferents, Figs. 6e, 7, 8F). Morphological and associated physiological changes start early in AN2a (amputated side). The degree of crossing dendrites and contralateral excitation increases with postoperative age (Figs. 8H, 9).  相似文献   

12.
Juvenile hormone III (JHIII), when applied to the abdomen of 1-day-old female Acheta domesticus (in quantities that would create JHIII titers in the hemolymph that were within the range measured in females of this species) caused a significant decrease in phonotactic thresholds (Fig. 1). Removal of the corpora allata from 5-day-old females with low phonotactic thresholds caused significantly increased phonotactic thresholds 2–5 days later. After a temporary increase (24 h) of, on average, about 25 dB, the phonotactic thresholds drop to about 10 dB above preallatectomy levels (Fig. 2), but remain significantly higher than controls. Application of JHIII to allatectomized females, with a mean increase in thresholds of 20 dB, results in significantly decreased thresholds (mean of about 20 dB) over the next 6 h (Fig. 3). Exposure to males 1 week before the imaginal molt causes the phonotactic thresholds of postimaginal females to drop 1–2 days significantly earlier than controls (Fig. 4). One- and 3-day-old females, phonotactically tested only once, exhibit lower thresholds in the early morning than they do in the late afternoon (Fig. 5). Five-day-old females do not exhibit such a diurnal rhythm. Phonotactically testing females more than once a day significantly influences their phonotactic thresholds (Figs. 6, 7). In 1-day-old females, with high (above 70 dB) phonotactic thresholds, the threshold of their L1 auditory interneurons can be 30 dB or more below their phonotactic threshold (Fig. 8). In females with phonotactic thresholds of 70 dB or lower, the L1 threshold is within 10 dB of their phonotactic threshold. Both JHIII and allatectomy influence phonotactic and L1 thresholds in a similar manner. Accepted: 29 September 1997  相似文献   

13.
Intracellular recordings were made in the brain of the cricket Gryllus bimaculatus from an ascending auditory interneuron (AN1). Acoustic stimuli with calling song temporal pattern were delivered via earphones in a preparation with the acoustic trachea cut (attenuation of crossing sound > 30 dB). The input-output function of this cell was then determined by recording its responses to stimulation of the ipsilateral ear alone, of the contralateral ear alone and to stimulation of both ears simultaneously with the same or different carrier frequencies and intensities.This interneuron was excited by the ear ipsilateral to its axon and dendritic field and unresponsive to stimuli presented to the axon-contralateral ear alone. However, in binaural stimulation experiments, the response to a constant ipsilateral stimulus was progressively reduced as the intensity of a simultaneous contralateral stimulus was increased, above a threshold intensity.Tuning curves for threshold of this inhibition, determined in binaural stimulation experiments, indicated significant inhibition in the range 3–20 kHz with lowest threshold at 4–5 kHz. The inhibition was unaffected by sectioning of the contralateral circumoesophageal or neck connective, indicating that the inhibitory influence crosses the midline at the level of the prothoracic ganglion. Intracellular recordings from AN1 in the prothoracic ganglion confirmed that it was indeed neurally inhibited by inputs from the contralateral ear.Tuning curves for excitation of an omega neuron (ON1) by the ear ipsilateral to its soma and also the tuning of inhibition of ON1 by its contralateral ON1 partner, closely match the tuning of inhibition of AN1 and to a lesser extent, of AN2. This was taken as evidence that each AN1 is inhibited by the contralateral ON1. The significance of this interaction for directional hearing and phonotaxis is discussed.Abbreviations AP/CHP action potentials per chirp - AN1, AN2 ascending auditory interneurons 1, 2 - ON1 omega neuron 1 - ipsi ipsilateral contra contralateral - PTG prothoracic ganglion loc lateral ocellar nerve - On optic nerve an antennal nerve - coc circum-oesophageal connective so sound off  相似文献   

14.
Two types of auditory interneurone which ascend from the prothoracic ganglion to the brain in the cricket Gryllus bimaculatus (De Geer) are described. Intracellular recordings were made from the axons of the neurones in the brain under closed-field stimulus conditions and the recorded cells then stained with either cobalt or Lucifer Yellow. Both neurone types—the Plurisegmental ascending low frequency neurone 1 (PALF1), and the Plurisegmental ascending high frequency neurone 1 (PAHF1)—show response characteristics which would make them well suited to encoding the conspecific calling and courtship songs respectively. Further, the projection areas of both neurone types in the brain overlap those of previously identified intraganglionic interneurones, particularly in the anterior-ventral protocerebrum, and it is suggested that an auditory neuropile may exist in this region.  相似文献   

15.
1.  When tested with legphone stimulation at 5 and 16 kHz, two prothoracic low-frequency neurons', ON1 and L1 of Acheta domesticus females, receive mainly excitation from one side (soma-ipsilateral in ON1, soma-contralateral in L1) and inhibition from the opposite side as is described for other cricket species (Figs. 2,3). While thresholds at 5 kHz are similar in L1 and ON1, L1 receives 16 kHz excitation with a 15- 20 dB higher threshold (lower than in other cricket species) than ON1. Stimulation of L1 with lower intensity 16 kHz sound on the side of its major input results in a clear IPSP visible in dendritic recordings (Figs. 3,4). In L1 and ON1 the intensity response at 16 kHz rises steeper than that at 5 kHz.
2.  The most sensitive auditory low-frequency receptors recorded have similar thresholds as ON1 and L1 at 5 kHz. Responses of the most sensitive auditory high-frequency receptors recorded show an intensity dependence which is similar to that of ON1 at 16 k Hz (Fig. 1C).
3.  Results of two-tone experiments show a tuning of inhibition in ON1 and L1 which is similar to excitatory tuning of ON1 (Fig. 4), however with about 10 to 15 dB higher thresholds. In contrast, in Gryllus bimaculatus an exact match between ON1-excitation and ON1/AN1 inhibition has been described.
  相似文献   

16.
Female crickets (Gryllus pennsylvanicus), caught in the field as nymphs, responded as adults in the laboratory with selective phonotaxis to model calling songs (CSs) that reproduced the dominant carrier frequencies and syllable periods (SPs) characteristic of the male's natural calling song. Extracellular recordings demonstrated two types of auditory interneurons in the female's cervical connectives that were very similar to the AN1 and AN2 neurons previously described in other gryllid species. The AN2 neuron responded to model CSs with a phasically encoded immediate response, and a more tonically encoded prolonged response. AN2's immediate response exhibited SP-dependent decreases (termed decrement) in its responses to sequential syllables of the CS that were greatest to CSs with the shortest SPs and diminished as SPs were lengthened, resulting in an SP-dependent habituation. Picrotoxin application transformed this SP-dependent habituation by AN2 to SP-selective responses in which the degree of decrement was greatest to SPs that were most phonotactically attractive. AN2's prolonged response was most sensitive to 5 kHz CSs and correlated with the carrier frequency tuning for the thresholds of phonotaxis by females. Thus, in females, AN2's immediate (in the presence of picrotoxin) and prolonged responses were selectively tuned to the SPs and carrier frequencies of the male's calls that were most attractive behaviorally. AN1's responses at threshold were also tuned to the dominant carrier frequencies of the male's CS.  相似文献   

17.
The influence of call amplitude on phonotaxis in female Hyla versicolor was studied using a no-choice paradigm. One set of experiments estimated effects of stimulus amplitude on phonotaxis toward a synthetic model of a conspecific call. The response strength increased with amplitude from the behavioral threshold (37–43 dB SPL) up to 79 dB SPL and then decreased at higher amplitudes. Females approached the loudspeaker with short walking bouts (1 s duration) occurring immediately after call presentations. Increase in response strength was attributed to an increasing proportion of calls that elicited such walking bouts, whereas the decrease at high amplitudes resulted from decreasing distance covered per bout. The quality of orientation remained constant for all above-threshold amplitudes. A second set of experiments tested the selectivity for interval duration and pulse duration at amplitudes of 55, 70, and 85 dB SPL. Selectivity for both parameters was similar at 70 and 85 dB SPL, but tended to increase at 55 dB SPL. The results suggest that selective phonotaxis in H. versicolor is not adapted for long-distance communication. This finding differs from those of comparable studies of acoustic insects.  相似文献   

18.
The unusual morphology of a sound-activated plurisegmental ascending interneurone (AN5-AG7) in an insect (Ancistrura nigrovittata, Ensifera, Phaneropteridae) is described. This neurone's soma is located in the penultimate abdominal ganglion. The most prominent arborisations with smooth endings are found in the prothoracic ganglion. The neurone terminates with numerous beaded endings in the brain (protocerebrum). All abdominal ganglia including the penultimate contain only tiny side branches of beaded appearance. The neurone's morphology is compared to the morphology of a `typical' sound-activated plurisegmental neurone of bushcrickets with its soma in the prothorax. In the prothoracic ganglion and in the brain the arborisations of the two cells are very similar. Graded potentials and action potentials are generated in the prothoracic portion of both neurones. Both receive excitation mainly by ultrasound, and inhibition by soma-ipsilateral stimuli. Neither wind, substrate vibration nor touch of the abdomen evoke responses in AN5-AG7. It is assumed that early in evolution this neurone had its dendrites in the ganglion which houses the cell body (like cercal interneurones of this neuromere). Profound evolutionary changes probably have taken place to bring about this neuron's modern morphology. Accepted: 12 June 1999  相似文献   

19.
Summary FemaleAcheta domestica did not discriminate between pairs of model calling songs (CSs) which differed only in syllable period (SP; Fig. 1). The females selected the louder CS (Fig. 2) or the CS with a faster chirp rate (CR; Fig. 3) when presented with pairs of otherwise identical CSs. A CS with an SP of 50 ms (modal for the male's CS) was preferred when it was 5 dB louder than one with a 60-ms SP while a CS with a 60-ms SP was only consistently chosen when it was 10 dB louder than a CS with a 50-ms SP (Fig. 4). A more intense CS was preferred by the females regardless of whether its CR was faster or slower than that of the CS produced at a lower intensity (Fig. 6). When CSs with SPs of 50 or 60 ms had several different CRs, the females that made a significant choice preferred a CS with a 50-ms SP regardless of whether it was produced at a faster or slower CR (Figs. 7, 8). No significant selection between CSs with 40- and 50-ms SPs resulted when they were produced at different intensities (Fig. 5) or CRs (Fig. 9). Females only significantly chose a CS with a 50-ms SP over those with 40 ms SPs when the 50-ms-SP CS was louder and produced at a different CR (Fig. 10). From these results, it was apparent that SP, intensity, and CR all influenced a female's choice of a CS, and thus the male producing it. However, our results indicate that SP was the most important feature influencing the female's choice and that intensity was more effective than CR.Abbreviations CR chirp rate - CS calling song - POD polar orientation diagram - SP syllable period  相似文献   

20.
ABSTRACT. An L-shaped auditory intemeuron (LI) has been recorded from extracellularly and intracellularly, and identified morphologically (by Lucifer yellow or cobalt injection) in the prothoracic ganglion of mature female Acheta domesticus. The morphology of the LI is very similar to ascending, prothoracic acoustic interneurons that are most sensitive to higher carrier frequencies in both A. domesticus and other gryllid species. Its terminations in the brain are similar to ascending acoustic interneurons found in other gryllids. The LI neuron is most sensitive to 4–5 kHz model calling songs (CSs), the main carrier frequency of the natural call. Thresholds to high frequencies (8–15 kHz) are 15–20 dB higher. Increasing CS intensities of up to 15 dB above threshold at 4–5 kHz result in increased firing rates by the LI. More than 15 dB increase in intensity causes saturation with little increase in spiking rate until the intensity surpasses 80 dB. In response to 70 dB or higher stimulus intensities, the LI responds to the second and third CS syllables with one or two spikes, pauses, and then produces a burst of nerve impulses with the same or greater latency than for lower intensity stimuli. In response to CS syllables of changing duration (10–30 ms) this neuron responds with a rather constant duration burst of impulses. Syllable periods of the CS stimuli were accurately encoded by the LI. Progressively stronger injection of hyperpolarizing current reduces, and ultimately stops spiking of the LI in response to CS stimuli. More intense stimulation with reduced hyperpolarization shows an initial spike, pause and burst of spikes. Intracellular recording from axonal regions of the neuron shows large spikes, small EPSPs and a developing hyperpolarization through the response to a CS chirp. Inhibitory input to the LI is demonstrated at 4.5, 8 and 16 kHz. This probably explains the specialized response characteristics of the LI which enhanced its encoding of CS syllable period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号