首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 863 毫秒
1.

Background  

Staphylococcus aureus and Pseudomonas aeruginosa are often found together in the airways of cystic fibrosis (CF) patients. It was previously shown that the P. aeruginosa exoproduct 4-hydroxy-2-heptylquinoline-N-oxide (HQNO) suppresses the growth of S. aureus and provokes the emergence of small-colony variants (SCVs). The presence of S. aureus SCVs as well as biofilms have both been associated with chronic infections in CF.  相似文献   

2.
Fibronectin‐binding proteins A and B (FnBPA and FnBPB) mediate adhesion of Staphylococcus aureus to fibrinogen, elastin and fibronectin. FnBPA and FnBPB are encoded by two closely linked genes, fnbA and fnbB, respectively. With the exception of the N‐terminal regions, the amino acid sequences of FnBPA and FnBPB are highly conserved. To investigate the genetics and evolution of fnbA and fnbB, the most variable regions, which code for the 67th amino acids of the A through B regions (A67–B) of fnbA and fnbB, were focused upon. Eighty isolates of S. aureus in Japan were sequenced and 19 and 18 types in fnbA and fnbB, respectively, identified. Although the phylogeny of fnbA and fnbB were found to be quite different, each fnbA type connected with a specific fnbB type, indicating that fnbA and fnbB mutate independently, whereas the combination of both genes after recombination is stable. Hence those fnbAfnbB combinations were defined as FnBP sequence types (FnSTs). Representative isolates of each FnST were assigned distinct STs by multilocus sequence typing, suggesting correspondence of FnST with genome lineage. Linkage disequilibrium (LD) analysis of the A67–B region revealed that subdomains N2, N3 and FnBR1 form a LD block in fnbA, whereas N2 and N3 form two independent LD blocks in fnbB. N2–N3 three‐dimensional structural models indicated that not only the variable amino acid residues, but also well‐conserved amino acid residues between FnBPA and FnBPB, are located on the surface of the protein. These results highlight a molecular process of the FnBP that has evolved by mingled mutation and recombination with retention of functions.  相似文献   

3.
Colonization of mucosal respiratory surfaces is a prerequisite for the human pathobiont Streptococcus pneumoniae (the pneumococcus) to cause severe invasive infections. The arsenal of pneumococcal adhesins interacts with a multitude of extracellular matrix proteins. A paradigm for pneumococci is their interaction with the adhesive glycoprotein fibronectin, which facilitates bacterial adherence to host cells. Here, we deciphered the molecular interaction between fibronectin and pneumococcal fibronectin‐binding proteins (FnBPs) PavA and PavB respectively. We show in adherence and binding studies that the pneumococcal interaction with fibronectin is a non‐human specific trait. PavA and PavB target at least 13 out of 15 type III fibronectin domains as demonstrated in ligand overlay assays, surface plasmon resonance studies and SPOT peptide arrays. Strikingly, both pneumococcal FnBPs recognize similar peptides in targeted type III repeats. Structural comparisons revealed that the targeted type III repeat epitopes cluster on the inner strands of both β‐sheets forming the fibronectin domains. Importantly, synthetic peptides of FnIII1, FnIII5 or FnIII15 bind directly to FnBPs PavA and PavB respectively. In conclusion, our study suggests a common pattern of molecular interactions between pneumococcal FnBPs and fibronectin. The specific epitopes recognized in this study can potentially be tested as antimicrobial targets in further scientific endeavours.  相似文献   

4.
Environmental variables such as temperature, salinity, and irradiance are significant drivers of microalgal growth and distribution. Therefore, understanding how these variables influence fitness of potentially toxic microalgal species is particularly important. In this study, strains of the potentially harmful epibenthic dinoflagellate species Coolia palmyrensis, C. malayensis, and C. tropicalis were isolated from coastal shallow water habitats on the east coast of Australia and identified using the D1‐D3 region of the large subunit (LSU) ribosomal DNA (rDNA). To determine the environmental niche of each taxon, growth was measured across a gradient of temperature (15–30°C), salinity (20–38), and irradiance (10–200 μmol photons · m?2 · s?1). Specific growth rates of Coolia tropicalis were highest under warm temperatures (27°C), low salinities (ca. 23), and intermediate irradiance levels (150 μmol photons · m?2 · s?1), while C. malayensis showed the highest growth at moderate temperatures (24°C) and irradiance levels (150 μmol photons · m?2 · s?1) and growth rates were consistent across the range of salinity levels tested (20–38). Coolia palmyrensis had the highest growth rate of all species tested and favored moderate temperatures (24°C), oceanic salinity (35), and high irradiance (>200 μmol photons · m?2 · s?1). This is the first study to characterize the environmental niche of species from the benthic harmful algal bloom genus Coolia and provides important information to help define species distributions and inform risk management.  相似文献   

5.
Germlings were grown from Monostroma latissimum Wittr. reproductive cells on nylon ropes. Holdfast threads and some uniseriate filaments were observed to have penetrated the fibers of the dispersed ropes. The algal filaments were easily isolated and prepared for cultivation, in comparison to the methods of enzymatically isolated algal protoplasts. Under low light (60–100 μmol photons · m?2 · s?1), the algal filaments grew to form a filamentous mass. When cultivated under stronger light (300–600 μmol photons · m?2 · s?1), they grew to initially form tubular thalli and then, when cultivated under light intensities >700 μmol photons · m?2 · s?1, formed foliaceous thalli. Consequently, the filaments were homogenized into small sections and then sewed on the nylon rope for algal mass cultivation. Under high‐intensity natural light, they grew to form leafy thalli.  相似文献   

6.
Using microcosm experiments, we investigated the interactive effects of temperature and light on specific growth rates of three species each of the phytoplanktonic genera Cryptomonas and Dinobryon. Several species of these genera play important roles in the food web of lakes and seem to be sensitive to high water temperature. We measured growth rates at three to four photon flux densities ranging from 10 to 240 μmol photon · m?2 · s?1 and at 4–5 temperatures ranging from 10°C to 28°C. The temperature × light interaction was generally strong, species specific, and also genus specific. Five of the six species studied tolerated 25°C when light availability was high; however, low light reduced tolerance of high temperatures. Growth rates of all six species were unaffected by temperature in the 10°C–15°C range at light levels ≤50 μmol photon · m?2 · s?1. At high light, growth rates of Cryptomonas spp. increased with temperature until the temperature optimum was reached and then declined. The Dinobryon species were less sensitive than Cryptomonas spp. to photon flux densities of 40 μmol photon · m?2 · s?1 and 200 μmol photon · m?2 · s?1 over the entire temperature range but did not grow under a combination of very low light (10 μmol photon · m?2 · s?1) and high temperature (≥20°C). Among the three Cryptomonas species, cell volume declined with temperature and the maximum temperature tolerated was negatively related to cell size. Since Cryptomonas is important food for microzooplankton, these trends may affect the pelagic carbon flow if lake warming continues.  相似文献   

7.
Staphylococcus aureus is a human pathogen that causes invasive and recurring infections. The ability to internalize into and persist within host cells is thought to contribute to infection. Here we report a novel role for the well‐characterized iron‐regulated surface determinant B (IsdB) protein which we have shown can promote adhesion of 293T, HeLa cells and platelets to immobilized bacteria independently of its ability to bind haemoglobin. IsdB bound to the active form of the platelet integrin αIIbβ3, both on platelets and when the integrin was expressed ectopically in CHO cells. IsdB also promoted bacterial invasion into human cells. This was clearly demonstrated with bacteria lacking fibronectin‐binding proteins (FnBPs), which are known to promote invasion in the presence of fibronectin. However, IsdB also contributed significantly to invasion by cells expressing FnBPs in the presence of serum. Thus IsdB appears to be able to interact with the broader family of integrins that bind ligands with the RGD motif and to act as a back up mechanism to promote interactions with mammalian cells.  相似文献   

8.
Dunaliella species accumulate carotenoids and their role in protection against photooxidative stress has been investigated extensively. By contrast, the role of other antioxidants in this alga, has received less attention. Therefore, the components of the ascorbate–glutathione cycle, along with superoxide dismutase (E.C. 1.15.1.1) and peroxidase (E.C. 1.11.1.11) activity were compared in two strains of Dunaliella salina. Strain IR‐1 had two‐fold higher chlorophyll and β‐carotene concentration than Gh‐U. IR‐1 had around four‐fold higher superoxide dismutase, ascorbate peroxidase and pyrogallol peroxidase activities than Gh‐U on a protein basis. Ascorbate and glutathione concentrations and redox state did not differ between strains and there was little difference in the activity of ascorbate–glutathione cycle enzymes (monodehydroascorbate reductase [E.C. 1.6.5.4], dehydroascorbate reductase [E.C. 1.8.5.1] and glutathione reductase [E.C. 1.8.1.7]). The response of these antioxidants to high light and low temperature was assessed by transferring cells from normal growth conditions (28°C, photon flux density of 100 μmol m?2 s?1)to 28°C/1200 μmol m?2 s?1; 13°C/100 μmol m?2 s?1; 13°C/1200 μmol m?2 s?1 and 28°C/100 μmol m?2 s?1 for 24 h. Low temperature and combined high light‐low temperature decreased chlorophyll and β‐carotene in both strains indicating that these treatments cause photooxidative stress. High light, low temperature and combined high light‐low temperature treatments increased the total ascorbate pool by 10–50% and the total glutathione pool by 20–100% with no consistent effect on their redox state. Activities of ascorbate–glutathione cycle enzymes were not greatly affected but all the treatments increased superoxide dismutase activity. It is concluded that D. salina can partially adjust to photooxidative conditions by increasing superoxide dismutase activity, ascorbate and glutathione.  相似文献   

9.
We characterized the photoautotrophic growth of glucose‐tolerant Synechocystis sp. PCC 6803 in a flat‐panel photobioreactor running on a semicontinuous regime under various lights, temperatures, and influx carbon dioxide concentrations. The maximum reached growth rate was 0.135 h?1, which corresponds to a doubling time of 5.13 h—a growth speed never reported for Synechocystis before. Saturating red light intensity for the strain was 220–360 μmol(photons) m?2 s?1, and we did not observe any photoinhibition up to 660 μmol(photons) m?2 s?1. Synechocystis was able to grow under red light only; however, photons of wavelengths 405–585 and 670–700 nm further improved its growth. Optimal growth temperature was 35°C. Below 32°C, the growth rates decreased linearly with temperature coefficient (Q10) 1.70. Semicontinuous cultivation is known to be efficient for growth characterization and optimization. However, the assumption of correct growth rates calculation—culture exponential growth—is often not fulfilled. The semicontinuous setup in this study was operated as a turbidostat. Accurate online OD measurements with high time‐resolution allowed fast and reliable growth rates determination. Repeating diluting frequencies (up to 18 dilutions per day) were essential for rapid growth stability evaluation. The presented setup provides improvement to previously published semicontinuous characterization strategies by decreasing experimental time requirements and maintaining the culture in exponential growth phase throughout the entire characterization procedure.  相似文献   

10.
Light effect on cultures of microalgae has been studied mainly on single species cultures. Cyanobacteria have photosynthetic pigments that can capture photons of wavelengths not available to chlorophylls. A native Louisiana microalgae (Chlorella vulgaris ) and cyanobacteria (Leptolyngbya sp.) co‐culture was used to study the effects of light quality (blue–467 nm, green–522 nm, red–640 nm and white–narrow peak at 450 nm and a broad range with a peak at 550 nm) at two irradiance levels (80 and 400 μmol m?2 s?1) on the growth, species composition, biomass productivity, lipid content and chlorophyll‐a production. The co‐culture shifted from a microalgae dominant culture to a cyanobacteria culture at 80 μmol m?2 s?1. The highest growth for the cyanobacteria was observed at 80 μmol μmol m?2 s?1 and for the microalgae at 400 μmol m?2 s?1. Red light at 400 μmol m?2 s?1 had the highest growth rate (0.41 d?1), biomass (913 mg L?1) and biomass productivity (95 mg L?1 d?1). Lipid content was similar between all light colors. Green light had the highest chlorophyll‐a content (1649 μg/L). These results can be used to control the species composition of mixed cultures while maintaining their productivity.  相似文献   

11.
Lithophyllum yessoense Foslie is a markedly dominant subtidal, crustose coralline alga in south–western Hokkaido, Japan. In this study, the effects of irradiance, water temperature and nutrients (nitrate and phosphate) on the growth of sporelings of the alga were examined. The relative growth rate (RGR) was saturated at 17.6% d?1 at a high irradiance (240 umol photon m2s?1). Even at a low irradiance (10.7–49.9 umol photon m?2s?1), RGR was 7.1–12.7% d?1 The survival rate of sporelings was greater than 80% at irradiance above 10.7 μmol photon m?2s?1 throughout the culture period. The growth of L. yessoense sporelings was promoted at 15°C and 20°C, but inhibited at 5°C. The half‐saturation constants (Ks) for growth were about 0.5 umol L?1 and 0.14 umol L?1 for nitrate and phosphate, respectively. Saturated nitrate and phosphate concentrations for the growth were about 4.0 μmol L?1 and 0.4 μmol L?1, respectively, suggesting that L. yessoense is adaptable to a relatively high water temperature, a wide range of irradiance, and low ambient nitrate and phosphate concentrations. The results provide a possible explanation of why L. yessoense is dominant in the environments of south‐western Hokkaido.  相似文献   

12.
The toxigenic diatom Pseudo‐nitzschia cuspidata, isolated from the U.S. Pacific Northwest, was examined in unialgal batch cultures to evaluate domoic acid (DA) toxicity and growth as a function of light, N substrate, and growth phase. Experiments conducted at saturating (120 μmol photons · m?2 · s?1) and subsaturating (40 μmol photons · m?2 · s?1) photosynthetic photon flux density (PPFD), demonstrate that P. cuspidata grows significantly faster at the higher PPFD on all three N substrates tested [nitrate (NO3?), ammonium (NH4+), and urea], but neither cellular toxicity nor exponential growth rates were strongly associated with one N source over the other at high PPFD. However, at the lower PPFD, the exponential growth rates were approximately halved, and the cells were significantly more toxic regardless of N substrate. Urea supported significantly faster growth rates, and cellular toxicity varied as a function of N substrate with NO3?‐supported cells being significantly more toxic than both NH4+‐ and urea‐supported cells at the low PPFD. Kinetic uptake parameters were determined for another member of the P. pseudodelicatissima complex, P. fryxelliana. After growth of these cells on NO3? they exhibited maximum specific uptake rates (Vmax) of 22.7, 29.9, 8.98 × 10?3 · h?1, half‐saturation constants (Ks) of 1.34, 2.14, 0.28 μg‐at N · L?1, and affinity values (α) of 17.0, 14.7, 32.5 × 10?3 · h?1/(μg‐at N · L?1) for NO3?, NH4+ and urea, respectively. These labo‐ratory results demonstrate the capability of P. cuspidata to grow and produce DA on both oxidized and reduced N substrates during both exponential and stationary growth phases, and the uptake kinetic results for the pseudo‐cryptic species, P. fryxelliana suggest that reduced N sources from coastal runoff could be important for maintenance of these small pennate diatoms in U.S. west coast blooms, especially during times of low ambient N concentrations.  相似文献   

13.
We have determined the conditions which give optimal growth and conchospore release in laboratory cultures of free conchocelis of the red alga Porphyra torta Krishnamurthy. With cool white fluorescent light on a 16L.8D photoregime, the fastest sustained growth (5% volume increase d?1) was observed from 10–15°C and 25–100 μE-m ?2.s?1; slightly faster growth was observed at 15°C and 300 μE.m?2.s?1, but such conditions are close to lethal. Conchoporangin will form under a wide range of conditions in conchocelis of this species. However, conchospores will mature and release only when the cultures are exposed to a short day photoperiod. The critical pholoperiod is just shorter than 12 h, The minimum number of photoinductive cycles for complete conchospore release is four for a range of conditions but can be just one depending on pretreatment.  相似文献   

14.
In slow mainstream flows (<4–6 cm · s?1), the transport of dissolved nutrients to seaweed blade surfaces is reduced due to the formation of thicker diffusion boundary layers (DBLs). The blade morphology of Macrocystis pyrifera (L.) C. Agardh varies with the hydrodynamic environment in which it grows; wave‐exposed blades are narrow and thick with small surface corrugations (1 mm tall), whereas wave‐sheltered blades are wider and thinner with large (2–5 cm) edge undulations. Within the surface corrugations of wave‐exposed blades, the DBL thickness, measured using an O2 micro‐optode, ranged from 0.67 to 0.80 mm and did not vary with mainstream velocities between 0.8 and 4.5 cm · s?1. At the corrugation apex, DBL thickness decreased with increasing seawater velocity, from 0.4 mm at 0.8 cm · s?1 to being undetectable at 4.5 cm · s?1. Results show how the wave‐exposed blades trap fluid within the corrugations at their surface. For wave‐sheltered blades at 0.8 cm · s?1, a DBL thickness of 0.73 ± 0.31 mm within the edge undulation was 10‐fold greater than at the undulation apex, while at 2.1 cm · s?1, DBL thicknesses were similar at <0.07 mm. Relative turbulence intensity was measured using an acoustic Doppler velocimeter (ADV), and overall, there was little evidence to support our hypothesis that the edge undulations of wave‐sheltered blades increased turbulence intensity compared to wave‐exposed blades. We discuss the positive and negative effects of thick DBLs at seaweed surfaces.  相似文献   

15.
A natural assemblage of microalgae from a facultative lagoon system treating municipal wastewater was enriched for growth in the effluents of an anaerobic digester processing dairy waste. A green microalga with close resemblance to Chlorella sp. was found to be dominant after multiple cycles of sub‐culturing. Subsequently, the strain (designated as LLAI) was isolated and cultivated in 20× diluted digester effluents under various incident light intensities (255–1,100 µmoles m?2 s?1) to systematically assess growth and nutrient utilization. Our results showed that LLAI production increased with increasing incident light and a maximum productivity of 0.34 g L?1 d?1 was attained when the incident irradiance was 1,100 µmoles m?2 s?1. Lack of growth in the absence of light indicated that the cultures did not grow heterotrophically on the organic compounds present in the medium. However, the cultures were able to uptake organic N and P under phototrophic conditions and our calculations suggest that the carbon associated with these organic nutrients contributed significantly to the production of biomass. Overall, under high light conditions, LLAI cultures utilized half of the soluble organic nitrogen and >90% of the ammonium, orthophosphate, and dissolved organic phosphorus present in the diluted waste. Strain LLAI was also found to accumulate triacylglycerides (TAG) even before the onset of nutrient limitation and a lipid productivity of 37 mg‐TAG L?1 d?1 was measured in cultures incubated at an incident irradiance of 1,100 µmoles m?2 s?1. The results of this study suggest that microalgae isolates from natural environments are well‐suited for nutrient remediation and biomass production from wastewater containing diverse inorganic and organic nutrient species. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1336–1342, 2016  相似文献   

16.
Knowledge concerning the effects of several abiotic factors on the physiology of carrageenophytes is essential both in ecological and economic standpoints, to ensure their sufficient supply for the sustainability of seaweed‐based industries. This paper presents the photosynthetic characteristics of farmed carrageenophytes, E ucheuma denticulatum and K appaphycus alvarezii [brown (BRN) and green (GRN) color morphotypes] from Sulawesi Utara (Sulawesi Island), Indonesia, as determined by examining their photosynthetic response across different temperatures and irradiances using dissolved oxygen measurements and pulse‐amplitude modulated fluorometer. Net photosynthesis–irradiance ( P E ) curves at 26°C revealed that net photosynthetic rates of the three seaweeds gradually increased until the estimated saturation irradiances ( E k ) of 58 μmol photons m? 2 s?1 (49–68 μmol photons m? 2 s?1, 95% Bayesian prediction intervals; BPI) for E . denticulatum, and 158 and 143 μmol photons m? 2 s?1 (134–185 and 99–203 μmol photons m? 2 s?1, 95% BPI) for BRN and GRN K . alvarezii, respectively; and that no photoinhibition was observed at the highest irradiance of 1000 μmol photons m? 2 s?1. All seaweed samples exhibited photosynthetic tolerance to high PAR as shown by their recovery in maximum quantum yields (Fv / Fm ) following chronic exposures; as well as tolerance over a broad range of temperature, which is from 19 to 33°C for E . denticulatum, 20–29°C for BRN K . alvarezii, and 17–32°C for GRN K . alvarezii. Temperature responses of these carrageenophytes indicated that they were well‐adapted to the annual seawater temperatures in the cultivation site; however, they are also likely close to threshold levels for thermal inhibition, given the decline in Fv / Fm above 30°C.  相似文献   

17.
Bacterial variants of Staphylococcus aureus called small colony variants (SCVs) originate by mutations in metabolic genes, resulting in emergence of auxotrophic bacterial subpopulations. These variants are not particularly virulent but are able to persist viable inside host cells. SCVs show their characteristic auxotrophic growth deficiency and depressed α-cytotoxin activity. Environmental pressure such as antibiotics, select for isogenic SCV cells that are frequently found coexisting with their parent wild-type strains in a mixed bacterial culture. SCV strains often grow on blood agar as non-pigmented or pinpoint pigmented colonies and their key biochemical tests are often non-reactive. Their altered metabolism or auxotrophism can result in long generation time and thus SCV phenotype, more often than not SCV can be overgrown by their wild-type counterparts and other competitive respiratory flora. This could affect laboratory detection. Thus, molecular methods, such as 16S rRNA partial sequencing or amplification of species-specific DNA targets (e.g. coagulase, nuclease) directly from clinical material or isolated bacterial colonies, become the method of choice. Patients at risk of infection by S. aureus SCVs include cystic fibrosis patients (CF), patients with skin and foreign-body related infections and osteomyelitis, as they suffer from chronic staphylococcal infections and are subject to long-term antibiotic therapy. Molecular evidence of SCV development has not been found except for some random mutations of the thymidylate synthase gene (thyA) described in SCV S. aureus strains of CF patients. These variants are able to bypass the antibiotic effect of folic acid antagonists such as sulfonamides and trimethoprim. Resistance to gentamicin and aminoglycosides in the hemin or menadione auxotrophic SCVs was hypothesized as being due to decreased influx of the drugs into cells as a result of decreased ATP production and decreased electrochemical gradient on cell membranes.  相似文献   

18.
It is demonstrated that cyanobacteria (both azotrophic and non‐azotrophic) contain heme b oxidoreductases that can convert chlorite to chloride and molecular oxygen (incorrectly denominated chlorite ‘dismutase’, Cld). Beside the water‐splitting manganese complex of photosystem II, this metalloenzyme is the second known enzyme that catalyses the formation of a covalent oxygen–oxygen bond. All cyanobacterial Clds have a truncated N‐terminus and are dimeric (i.e. clade 2) proteins. As model protein, Cld from Cyanothece sp. PCC7425 (CCld) was recombinantly produced in Escherichia coli and shown to efficiently degrade chlorite with an activity optimum at pH 5.0 [kcat 1144 ± 23.8 s?1, KM 162 ± 10.0 μM, catalytic efficiency (7.1 ± 0.6) × 106 M?1 s?1]. The resting ferric high‐spin axially symmetric heme enzyme has a standard reduction potential of the Fe(III)/Fe(II) couple of ?126 ± 1.9 mV at pH 7.0. Cyanide mediates the formation of a low‐spin complex with kon = (1.6 ± 0.1) × 105 M?1 s?1 and koff = 1.4 ± 2.9 s?1 (KD ~ 8.6 μM). Both, thermal and chemical unfolding follows a non‐two‐state unfolding pathway with the first transition being related to the release of the prosthetic group. The obtained data are discussed with respect to known structure–function relationships of Clds. We ask for the physiological substrate and putative function of these O2‐producing proteins in (nitrogen‐fixing) cyanobacteria.  相似文献   

19.
Thalassiosira oceanica (CCMP 1005) was grown over a range of copper concentrations at saturating and subsaturating irradiance to test the hypothesis that Cu and light were interacting essential resources. Growth was a hyperbolic function of irradiance in Cu‐replete medium (263 fmol Cu′ · L?1) with maximum rates achieved at 200 μmol photons · m?2 · s?1. Lowering the Cu concentration at this irradiance to 30.8 fmol Cu′ · L?1 decreased cellular Cu quota by 7‐fold and reduced growth rate by 50%. Copper‐deficient cells had significantly slower (P < 0.0001) rates of maximum, relative photosynthetic electron transport (rETRmax) than Cu‐sufficient cells, consistent with the role of Cu in photosynthesis in this diatom. In low‐Cu medium (30.8 fmol Cu′ · L?1), growth rate was best described as a positive, linear function of irradiance and reached the maximum value measured in Cu‐replete cells when irradiance increased to 400 μmol photons · m?2 · s?1. Thus, at high light, low‐Cu concentration was no longer limiting to growth: Cu concentration and light interacted strongly to affect growth rate of T. oceanica (P < 0.0001). Relative ETRmax and Cu quota of cells grown at low Cu also increased at 400 μmol photons · m?2 · s?1 to levels measured in Cu‐replete cells. Steady‐state uptake rates of Cu‐deficient and sufficient cells were light‐dependent, suggesting that faster growth of T. oceanica under high light and low Cu was a result of light‐stimulated Cu uptake.  相似文献   

20.
Mast cells (MCs) are important sentinels of the host defence against invading pathogens. We previously reported that Staphylococcus aureus evaded the extracellular antimicrobial activities of MCs by promoting its internalization within these cells via β1 integrins. Here, we investigated the molecular mechanisms governing this process. We found that S. aureus responded to the antimicrobial mediators released by MCs by up‐regulating the expression of α‐hemolysin (Hla), fibronectin‐binding protein A and several regulatory systems. We also found that S. aureus induced the up‐regulation of β1 integrin expression on MCs and that this effect was mediated by Hla‐ADAM10 (a disintegrin and metalloproteinase 10) interaction. Thus, deletion of Hla or inhibition of Hla‐ADAM10 interaction significantly impaired S. aureus internalization within MCs. Furthermore, purified Hla but not the inactive HlaH35L induced up‐regulation of β1 integrin expression in MCs in a dose‐dependent manner. Our data support a model in which S. aureus counter‐reacts the extracellular microbicidal mechanisms of MCs by increasing expression of fibronectin‐binding proteins and by inducing Hla‐ADAM10‐mediated up‐regulation of β1 integrin in MCs. The up‐regulation of bacterial fibronectin‐binding proteins, concomitantly with the increased expression of its receptor β1 integrin on the MCs, resulted in enhanced S. aureus internalization through the binding of fibronectin‐binding proteins to integrin β1 via fibronectin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号