首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Learning to avoid toxic prey items may aid native predators to survive the invasion of highly toxic species, such as cane toads Bufo marinus in tropical Australia. If the predators’ initial aversion is generalized, native prey that resemble the toxic invader may receive a benefit through accidental mimicry. What ecological factors influence the acquisition of learned avoidance (and hence, the impact of invasion on both predators and native prey)? We conducted laboratory experiments to evaluate how the relative abundance of toad tadpoles compared to palatable native tadpoles (Litoria caerulea and L. rubella) affected the ability of native aquatic predators to discriminate between these two prey types. Both fish (northern trout gudgeon, Mogurnda mogurnda) and frogs (Dahl's aquatic frog, Litoria dahlii) learned to discriminate between toads and frogs within an eight‐day period. Higher abundance of toad tadpoles relative to frog tadpoles enhanced rates of predator learning, and thus reduced predation on toads and increased predation on native tadpoles. In the field, spatial and temporal variation in the relative abundance of cane toads compared to native frogs may influence the rates at which these novel toxic items are deleted from predator diets, and the duration of predator protection afforded to natives that resemble the invader.  相似文献   

2.
One important impact of invasive species may be to modify the behaviour of native taxa. For example, the invasion of highly toxic cane toads (Bufo marinus) kills many anurophagous native predators, but other predators learn to recognize and avoid the toxic invader. We exposed native fish (northern trout gudgeons, Mogurnda mogurnda) and Dahl's aquatic frogs (Litoria dahlii) to cane toad tadpoles, then monitored the predator's responses during subsequent trials. Both the frogs and fish initially attacked toad tadpoles, but rapidly learned not to do so. Fish and adult frogs retained their aversion for at least a week, whereas recently metamorphosed frogs did not. Clearly, the spread of cane toads through tropical Australia can modify feeding responses of native aquatic predators. For predators capable of rapid avoidance learning, the primary impact of cane toads may be on foraging behaviour rather than mortality.  相似文献   

3.
The arrival of a toxic invasive species may impose selection on local predators to avoid consuming it. Feeding responses may be modified via evolutionary changes to behaviour, or via phenotypic plasticity (e.g. learning, taste aversion). The recent arrival of cane toads (Bufo marinus) in the Northern Territory of Australia induced rapid aversion learning in a predatory marsupial (the common planigale, Planigale maculata). Here, we examine the responses of planigales to cane toads in north‐eastern Queensland, where they have been sympatric for over 60 years, to investigate whether planigale responses to cane toads have been modified by long‐term exposure. Responses to toads were broadly similar to those documented for toad‐naïve predators. Most Queensland planigales seized (21 of 22) and partially consumed (11 of 22) the first toad they were offered, but were likely to ignore toads in subsequent trials. However, unlike their toad‐naïve conspecifics from the Northern Territory, the Queensland planigales all survived ingestion of toad tissue without overt ill effects and continued to attack toads in a substantial proportion of subsequent trials. Our data suggest that (i) learning by these small predators is sufficiently rapid and effective that selection on behaviour has been weak; and (ii) physiological tolerance to toad toxins may be higher in planigales after 60 years (approximately 60 generations) of exposure to this toxic prey.  相似文献   

4.
The ability of a native predator to adjust to a dangerously toxic invasive species is key to avoiding an ongoing suppression of the predator's population and the trophic cascade of effects that can result. Many species of anurophagous predators have suffered population declines due to the cane toad's (Rhinella marina: Bufonidae) invasion of Australia; these predators can be fatally poisoned from attempting to consume the toxic toad. We studied one such toad‐vulnerable predator, the yellow‐spotted monitor (Varanus panoptes: Varanidae), testing whether changes to the predator's feeding behaviour could explain how the species persists following toad invasion. Wild, free‐roaming lizards from (1) toad‐naïve and (2) toad‐exposed populations were offered non‐toxic native frogs and slightly toxic cane toads (with parotoid glands removed) in standardized feeding trials. Toad‐naïve lizards readily consumed both frogs and toads, with some lizards displaying overt signs of illness after consuming toads. In contrast, lizards from toad‐exposed populations consumed frogs but avoided toads. Repeated encounters with toads did not modify feeding responses by lizards from the toad‐naïve populations, suggesting that aversion learning is limited (but may nonetheless occur). Our results suggest that this vulnerable predator can adjust to toad invasion by developing an aversion to feeding on the toxic invader, but it remains unclear as to whether the lizard's toad‐aversion arises via adaptation or learning.  相似文献   

5.
The invasion of cane toads (Rhinella marina) through Australia imperils native predators that are killed if they consume these toxic anurans. The magnitude of impact depends upon the predators’ capacity for aversion learning: toad impact is lower if predators can learn not to attack toads. In laboratory trials, we assessed whether bluetongue lizards (Tiliqua scincoides) – a species under severe threat from toads – are capable of learned taste aversion and whether we can facilitate that learning by exposing lizards to toad tissue combined with a nausea‐inducing chemical (lithium chloride). Captive bluetongues rapidly learned to avoid the ‘unpalatable’ food. Taste aversion also developed (albeit less strongly) in response to meals of minced cane toad alone. Our data suggest that taste aversion learning may help bluetongue lizards survive the onslaught of cane toads, but that many encounters will be fatal because the toxin content of toads is so high relative to lizard tolerance of those toxins. Thus, baiting with nausea‐inducing (but non‐lethal) toad products might provide a feasible management option to reduce the impact of cane toad invasion on these native predators.  相似文献   

6.
Abstract The introduced and highly toxic cane toad (Bufo marinus) is rapidly spreading across northern Australia where it may affect populations of large terrestrial vertebrate predators. The ecological impact of cane toads will depend upon the diets, foraging modes and habitat use of native predators, and their feeding responses to cane toads. However, intraspecific niche partitioning may influence the degree of vulnerability of predators to toxic prey, as well as the time course of the impact of alien invaders on native species. We studied the diet of the northern death adder Acanthophis praelongus and their feeding responses to cane toads. In the laboratory, death adders from all size classes and sexes readily consumed frogs and cane toads. Diets of free ranging A. praelongus from the Adelaide River floodplain were more heterogeneous. Juvenile snakes ate mainly frogs (39% of prey items) and small scincid lizards (43%). Both sexes displayed an ontogenetic dietary shift from lizards to mammals, but adult males fed on frogs (49%) and mammals (39%) whereas adult females (which grew larger than males) fed mainly on mammals (91%) and occasionally, frogs (9%). Feeding rates and body condition of adult snakes varied temporally and tracked fluctuations in prey availability. These results suggest that cane toads may negatively affect populations of northern death adders in the Darwin region. However, we predict that different size and sex classes of A. praelongus will experience differential mortality rates over different timescales. The initial invasion of large toads may affect adult males, but juveniles may be unaffected until juvenile toads appear the following year, and major affects on adult female death adders may be delayed until annual rainfall fluctuations reduce the availability of alternative (rodent) prey.  相似文献   

7.
Invasive species are a leading cause of native biodiversity loss. In Australia, the toxic, invasive cane toad Rhinella marina has caused massive and widespread declines of northern quolls Dasyurus hallucatus. Quolls are fatally poisoned if they mistakenly prey on adult toads. To prevent the extinction of this native dasyurid from the Top End, an insurance population was set up in 2003 on two toad‐free islands in Arnhem Land. In 2015, quolls were collected from one of these islands (Astell) for reintroduction. We used conditioned taste aversion to render 22 of these toad‐naïve quolls toad averse. Seven quolls received no taste aversion training. The source island was also predator‐free, so all quolls received very basic predator‐aversion training. In an attempt to re‐establish the mainland population, we reintroduced these 29 northern quolls into Kakadu National Park in northern Australia where cane toads have been established for 13 years. The difference in survival between toad‐averse and toad‐naive quolls was immediately apparent. Toad‐naive quolls were almost all killed by toads within 3 days. Toad‐averse quolls, on the other hand, not only survived longer but also were recorded mating. Our predator training, however, was far less effective. Dingo predation accounted for a significant proportion of toad‐smart quoll mortality. In Kakadu, dingoes have been responsible for high levels of quoll predation in the past and reintroduced animals are often vulnerable to predation‐mediated population extinction. Dingoes may also be more effective predators in fire degraded landscapes. Together, these factors could explain the extreme predation mortality that we witnessed. In addition, predator aversion may have been lost from the predator‐free island populations. These possibilities are not mutually exclusive but need to be investigated because they have clear bearing on the long‐term recovery of the endangered northern quoll.  相似文献   

8.
Although interest in the ecological impacts of invasive species has largely focused on negative effects, some native taxa may benefit from invader arrival. In tropical Australia, invasive cane toads (Bufo marinus) have fatally poisoned many native predators (e.g., marsupials, crocodiles, lizards) that attempt to ingest the toxic anurans, but birds appear to be more resistant to toad toxins. We quantified offtake of dead (road-killed) cane toads by raptors (black kites (Milvus migrans) and whistling kites (Haliastur sphenurus)) at a site near Darwin, in the Australian wet-dry tropics. Raptors readily took dead toads, especially small ones, although native frogs were preferred to toads if available. More carcasses were removed in the dry season than the wet season, perhaps reflecting seasonal availability of alternative prey. Raptors appeared to recognize and avoid bufotoxins, and typically removed and consumed only the toads’ tongues (thereby minimizing toxin uptake). The invasion of cane toads thus constitutes a novel prey type for scavenging raptors, rather than (as is the case for many other native predators) a threat to population viability.  相似文献   

9.
The invasion of a toxic prey type can differentially affect closely related predator species. In Australia, the invasive Cane Toad (Rhinella marina) kills native anurophagous predators that cannot tolerate the toad’s toxins; but predators that are physiologically resistant (i.e., belong to lineages that entered Australia recently from Asia, where toads of other species are common) have been more resilient. In the current study, we examine the case of an Asian-derived predator lineage that relies on behavioural not physiological adaptations to deal with toads. Despite their Asian origins, Common Tree Snakes (Dendrelaphis punctulatus) are highly sensitive to toad toxins; yet this snake has not declined in abundance due to toads. We exposed captive (field-collected) snakes to toads of different sizes and ontogenetic stages, to quantify feeding responses and outcomes. Tree Snakes were less likely to attack toads than to attack native frogs, and rarely retained their hold on large toads. Tree Snakes ingested frogs of a wide range of body sizes but only ingested very small toads (<?1 g vs. up to 30 g for frogs). Behavioural responses were virtually identical between Tree Snakes from invaded versus yet-to-be-invaded areas, suggesting that preadaptation (from Asia) rather than adaptation (within Australia) is the key to successful utilisation of this novel but potentially toxic prey resource. Nonetheless, a previously-documented shift in relative head sizes of Tree Snakes coincident with toad invasion suggests that the ancestral behavioural tactic may have been reinforced by a recent morphological shift that further reduces maximal prey size, and hence the risk of fatal poisoning.  相似文献   

10.
Biological invasions can expose native predators to novel prey which may be less nutritious or detrimental to predators. The introduction and subsequent spread of cane toads (Bufo marinus) through Australia has killed many anuran-eating snakes unable to survive the toad’s toxins. However, one native species, the keelback snake (Tropidonophis mairii), is relatively resistant to toad toxins and remains common in toad-infested areas. Is the keelback’s ability to coexist with toads a function of its ancestral Asian origins, or a consequence of rapid adaptation since cane toads arrived in Australia? And does the snake’s feeding preference for frogs rather than toads reflect an innate or learned behaviour? We compared keelback populations long sympatric with toads with a population that has encountered toads only recently. Unlike toad-vulnerable snake species, sympatry with toads has not affected keelback toxin tolerances or feeding responses: T. mairii from toad-sympatric and toad-naïve populations show a similar sensitivity to toad toxin, and a similar innate preference for frogs rather than toads. Feeding responses of neonatal keelbacks demonstrate that learning plays little or no role in the snake’s aversion to toads. Thus, behavioural aversion to B. marinus as prey, and physiological tolerance to toad toxins are pre-existing innate characteristics of Australian keelbacks rather than adaptations to the cane toad’s invasion of Australia. Such traits were most likely inherited from ancestral keelbacks that adapted to the presence of bufonids in Asia. Our results suggest that the impact of invasive species on native taxa may be strongly influenced by the biogeographic histories of the species involved.  相似文献   

11.
Invasions by exotic toxic prey, like the release of the South American cane toad (Bufo (Rhinella) marinus) to the toad‐free Australian continent in 1935, have been shown to result in massive declines in native predator numbers. Due to minor nucleotide mutations of the Na+/K+‐ATPase gene most Australian squamate predators are highly susceptible to cane toad toxin. However, in spite of this, predators like yellow‐spotted goannas (Varanus panoptes) and red‐bellied black snakes (Pseudechis porhyriacus) still persist in parts of Queensland where they, in some areas, have co‐existed with cane toads for more than 70 years. Here, we show that the amino acids of the Na+/K+‐ATPase enzyme in the two species do not provide toad toxin resistance, and hence the two Queensland predators are still highly susceptible to cane toad toxin. Both yellow‐spotted goannas and lace monitors (Varanus varius) have, however, been recorded avoiding feeding on cane toads in areas where they co‐exist with this toxic amphibian. Moreover, both varanids have also been shown to learn to avoid feeding on toads when first subjected to conditioned taste aversion. Such behavioural shifts may therefore explain why yellow‐spotted goannas and red‐bellied black snakes still exist in cane toad infested areas of Queensland. The process appears, however, to be unable to rapidly restore varanid populations to pre‐toad population numbers as even after 10 years of co‐existence with cane toads in the Northern Territory, we see no signs of an increase in yellow‐spotted goanna numbers.  相似文献   

12.
The impact of invasive predators on native prey has attracted considerable scientific attention, whereas the reverse situation (invasive species being eaten by native predators) has been less frequently studied. Such interactions might affect invasion success; an invader that is readily consumed by native species may be less likely to flourish in its new range than one that is ignored by those taxa. Invasive cane toads (Rhinella marina) in Australia have fatally poisoned many native predators (e.g., marsupials, crocodiles, lizards) that attempt to ingest the toxic anurans, but birds are more resistant to toad toxins. We quantified prey preferences of four species of wading birds (Nankeen night heron, purple swamphen, pied heron, little egret) in the wild, by offering cane toads and alternative native prey items (total of 279 trays offered, 14 different combinations of prey types). All bird species tested preferred the native prey, avoiding both tadpole and metamorph cane toads. Avoidance of toads was strong enough to reduce foraging on native prey presented in combination with the toads, suggesting that the presence of cane toads could affect predator foraging tactics, and reduce the intensity of predation on native prey species found in association with toads.  相似文献   

13.
Behavioural flexibility plays a key role in facilitating the ability of invasive species to exploit anthropogenically‐created resources. In Australia, invasive cane toads (Rhinella marina) often gather around commercial beehives (apiaries), whereas native frogs do not. To document how toads use this resource, we spool‐tracked cane toads in areas containing beehives and in adjacent natural habitat without beehives, conducted standardized observations of toad feeding behaviour, and ran prey‐manipulation trials to compare the responses of cane toads versus native frogs to honeybees as potential prey. Toads feeding around beehives travelled shorter distances per night, and hence used different microhabitats, than did toads from nearby control sites without beehives. The toads consumed live bees from the hive entrance (rather than dead bees from the ground), often climbing on top of one another to gain access to the hive entrance. Prey manipulation trials confirm that bee movement is the critical stimulus that elicits the toads’ feeding response; and in standardized trials, native frogs consumed bees less frequently than did toads. In summary, cane toads flexibly modify their movements, foraging behaviour and dietary composition to exploit the nutritional opportunities created by commercial beehives, whereas native anurans do not.  相似文献   

14.
Adaptations that enhance fitness in one situation can become liabilities if circumstances change. In tropical Australia, native snake species are vulnerable to the invasion of toxic cane toads. Death adders (Acanthophis praelongus) are ambush foragers that (i) attract vertebrate prey by caudal luring and (ii) handle anuran prey by killing the frog then waiting until the frog''s chemical defences degrade before ingesting it. These tactics render death adders vulnerable to toxic cane toads (Bufo marinus), because toads elicit caudal luring more effectively than do native frogs, and are more readily attracted to the lure. Moreover, the strategy of delaying ingestion of a toad after the strike does not prevent fatal poisoning, because toad toxins (unlike those of native frogs) do not degrade shortly after the prey dies. In our laboratory and field trials, half of the death adders died after ingesting a toad, showing that the specialized predatory behaviours death adders use to capture and process prey render them vulnerable to this novel prey type. The toads'' strong response to caudal luring also renders them less fit than native anurans (which largely ignored the lure): all toads bitten by adders died. Together, these results illustrate the dissonance in behavioural adaptations that can arise following the arrival of invasive species, and reveal the strong selection that occurs when mutually naive species first interact.  相似文献   

15.
The invasion of toxic cane toads (Rhinella marina) is a major threat to northern quolls (Dasyurus hallucatus) which are poisoned when they attack this novel prey item. Quolls are now endangered as a consequence of the toad invasion. Conditioned taste aversion can be used to train individual quolls to avoid toads, but we currently lack a training technique that can be used at a landscape scale to buffer entire populations from toad impact. Broad‐scale deployment requires a bait that can be used for training, but there is no guarantee that such a bait will ultimately elicit aversion to toads. Here, we test a manufactured bait – a ‘toad sausage’ – in a small captive trial, for its ability to elicit aversion to toads in northern quolls. To do this, we exposed one group of quolls to a toad sausage and another to a control sausage and compared the quolls' predatory responses when presented with a dead adult toad. Captive quolls that consumed a single toad sausage showed a reduced interest in cane toads, interacting with them for less than half the time of their untrained counterparts and showing reduced Attack behaviour. We also quantified bait uptake in the field, by both quolls and non‐target species. These field trials showed that wild quolls were the most frequent species attracted to the baits, and that approx. 61% of quolls consumed toad‐aversion baits when first encountered. Between 40% and 68% of these animals developed aversion to further bait consumption. Our results suggest that toad‐aversion sausages may be used to train wild quolls to avoid cane toads. This opens the possibility for broad‐scale quoll training with toad aversion sausages: a technique that may allow wildlife managers to prevent quoll extinctions at a landscape scale.  相似文献   

16.
Translocated from their native range in the Americas in 1935, cane toads (Rhinella marina, Bufonidae) have now spread through much of tropical and subtropical Australia. The toad's invasion and impact have attracted detailed study. In this paper, I review information on ecological interactions between cane toads and Australian anurans. The phylogenetic relatedness and ecological similarity between frogs and toads creates opportunities for diverse interactions, ranging from predation to competition to parasite transfer, plus a host of indirect effects mediated via impacts of toads on other species, and by people's attempts to control toads. The most clear‐cut effect of toads on frogs is a positive one: reducing predator pressure by fatally poisoning anuran‐eating varanid lizards. However, toads also have a wide range of other effects on frogs, some positive (e.g. taking up parasites that would otherwise infect native frogs) and others negative (e.g. eating frogs, poisoning frogs, competing with tadpoles). Although information on such mechanisms predicts intense interactions between toads and frogs, field surveys show that cane toad invasion has negligible overall impacts on frog abundance. That counter‐intuitive result is because of a broad balancing of negative and positive impacts, coupled with stochastic (weather‐induced) fluctuations in anuran abundance that overwhelm any impacts of toads. Also, the impacts of toads on frogs differ among frog species and life‐history stages, and depend upon local environmental conditions. The impacts of native frogs on cane toads have attracted much less study, but may well be important: frogs may impose biotic resistance to cane toad colonization, especially via competition in the larval phase. Overall, the interactions between native frogs and invasive toads illustrate the diverse ways in which an invader's arrival can perturb the native fauna by both direct and indirect mechanisms, and by which the native species can curtail an invader's success. These studies also offer a cautionary tale about the difficulty of predicting the impact of an invasive species, even with a clear understanding of mechanisms of direct interaction.  相似文献   

17.
Invasive species can induce shifts in habitat use by native taxa: either by modifying habitat availability, or by repelling or attracting native species to the vicinity of the invader. The ongoing invasion of cane toads (Rhinella marina) through tropical Australia might affect native frogs by affecting refuge‐site availability, because both frogs and toads frequently shelter by day in burrows. Our laboratory and field studies in the wet‐dry tropics show that native frogs of at least three species (Litoria tornieri, Litoria nasuta and Litoria dahlii) preferentially aggregate with conspecifics, and with (some) other species of native frogs. However, the frogs rarely aggregated with cane toads either in outdoor arenas or in standardized experimental burrows that we monitored in the field. The native frogs that we tested either avoided burrows containing cane toads (or cane toad scent) or else ignored the stimulus (i.e. treated such a burrow in the same way as they did an empty burrow). Native frogs selected a highly non‐random suite of burrows as diurnal retreat sites, whereas cane toads were less selective. Hence, even in the absence of toads, frogs do not use many of the burrows that are suitable for toads. The invasion of cane toads through tropical Australia is unlikely to have had a major impact on retreat‐site availability for native frogs.  相似文献   

18.
Although invasive species are viewed as major threats to ecosystems worldwide, few such species have been studied in enough detail to identify the pathways, magnitudes, and timescales of their impact on native fauna. One of the most intensively studied invasive taxa in this respect is the cane toad (Bufo marinus), which was introduced to Australia in 1935. A review of these studies suggests that a single pathway-lethal toxic ingestion of toads by frog-eating predators-is the major mechanism of impact, but that the magnitude of impact varies dramatically among predator taxa, as well as through space and time. Populations of large predators (e.g., varanid and scincid lizards, elapid snakes, freshwater crocodiles, and dasyurid marsupials) may be imperilled by toad invasion, but impacts vary spatially even within the same predator species. Some of the taxa severely impacted by toad invasion recover within a few decades, via aversion learning and longer-term adaptive changes. No native species have gone extinct as a result of toad invasion, and many native taxa widely imagined to be at risk are not affected, largely as a result of their physiological ability to tolerate toad toxins (e.g., as found in many birds and rodents), as well as the reluctance of many native anuran-eating predators to consume toads, either innately or as a learned response. Indirect effects of cane toads as mediated through trophic webs are likely as important as direct effects, but they are more difficult to study. Overall, some Australian native species (mostly large predators) have declined due to cane toads; others, especially species formerly consumed by those predators, have benefited. For yet others, effects have been minor or have been mediated indirectly rather than through direct interactions with the invasive toads. Factors that increase a predator's vulnerability to toad invasion include habitat overlap with toads, anurophagy, large body size, inability to develop rapid behavioral aversion to toads as prey items, and physiological vulnerability to bufotoxins as a result of a lack of coevolutionary history of exposure to other bufonid taxa.  相似文献   

19.
Abstract Despite widespread concern about the ecological impacts of invasive species, mechanisms of impact remain poorly understood. Cane toads (Chaunus [Bufo] marinus) were introduced to Queensland in 1935, and have now spread across much of tropical Australia. One plausible impact of toad invasion concerns competition between toads and native frogs, but there has been no previous experimental evaluation of this possibility. We examined interactions between toads and a morphologically similar species of native frog (Cyclorana australis) by manipulating toad and frog densities within large outdoor enclosures beside a floodplain in the wet‐dry tropics of the Northern Territory. Toads differed from frogs significantly in dietary composition and feeding rates, even in comparisons controlling for body‐size differences between these two taxa. Perhaps reflecting the abundant insect biomass, manipulating anuran densities or the presence of the putatively competing species did not influence food intake or dietary composition. However, the presence of toads suppressed activity levels of native frogs. The degree to which the invasion of cane toads influences attributes such as the activity levels, food intake and dietary composition of native frogs warrants further study, but our study suggests that competitive effects are likely to be minor compared with other pathways (such as direct poisoning during ingestion attempts) by which toads can affect frog populations.  相似文献   

20.
The ecological impact of an invasive species can depend on the behavioural responses of native fauna to the invader. For example, the greatest risk posed by invasive cane toads (Rhinella marina Bufonidae) in tropical Australia is lethal poisoning of predators that attempt to eat a toad; and thus, a predator's response to a toad determines its vulnerability. We conducted standardized laboratory trials on recently captured (toad‐naïve) predatory snakes and lizards, in advance of the toad invasion front as it progressed through tropical Australia. Responses to a live edible‐sized toad differed strongly among squamate species. We recorded attacks (and hence, predator mortality) in scincid, agamid and varanid lizards, and in elapid, colubrid and pythonid snakes. Larger‐bodied predators were at greater risk, and some groups (elapid snakes and varanid lizards) were especially vulnerable. However, feeding responses differed among species within families and within genera. Some taxa (notably, many scincid and agamid lizards) do not attack toads; and many colubrid snakes either do not consume toads, or are physiologically resistant to the toad's toxins. Intraspecific variation in responses means that even in taxa that apparently are unaffected by toad invasion at the population level, some individual predators nonetheless may be fatally poisoned by invasive cane toads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号