首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of N supply on shoot and leaf lifespan was investigated in established stands of four herbaceous Carex species which differed in maximum dry matter production. These species were, in rank order of increasing maximum dry matter production (per unit ground area): Carex diandraC. rostrata. The observed patterns of shoot and leaf turnover were compared with data on leaf characteristics and nitrogen use efficiency indices of these species. There was no consistent difference in shoot production (number of shoots produced per unit ground area) between species with low production and those with high production: Carex diandra (low production) and C. lasiocarpa (high production) had high shoot production, while shoot production in c. rostrata (low production) and C. acutiformis (high production) was much lower. The rank order of the mean lifespan of shoots was: C. diandra. Thus, the lifespan of shoots increased with increasing maximum dry matter production of these Carex species. In all species, increased N supply led to a significant reduction in shoot lifespan. The reduction of shoot lifespans in response to enhanced N supply will result in increased nutrient turnover rates in these species. There was no consistent difference in the number of leaves produced per shoot between low-production and high-production species. C. diandra and C. lasiocarpa had relatively low leaf production, while C. rostrata and C. acutiformis had relatively high leaf production per shoot. Thus, this pattern is opposite to the pattern in shoot production. The rank order of the mean lifespan of leaves was: C. diandra. This implies that the high-production species had longer mean leaf lifespans than the low-production species. Mean leaf lifespan was not significantly affected by enhanced N supply, except in C. diandra, where leaf lifespan decreased in response to enhanced N supply. Shoot lifespans did not show any significant relation with the specific leaf area (SLA, leaf area per unit leaf mass) or the leaf area ratio (LAR, leaf area per unit plant mass) of the species under study. There was, however, a negative relation (r 2=0.71) with the nitrogen concentration in the leaves. Shoot lifespans were positively related (r 2=0.79) with whole-plant nitrogen use efficiency (NUE, dry matter production per unit N-loss) and with the mean residence time of nitrogen (MRT, the average time-span during which a unit of nitrogen is present in the plant) (r 2=0.78), but not with the nitrogen productivity (A, annual dry matter production per unit N in the plant). Leaf lifespan was positively related with the mean residence time of nitrogen in the plants (r 2–0.70). For all the other parameters, there were no significant relations with leaf lifespan. From these results we conclude that: (1) at the stand level, shoot and leaf lifespans are positively related with maximum dry matter production; and (2) shoot and leaf lifespan are important determinants of whole-plant nitrogen economy.  相似文献   

2.
《新西兰生态学杂志》2011,34(3):306-310
Leaf lifespan varies widely among plant species, from a few weeks to >40 years. This variation is associated with differences in plant form and function, and the distribution of species along resource gradients. Longer leaf lifespans increase the residence time of nutrients and are one mechanism by which plants conserve nutrients; consequently, leaf lifespan should increase within species with declining soil nutrient availability. The Franz Josef chronosequence is a series of post-glacial surfaces along which soil fertility declines strongly with increasing soil age. We used this fertility gradient to test whether leaf lifespans of six common indigenous woody species increased as soil nutrient availability declined. Leaf lifespan varied from 12.4 months in Coprosma foetidissima (Rubiaceae) to 47.1 months in Pseudopanax crassifolius (Araliaceae). These leaf lifespans sample 12% of the full range of leaf lifespans reported globally and occupy a relatively conservative portion of global leaf trait space. Contrary to our expectations, leaf lifespan of two species (Pseudopanax crassifolius and Prumnopitys ferruginea) decreased by 44?61% with increasing soil age and there were no other relationships between soil age and leaf lifespan. Across all species, leaf nutrient residence times increased by 85% for N and 90% for P with declining soil fertility, but this was caused by increased nutrient resorption efficiency rather than by increased leaf longevity. These data demonstrate that plants increase leaf nutrient resorption efficiency rather than leaf lifespan as a within-species response to long-term declines in soil fertility.  相似文献   

3.
Leaf characteristics reflecting the size, lifespan (longevity), moisture content (degree of succulence) and complexity of structure of 20 mangrove species were studied over several years at 13 locations along the tropical and subtropical Australian coast. These characteristics were found to fall generally within the ranges of those for woody species from other ecosystems. With the exception of one species, it was found that leaf longevity was related inversely to leaf moisture content, increasing from nearly 6 months in more succulent species to over 2 years in less succulent species. This suggested that more succulent leaves are less complex in their structure because they have less well‐developed ability to compartmentalize salt. There was a tendency also for leaf longevity to increase in species with larger leaves. These findings were consistent with the general view for land plants that leaf longevity is greater in species that have developed tolerance to environmental stress, salt particularly in the case of mangroves. Leaf tissue in such species is more robust or complex and requires greater metabolic resources in its construction; the plant is then advantaged by retaining the tissue for longer periods. Classification of the species considered here, based on their leaf longevity, moisture content and complexity, identified phylogenetically related species groupings that reflected these leaf longevity effects.  相似文献   

4.
Leaves from 26 species with growth forms from annual herbs to trees were collected from open, intermediate, and shaded understory habitats in Mississippi and Kansas, USA. Leaf optical properties including reflectance, transmittance, and absorptance in visible and near infrared (NIR) wavelengths were measured along with leaf thickness and specific leaf mass (SLM). These leaf properties and internal light scattering have been reported to vary with light availability in studies that have focused on a limited number of species. Our objective was to determine whether these patterns in leaf optics and light availability were consistent when a greater number of species were evaluated. Leaf thickness and SLM varied by tenfold among species sampled, but within-habitat variance was high. Although there was a strong trend toward thicker leaves in open habitats, only SLM was significantly greater in open vs. understory habitats. In contrast, leaf optical properties were strikingly similar among habitats. Reflectance and reflectance/transmittance in the NIR were used to estimate internal light scattering and there were strong relationships (r1 > 0.65) between these optical properties and leaf thickness. We concluded that leaf thickness, which did not vary consistently among habitats, was the best predictor of NIR reflectance and internal light scattering. However, because carbon allocation to leaves was lower in understory species (low SLM) yet gross optical properties were similar among all habitats, the energy investment by shade leaves required to achieve optical equivalence with sun leaves was lower. Differences in leaf longevity and growth form within a habitat may help explain the lack of consistent patterns in leaf optics as the number of species sampled increases.  相似文献   

5.
Global patterns of leaf mechanical properties   总被引:1,自引:0,他引:1  
Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize data across the three major measurement methods, permitting the first global analyses of leaf mechanics and associated traits, for 2819 species from 90 sites worldwide. Key measures of leaf mechanical resistance varied c. 500-800-fold among species. Contrary to a long-standing hypothesis, tropical leaves were not mechanically more resistant than temperate leaves. Leaf mechanical resistance was modestly related to rainfall and local light environment. By partitioning leaf mechanical resistance into three different components we discovered that toughness per density contributed a surprisingly large fraction to variation in mechanical resistance, larger than the fractions contributed by lamina thickness and tissue density. Higher toughness per density was associated with long leaf lifespan especially in forest understory. Seldom appreciated in the past, toughness per density is a key factor in leaf mechanical resistance, which itself influences plant-animal interactions and ecosystem functions across the globe.  相似文献   

6.
The effect of leaf aging on photosynthetic capacities was examined for upper canopy leaves of five tropical tree species in a seasonally dry forest in Panama. These species varied in mean leaf longevity between 174 and 315 d, and in maximum leaf life span between 304 and 679 d. The light-saturated CO2 exchange rates of leaves produced during the primary annual leaf flush measured at 7-8 mo of age were 33-65% of the rates measured at 1-2 mo of age for species with leaf life span of < 1 yr. The negative regression slopes of photosynthetic capacity against leaf age were steeper for species with shorter maximum leaf longevity. In all species, regression slopes were less steep than the slopes predicted by assuming a linear decline toward the maximum leaf age (20-80% of the predicted decline rate). Maximum oxygen evolution rates and leaf nitrogen content declined faster with age for species with shorter leaf life spans. Statistical significance of regression slopes of oxygen evolution rates against leaf age was strongest on a leaf mass basis (r = 0.49-0.87), followed by leaf nitrogen basis (r = 0.48-0.77), and weakest on a leaf area basis (r = 0.35-0.70).  相似文献   

7.
Leaf longevity and nutrient resorption efficiency are important strategies to conserve plant nutrients. Theory suggests a negative relationship between them and also proposes that high concentration of phenolics in long‐lived leaves may reduce nutrient resorption. In order to provide new evidence on these relationships, we explored whether N‐resorption efficiency is related to leaf longevity, secondary compounds and other leaf traits in coexisting plant species of different life forms in the arid Patagonian Monte, Argentina. We assessed N‐resorption efficiency, green leaf traits (leaf mass per area (LMA), leaf longevity and lignin, total soluble phenolics and N concentrations) and N concentration in senescent leaves of 12 species of different life forms (evergreen shrubs, deciduous shrubs and perennial grasses) with contrasting leaf traits. We found that leaf longevity was positively correlated to LMA and lignin, and negatively correlated to N concentration in green leaves. N concentrations both in green and senescent leaves were positively related. N‐resorption efficiency was not associated with the concentration of secondary compounds (total soluble phenolics and lignin) but it was negatively related to LMA and leaf longevity and positively related to N concentration in green leaves. Furthermore, leaf traits overlapped among life forms highlighting that life forms are not a good indicator of the functional properties (at least in relation to nutrient conservation) of species. In conclusion, our findings indicated that differences in N‐resorption efficiency among coexisting species were more related to N concentration in green leaves, leaf lifespan and LMA than to the presence of secondary compounds at least those assessed in our study (soluble phenolics and lignin). Accordingly, N‐resorption efficiency seems to be modulated, at least in part, by the productivity–persistence trade‐off.  相似文献   

8.
Summary The relationships between resource availability, plant succession, and species' life history traits are often considered key to understanding variation among species and communities. Leaf lifespan is one trait important in this regard. We observed that leaf lifespan varies 30-fold among 23 species from natural and disturbed communities within a 1-km radius in the northern Amazon basin, near San Carlos de Rio Negro, Venezuela. Moreover, leaf lifespan was highly correlated with a number of important leaf structural and functional characterisues. Stomatal conductance to water vapor (g) and both mass and area-based net photosynthesis decreased with increasing leaf lifespan (r2=0.74, 0.91 and 0.75, respectively). Specific leaf area (SLA) also decreased with increasing leaf lifespan (r2=0.78), while leaf toughness increased (r2=0.62). Correlations between leaf lifespan and leaf nitrogen and phosphorus concentrations were moderate on a weight basis and not significant on an area basis. On an absolute basis, changes in SLA, net photosynthesis and leaf chemistry were large as leaf lifespan varied from 1.5 to 12 months, but such changes were small as leaf lifespan increased from 1 to 5 years. Mass-based net photosynthesis (A/mass) was highly correlated with SLA (r2=0.90) and mass-based leaf nitrogen (N/mass) (r2=0.85), but area-based net photosynthesis (A/area) was not well correlated with any index of leaf structure or chemistry including N/area. Overall, these results indicate that species allocate resources towards a high photosynthetic assimilation rate for a brief time, or provide resistant physical structure that results in a lower rate of carbon assimilation over a longer time, but not both.  相似文献   

9.
BACKGROUND AND AIMS: Plants have complex mechanisms of aerial biomass exposition, which depend on bud composition, the period of the year in which shoot extension occurs, branching pattern, foliage persistence, herbivory and environmental conditions. METHODS: The influence of water availability and temperature on shoot growth, the bud composition, the leaf phenology, and the relationship between partial leaf fall and branching were evaluated over 3 years in Cerrado woody species Bauhinia rufa (BR), Leandra lacunosa (LL) and Miconia albicans (MA). KEY RESULTS: Deciduous BR preformed organs in buds and leaves flush synchronously at the transition from the dry to the wet season. The expansion time of leaves is <1 month. Main shoots (first-order axis, A1 shoots) extended over 30 d and they did not branch. BR budding and foliage unfolds were brought about independently of inter-annual rainfall variations. By contrast, in LL and MA evergreen species, the shoot extension rate and the neoformation of aerial organs depended on rainfall. Leaf emergence was continuous for 2-6 months and lamina expansion took place over 1-4 months. The leaf life span was 5-20 months and the main A1 shoot extension happened over 122-177 d. Both evergreen species allocated biomass to shoots, leaves or flowers continuously during the year, branching in the middle of the wet season to form second-order (A2 shoots) and third-order (A3 shoots) axis in LL and A2 shoots in MA. Partial shed of A1 shoot leaves would facilitate a higher branching intensity A2 shoot production in LL than in MA. MA presented a longer leaf life span, produced a lower percentage of A2 shoots but had a higher meristem persistence on A1 and A2 shoots than LL. CONCLUSIONS: It was possible to identify different patterns of aerial growth in Cerrado woody species defined by shoot-linked traits such as branching pattern, bud composition, meristem persistence and leaf phenology. These related traits must be considered over and above leaf deciduousness for searching functional guilds in a Cerrado woody community. For the first time a relationship between bud composition, shoot growth and leaf production pattern is found in savanna woody plants.  相似文献   

10.
Rodríguez  Daniel  Pomar  M.C.  Goudriaan  J. 《Plant and Soil》1998,202(1):149-157
In two simultaneous experiments we examined the effects of phosphorus (P) supply on leaf area development in wheat (Triticum aestivum L.) grown in sand with nutrient solutions. In Experiment 1 we studied leaf emergence, leaf elongation, tiller emergence, shoot growth, and P uptake under four levels of P supply (mM) 0.025 (P1), 0.05 (P2), 0.1 (P3), and 0.5 (P4), and. In Experiment 2 there were two levels of P supply, P1 and P4, and we examined the effects of P on leaf primordia differentiation and leaf emergence. The phyllochron was calculated as the inverse of the rate of leaf emergence calculated from the regression of number of leaf tips (PHY-Ltip), Haun index (PHY-Haun), and as the cumulated thermal time between the emergence of two consecutive leaves (PHYtt). The plastochron was calculated from the inverse of the rate of leaf primordia initiation in the apex. P deficiency delayed the emergence of leaves on the main stem and on the tiller 1. Phosphorus deficiency increased the time from emergence to double ridge and anthesis. The final number of leaves was not affected by P. The effects of P on the value of the phyllochron were attributed to both a reduced rate of leaf primordia initiation, and to a reduced leaf elongation rate. P deficiency delayed or even suppressed the emergence of certain tillers. In this work a phosphorus deficiency that reduced shoot growth by 25% at 44 days after emergence significantly modified the structure of the plants by increasing the value of the phyllochron and delaying tillering. These results suggest that any attempt to simulate leaf area development and growth of wheat plants for P-limited conditions should include the effects of the deficiency on leaf emergence.  相似文献   

11.
For leaves, the light-capturing surface area per unit dry mass investment (specific leaf area, SLA) is a key trait from physiological, ecological and biophysical perspectives. To address whether SLA declines with leaf size, as hypothesized due to increasing costs of support in larger leaves, we compiled data on intraspecific variation in leaf dry mass (LM) and leaf surface area (LA) for 6334 leaves of 157 species. We used the power function LM=alpha LAbeta to test whether, within each species, large leaves deploy less surface area per unit dry mass than small leaves. Comparing scaling exponents (beta) showed that more species had a statistically significant decrease in SLA as leaf size increased (61) than the opposite (7) and the average beta was significantly greater than 1 (betamean=1.10, 95% CI 1.08-1.13). However, scaling exponents varied markedly from the few species that decreased to the many that increased SLA disproportionately fast as leaf size increased. This variation was unrelated to growth form, ecosystem of origin or climate. The average within-species tendency found here (allometric decrease of SLA with leaf size, averaging 13%) is in accord with concurrent findings on global-scale trends among species, although the substantial scatter around the central tendency suggests that the leaf size dependency does not obligately shape SLA. Nonetheless, the generally greater mass per unit leaf area of larger than smaller leaves directly translates into a greater cost to build and maintain a unit of leaf area, which, all else being equal, should constrain the maximum leaf size displayed.  相似文献   

12.
1. Leafminer larvae are sedentary and make feeding tracks called mines. Their spatial distribution in trees affects their growth and survival through interaction with the heterogeneity of environments, such as leaf traits and microclimate. Lepidopteran leafminers that mine lower leaf surfaces have shown evolutionary radiation, suggesting that lower surfaces improve leafminer performance. 2. The lepidopteran multivoltine leafminer Phyllocnistis sp. Zeller (Gracirallidae: Phyllocnistinae) uses the Japanese privet Ligustrum japonicum Thunb. (Oleaceae). It mines only the lower‐surface epidermal layer of primary shoot leaves early in the occurrence season, but once lammas shoots appear, which happens in seasons other than spring, it preferentially uses the lower surface, but also uses the upper surface of the leaves. This study examined whether selection of oviposition sites was associated with the structural traits and microclimate of the leaf surface. 3. The shift of oviposition site from primary to lammas shoot leaves followed increasing hardness and epidermal cell wall thickness of primary shoot leaves during leaf development, and mine initiation rates decreased below 20% after oviposition on mature primary shoot leaves. Preference for the lower surface was related to the thinner cuticle. However, the thinner cuticle of the upper surface on lammas shoot leaves allowed Phyllocnistis sp. to expand its mining sites to both surfaces with no decrease in mine initiation and emergence rates. 4. Microclimates (leaf surface and mine temperatures) did not differ between upper and lower surfaces, suggesting that microclimate did not affect oviposition site selection by Phyllocnistis sp. These results suggest that the adaptive radiation of lower‐surface mining may have been influenced by the leaf surface characteristics.  相似文献   

13.
In vitro plant regeneration was achieved from leaf explants of Plumbago rosea and Plumbago zeylanica on Murashige & Skoog (1962) medium supplemented with 1.5 mg litre?1 6‐benzylaminopurine, 0.25 mg litre?1 indole‐3‐acetic acid, 50 mg litre?1 adenine sulfate and 3% (w/v) sucrose. The shoot initials developed within 2–3 wk on the leaf margin as well as from the wounds of the leaf. High frequency shoot‐bud regeneration was achieved on similar medium in subsequent subcultures. The semi‐mature leaves produced more shoot‐buds as compared to the younger leaves. Mature leaves did not show any response for shoot bud initiation. More than 85% of the semi‐mature explants produced shoot‐buds per leaf explant within 4 wk of culture. Shoots rooted easily on medium having half‐strength basal Murashige & Skoog (1962) medium supplemented with 0.25 mg litre?1 indole‐3‐butyric acid and 2% (w/v) sucrose; 84–92% of the in vitro rooted plantlets survived in the greenhouse. The regenerated plantlets appeared morphologically similar to the mother plants. No variation was detected among the regenerated plants by the use of Randomly Amplified Polymorphic DNA (RAPD) markers. This method might be useful for assessing plant improvement programmes.  相似文献   

14.
Background and AimsAn individual plant consists of different-sized shoots, each of which consists of different-sized leaves. To predict plant-level physiological responses from the responses of individual leaves, modelling this within-shoot leaf size variation is necessary. Within-plant leaf trait variation has been well investigated in canopy photosynthesis models but less so in plant allometry. Therefore, integration of these two different approaches is needed.MethodsWe focused on an established leaf-level relationship that the area of an individual leaf lamina is proportional to the product of its length and width. The geometric interpretation of this equation is that different-sized leaf laminas from a single species share the same basic form. Based on this shared basic form, we synthesized a new length-times-width equation predicting total shoot leaf area from the collective dimensions of leaves that comprise a shoot. Furthermore, we showed that several previously established empirical relationships, including the allometric relationships between total shoot leaf area, maximum individual leaf length within the shoot and total leaf number of the shoot, can be unified under the same geometric argument. We tested the model predictions using five species, all of which have simple leaves, selected from diverse taxa (Magnoliids, monocots and eudicots) and from different growth forms (trees, erect herbs and rosette herbs).Key ResultsFor all five species, the length-times-width equation explained within-species variation of total leaf area of a shoot with high accuracy (R2 > 0.994). These strong relationships existed despite leaf dimensions scaling very differently between species. We also found good support for all derived predictions from the model (R2 > 0.85).ConclusionsOur model can be incorporated to improve previous models of allometry that do not consider within-shoot size variation of individual leaves, providing a cross-scale linkage between individual leaf-size variation and shoot-size variation.  相似文献   

15.
The leaf economics spectrum (LES) describes a major axis of plant functional trait variation worldwide, defining suites of leaf traits aligned with resource‐acquisitive to resource‐conservative ecological strategies. The LES has been interpreted to arise from leaf‐level trade‐offs among ecophysiological traits common to all plants. However, it has been suggested that the defining leaf‐level trade‐offs of the LES may not hold within specific functional groups (e.g., herbs) nor within many groups of closely related species, which challenges the usefulness of the LES paradigm across evolutionary scales. Here, we examine the evolution of the LES across 28 species of the diverse herbaceous genus Helianthus (the sunflowers), which occupies a wide range of habitats and climate variation across North America. Using a phylogenetic comparative approach, we find repeated evolution of more resource‐acquisitive LES strategies in cooler, drier, and more fertile environments. We also find macroevolutionary correlations among LES traits that recapitulate aspects of the global LES, but with one major difference: leaf mass per area is uncorrelated with leaf lifespan. This indicates that whole‐plant processes likely drive variation in leaf lifespan across Helianthus, rather than leaf‐level trade‐offs. These results suggest that LES patterns do not reflect universal physiological trade‐offs at small evolutionary scales.  相似文献   

16.
M. Aslam  L. A. Hunt 《Planta》1978,141(1):23-28
Co2 exchange and transpiration rates of the flag leaves of four spring wheat (Triticum aestivum L.) cultivars, namely Glenlea, Neepawa, Opal and Kolibri, were compared using infra-red gas-analysis technique. The plants were grown in a controlled environment under an 18-h photoperiod, with day and night temperatures of 20 and 15° C, respectively. The time course of the CO2-exchange rate (CER) of the flag leaf differed among cultivars. CER began to decrease rapidly some 2 weeks after ear emergence in Glenlea, Neepawa and Kolibri, but only after 4 weeks in Opal. The decline in CER of Glenlea, Neepawa and Opal was continuous throughout the period of grain development whereas in Kolibri CER was maintained at a constant level between the 4th and 6th weeks after ear emergence. The transpiration rates of the flag leaves of the 4 cultivars did not change markedly until 6–7 weeks after ear emergence, indicating that the reduction in CER was not primarily a response to increased stomatal resistance to the diffusion of CO2. Removing the ear of the main shoot of intact plants failed to depress CER of the subtending flag leaf until 5 weeks after ear removal. Removing the ears of all the tillers of plants in which all but 3 tillers had been removed at ear emergence did not depress CER until 4 weeks after ear emergence, but removal of the ear of the main shoot of plants where all the tillers had been removed at ear emergence reduced the CER of the flag leaf 2 weeks after ear removal. Removal of tillers at ear emergence had a marked effect on the time course of CER and transpiration rates of the flag leaf. Both CER and transpiration rates of a 4-tiller plant were maintained at a higher level throughout ear development as compared to those of a one-tiller plant. The transpiration rate of the flag leaf of Glenlea increased during the later part of the life of the leaf even for one-tiller plants with no ear, indicating that such a stomatal response may be part of the normal course of leaf aging and not a response to a feedback stimulus from the ear.  相似文献   

17.
Abstract: Plant species vary widely in their average leaf lifespan (LL) and specific leaf area (SLA, leaf area per dry mass). The negative LL–SLA relationship commonly seen among species represents an important evolutionary trade‐off, with higher SLA indicating greater potential for fast growth (higher rate of return on a given investment), but longer LL indicating a longer duration of the revenue stream from that investment. We investigated how these leaf‐economic traits related to aggregate properties of the plant crown. Across 14 Australian sclerophyll shrub species, those with long LL accumulated more leaf mass and leaf area per unit ground area. Light attenuation through their canopies was more severe. Leaf accumulation and light attenuation were more weakly related to SLA than to LL. The greater accumulation of foliage in species with longer LL and lower SLA may counterbalance their generally lower photosynthetic rates and light‐capture areas per gram of leaf.  相似文献   

18.
Neotropical savannas (‘cerrados’) of Central Brazil are characterized by the coexistence of a large diversity of tree species with divergent phenological behaviors, which reflect a great diversity in growth strategies. In the present study time behavior and quantitative aspects of shoot growth, shoot mortality, and leaf longevity and production were analyzed in 12 woody species of contrasting leaf phenology, adopting a functional group approach where 12 species were categorized into three functional groups: evergreen, decidous and brevideciduous, according to their leaf phenology. Shoot growth and leaf production were seasonal for the three functional groups, differing in their time of occurrence, but being concentrated during the last months of the dry season. Shoot growth differed between evergreens and deciduous, as well leaf production. Evergreens had higher rates of shoot growth, produced a higher number of leaves and had longer leaf longevity (around 500 days against 300 days in deciduous and brevideciduous). Leaf longevity was associated with patterns of leaf production when accounting for all phenological groups studied. It was possible to identify different patterns of aerial growth in savanna phenological groups, providing evidence of great functional variability amongst the groups studied.  相似文献   

19.
Question: Do coexisting plant life forms differ in overall phenology, leaf traits and patterns of leaf litterfall? Location: Patagonian Monte, Chubut Province, Argentina. Methods: We assessed phenology, traits of green and senesced leaves and the pattern of leaf litterfall in 12 species of coexisting life forms (perennial grasses, deciduous shrubs, evergreen shrubs). Results: We did not identify differences in phenology, leaf traits and patterns of leaf litterfall among life forms but these attributes contrasted among species. Independent of the life form, the maintenance of green leaves or vegetative growth during the dry season was mostly associated with leaves with high leaf mass per area (LMA) and high concentration of secondary compounds. Low LMA species produced low litterfall mass with low concentration of secondary compounds, and high N concentration. High LMA species produced the largest mass of leaf litterfall. Accordingly, species were distributed along two main dimensions of ecological variation, the dimension secondary compounds in leaves ‐ length and timing of the vegetative growth period (SC ‐ VGP) and the dimension leaf mass per area ‐ leaf litterfall mass (LMA ‐ LLM). Conclusions: Phenology, leaf traits and leaf litterfall varied among species and overlapped among life forms. The two dimensions of ecological variation among species (SC ‐ VGP, LMA ‐ LLM) represent distinct combinations of plant traits or strategies related to resource acquisition and drought tolerance which are reflected in the patterns of leaf litterfall.  相似文献   

20.
Animal lifespans can vary substantially among closely related species and even among conspecific populations, but it is often difficult to identify environmental and genetic factors producing such variation. We used experimental evolution to examine how transfer to a novel environment affects adult lifespan and rates of senescence in a seed-feeding beetle. Three replicate lines of Callosobruchus maculatus (F.) were switched to a new host plant (cowpea), and each evolved shorter adult lifespans compared to a line maintained on the ancestral host (mung bean). However, the evolution of lifespan differed between the sexes; female lifespan was reduced by ~11% in all cowpea replicates, whereas male lifespan decreased by an average of only 5.6% and the magnitude of the reduction varied among replicates. Reduced lifespan in lines switched to cowpea mirrored the shorter lifespan observed in a separate population chronically associated with cowpea. We then performed crosses between the mung bean and cowpea lines to estimate the genetic architecture underlying the rapid evolution of a shorter lifespan on cowpea. Dominance (overdominance) contributed substantially to the difference between the cowpea and mung bean lines for female lifespan but not for male lifespan. However, details of the genetic architecture varied among the three replicate crosses, so that the convergent evolution of shorter female lifespan in the different cowpea lines did not arise from identical allelic substitutions. Our study demonstrates that insect lifespan can be predictably modified by a switch to a novel host plant, that both the magnitude of this response and its underlying genetic architecture can be sex-specific, and that convergent evolution of a complex trait such as lifespan can arise from different genetic mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号