首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
2.
Bacillus subtilis two-component system DegS/U is well known for the complexity of its regulation. The cytosolic sensory kinase DegS does not receive a single predominant input signal like most two-component kinases, instead it integrates a wide array of metabolic inputs that modulate its activity. The phosphorylation state of the response regulator DegU also does not confer a straightforward "on/off" response; it is fine-tuned and at different levels triggers different sub-regulons. Here we describe serine phosphorylation of the DegS sensing domain, which stimulates its kinase activity. We demonstrate that DegS phosphorylation can be carried out by at least two B. subtilis Hanks-type kinases in vitro, and this stimulates the phosphate transfer towards DegU. The consequences of this process were studied in vivo, using phosphomimetic (Ser76Asp) and non-phosphorylatable (Ser76Ala) mutants of DegS. In a number of physiological assays focused on different processes regulated by DegU, DegS S76D phosphomimetic mutant behaved like a strain with intermediate levels of DegU phosphorylation, whereas DegS S76A behaved like a strain with lower levels of DegU phophorylation. These findings suggest a link between DegS phosphorylation at serine 76 and the level of DegU phosphorylation, establishing this post-translational modification as an additional trigger for this two-component system.  相似文献   

3.
The response regulator DegU and its cognate kinase DegS constitute a two‐component system in Bacillus subtilis that regulates many cellular processes, including exoprotease production and competence development. Using DNA footprint assay, gel shift assay and mutational analyses of P3degUlacZ fusions, we showed that phosphorylated DegU (DegU‐P) binds to two direct repeats (DR1 and DR2) of the consensus DegU‐binding sequence in the P3degU promoter. The alteration of chromosomal DR2 severely decreased degU expression, demonstrating its importance in positive autoregulation of degU. Observation of DegU protein levels suggested that DegU is degraded. Western blot analysis of DegU in disruption mutants of genes encoding various ATP‐dependent proteases strongly suggested that ClpCP degrades DegU. Moreover, when de novo protein synthesis was blocked, DegU was rapidly degraded in the wild‐type but not in the clpC and clpP strains, and DegU with a mutated phosphorylation site was much stable. These results suggested preferential degradation of DegU‐P by ClpCP, but not of unphosphorylated DegU. We confirmed that DegU‐P was degraded preferentially using an in vitro ClpCP degradation system. Furthermore, a mutational analysis showed that the N‐terminal region of DegU is important for proteolysis.  相似文献   

4.
Aims: To clarify the cellular properties of Listeria monocytogenes involved in adhesion to and biofilm formation on polyvinyl chloride, a widely used material in the food manufacturing process. Methods and Results: A significant correlation between the ability of initial adherence to and biofilm formation on PVC was observed for 24 L. monocytogenes strains (Spearman rank‐correlation coefficient, rs = 0·89). The swimming motility assay revealed no relationship between initial adherence and motility of L. monocytogenes. The microbial adhesion to solvent assay revealed an interaction of L. monocytogenes cells with nonpolar solvents, and a significant correlation was also observed between the degree of interaction with nonpolar solvents and initial adherence to PVC (rs = 0·87 and rs = 0·84, between initial adherence and affinities to decane and hexadecane, respectively). Conclusions: Results indicate that cellular hydrophobicity of L. monocytogenes is an important property involved in the initial adherence to and biofilm formation on PVC. Significance and Impact of Study: This study clarified the factors involved in the adherence to and biofilm formation ability of L. monocytogenes strains with PVC.  相似文献   

5.
6.
T Tanaka  M Kawata    K Mukai 《Journal of bacteriology》1991,173(17):5507-5515
The Bacillus subtilis sacU locus consists of the degS and degU genes, which play a major role in controlling the production of degradative enzymes including extracellular proteases. DegS has been shown to be autophosphorylated and to transfer the phosphoryl group to DegU. In this study, we partially purified the DegS proteins which carry amino acid changes resulting from various mutations and examined the phosphorylation reaction. The mutations used were degS42, causing a reduction in exoprotease production, and degS100(Hy) and degS200(Hy), causing overproduction of the enzymes. The following results were obtained. The DegS protein derived from degS42 was deficient in both autophosphorylation and subsequent phosphate transfer to DegU. Compared with wild-type DegS, the DegS proteins derived from the overproduction mutations, degS100(Hy) and degS200(Hy), were less active in the autophosphorylation and phosphorylation of DegU. However, the DegU phosphates produced by the mutant DegS proteins were more stable than that produced by the wild-type DegS. These results suggest that phosphorylation is tightly linked to exoprotease production and that the prolonged retention of the phosphoryl moiety on DegU activates the genes for the extracellular proteases. It was also shown that the rate of dephosphorylation of DegU-phosphate was increased as the amount of DegS was increased. All of these results suggest that DegS is involved in the dephosphorylation of DegU-phosphate.  相似文献   

7.
The DegS-DegU protein kinase-response regulator pair controls the expression of genes encoding degradative enzymes as well as other cellular functions in Bacillus subtilis. Both proteins were purified. The DegS protein was autophosphorylated and shown to transfer its phosphate to the DegU protein. Phosphoryl transfer to the wild-type DegU protein present in crude extracts was shown by adding 32P-labeled DegS to the reaction mixture. Under similar conditions, the modified proteins encoded by the degU24 and degU31 alleles presented a stronger phosphorylation signal compared with that of the wild-type DegU protein. This may suggest an increased phosphorylation of these modified proteins, responsible for the hyperproduction of degradative enzymes observed in the degU24 and degU31 mutants. However, the degU32 allele, which also leads to hyperproduction of degradative enzymes, encodes a modified DegU response regulator which seems not to be phosphorylatable. The expression of the hyperproduction phenotype of the degU32 mutant is still dependent on the presence of a functional DegS protein. DegS may therefore induce a conformational change of the degU32-encoded response regulator enabling this protein to stimulate degradative enzyme synthesis. Two alleles, degU122 and degU146, both leading to deficiency of degradative enzyme synthesis, seem to encode phosphorylatable and nonphosphorylatable DegU proteins, respectively.  相似文献   

8.
Bacillus subtilis flagella are not only required for locomotion but also act as sensors that monitor environmental changes. Although how the signal transmission takes place is poorly understood, it has been shown that flagella play an important role in surface sensing by transmitting a mechanical signal to control the DegS‐DegU two‐component system. Here we report a role for flagella in the regulation of the K‐state, which enables transformability and antibiotic tolerance (persistence). Mutations impairing flagellar synthesis are inferred to increase DegU‐P, which inhibits the expression of ComK, the master regulator for the K‐state, and reduces transformability. Tellingly, both deletion of the flagellin gene and straight filament (hagA233V) mutations increased DegU phosphorylation despite the fact that both mutants had wild type numbers of basal bodies and the flagellar motors were functional. We propose that higher viscous loads on flagellar motors result in lower DegU‐P levels through an unknown signaling mechanism. This flagellar‐load based mechanism ensures that cells in the motile subpopulation have a tenfold enhanced likelihood of entering the K‐state and taking up DNA from the environment. Further, our results suggest that the developmental states of motility and competence are related and most commonly occur in the same epigenetic cell type.  相似文献   

9.
【目的】本研究旨在构建单核细胞增多性李斯特菌(Listeria monocytogenes)硫氧还蛋白Lmo1609的基因缺失株,分析Lmo1609的氧化还原酶学活性,及其在细菌生长、运动过程中发挥的作用,并探究了Lmo1609参与细菌抗氧化应激和致病的生物学基础。为阐明其抗应激生物学作用以及完善李斯特菌的感染机制奠定分子基础。【方法】利用同源重组原理构建lmo1609基因缺失株及回补株。通过分子生物学、应激生物学和感染生物学等手段,对Lmo1609的生物学功能进行探索。以胰岛素为底物分析其氧化还原酶学活性;通过构建lmo1609缺失株和回补株,比较野生株和突变株在运动性、生长能力、抗氧化应激、细胞黏附、侵袭和增殖能力等方面的差异,进而鉴定Lmo1609的生物学功能。【结果】缺失lmo1609后,单增李斯特菌在生长能力上无明显变化,而运动能力明显减弱;对H2O2的敏感性增强;对细胞的黏附侵袭能力没有差异;对小鼠的致病力没有显著影响。【结论】本研究首次证实了单增李斯特菌硫氧还蛋白Lmo1609具有还原酶学活性,参与调控细菌的运动和对H2O2的氧化应激耐受,不介导单增李斯特菌的致病性。  相似文献   

10.
11.
The Arc two-component signal transduction system of Escherichia coli comprises the ArcB sensor kinase and the ArcA response regulator. Under anoxic growth conditions, ArcB autophosphorylates and transphos-phorylates ArcA, which, in turn, represses or activates its target operons. ArcA has been shown to be able to autophosphorylate in vitro at the expense of acetyl-P. Here, the in vivo effect of acetyl phosphate on the redox signal transduction by the Arc system was assessed. Our results indicate that acetyl phosphate can modulate the expression of ArcA-P target genes only in the absence of ArcB. Therefore, the acetyl phosphate dependent ArcA phosphorylation route does not seem to play a significant role under physiological conditions.  相似文献   

12.
13.
Listeria monocytogenes is a ubiquitous food-borne pathogen, whose distribution and survival in food-processing environments are associated with the ability to form biofilms. The process of biofilm formation is complex and its molecular mechanism is relatively poorly understood in L. monocytogenes. To better understand the genetics of this process, a mariner-based transposon mutagenesis strategy was used to identify genes involved in biofilm formation of L. monocytogenes. A library of 6,500 mutant colonies was screened for reduced biofilm formation using a microtiter plate biofilm assay. Forty biofilm-deficient mutants of L. monocytogenes were identified based on DNA sequences of the transposon-flanking regions and Southern hybridization with a transposon-based probe. The insertions harbored by these mutants led to the identification of 24 distinct loci, 18 of which, to our knowledge, have not been previously reported to function in the biofilm formation in L. monocytogenes. Genetic complementation confirmed the importance of lmo1386, a gene encoding a putative DNA translocase, for biofilm formation. Molecular analyses of mutants indicated that the majority of the 24 identified genes are related to flagella motility, gene regulation, and cell surface structures.  相似文献   

14.
15.
Bacillus amyloliquefaciens strain SQR9, isolated from the cucumber rhizosphere, suppresses the growth of Fusarium oxysporum in the cucumber rhizosphere and protects the host plant from pathogen invasion through efficient root colonization. In the Gram-positive bacterium Bacillus, the response regulator DegU regulates genetic competence, swarming motility, biofilm formation, complex colony architecture, and protease production. In this study, we report that stepwise phosphorylation of DegU in B. amyloliquefaciens SQR9 can influence biocontrol activity by coordinating multicellular behavior and regulating the synthesis of antibiotics. Results from in vitro and in situ experiments and quantitative PCR (qPCR) studies demonstrate the following: (i) that the lowest level of phosphorylated DegU (DegU∼P) (the degQ mutation) impairs complex colony architecture, biofilm formation, colonization activities, and biocontrol efficiency of Fusarium wilt disease but increases the production of macrolactin and bacillaene, and (ii) that increasing the level of DegU∼P by degQ and degSU overexpression significantly improves complex colony architecture, biofilm formation, colonization activities, production of the antibiotics bacillomycin D and difficidin, and efficiency of biocontrol of Fusarium wilt disease. The results offer a new strategy to enhance the biocontrol efficacy of Bacillus amyloliquefaciens SQR9.  相似文献   

16.
Two classes of mutations were identified in the degS and degU regulatory genes of Bacillus subtilis, leading either to deficiency of degradative enzyme synthesis (degS or degU mutations) or to a pleiotropic phenotype which includes overproduction of degradative enzymes and the loss of genetic competence (degS(Hy) or degU(Hy) mutations). We have shown previously that the DegS protein kinase and the DegU response regulator form a signal transduction system in B. subtilis. We now demonstrate that the DegS protein kinase also acts as a DegU phosphatase. We present evidence that the DegU response regulator has two active conformations: a phosphorylated form which is necessary for degradative enzyme synthesis and a nonphosphorylated form required for expression of genetic competence. The degU146-encoded response regulator, allowing expression of genetic competence, has been purified and seems to be modified within the putative phosphorylation site (D56----N) since it is no longer phosphorylated by DegS. Both the degU146 mutation as well as the degS220 mutation, which essentially abolishes DegS protein kinase activity, lead to deficiency of degradative enzyme synthesis, indicating the requirement of phosphorylated DegU for the expression of this phenotype. We also purified the degU32(Hy)-encoded protein and showed that this response regulator is phosphorylated by the DegS protein kinase in vitro. In addition, the phosphorylated form of the degU32(Hy)-encoded protein presented a strongly increased stability as compared with the wild type DegU protein, thus leading to hyperproduction of degradative enzymes in vivo.  相似文献   

17.
单核细胞增生李斯特氏菌(Listeria monocytogenes)是重要的食源性致病菌,能引发人类的李斯特菌病,是全球公共卫生问题之一。该菌易感染孕妇,引起胎儿和新生儿的侵袭性李斯特菌病,严重威胁母婴健康。因此,建立有效的单增李斯特菌感染胎盘体内外模型,解析和探究单增李斯特菌经胎盘感染机制,是预防和控制单增李斯特菌感染母婴的关键所在。本文综述了可用于研究单增李斯特菌母婴感染的体内外胎盘模型,总结和讨论了各类模型的优势和局限性;并着重分析了体外三维胎盘屏障模型在单增李斯特菌感染方面的研究进展和未来研究方向。以期为深入解析该菌经胎盘感染的途径、发病机制提供支持,并为预防和控制母婴李斯特菌病提供科学参考。  相似文献   

18.
In Escherichia coli the OmpR and EnvZ proteins regulate the expression of the outer membrane porin proteins OmpC and OmpF. EnvZ and OmpR belong to a family of sensor/effector protein pairs that control adaptation to a variety of environmental conditions. EnvZ acts as the sensor protein that phosphorylates OmpR, which in turn regulates porin gene expression. The level of phosphorylated OmpR appears to be a determining factor for ompC and ompF regulation. Phosphorylation of OmpR is considered to occur at one or more aspartic acid residues (Asp-11, Asp-12 and/or Asp-55) that are highly conserved among the effector proteins. In this report we biochemically characterized the aspartic acid residue(s) in OmpR that were phosphorylated by EnvZ. Reduction of aspartyl phosphate residues in the amino-terminal domain of OmpR with [3H]-NaBH4 indicated that Asp-55 was a primary site of modification. We further studied the role of the highly conserved aspartate residues by creating OmpR mutants having aspartate to alanine substitutions at positions 11 (D11A), 12 (D12A) and 55 (D55A). Studies of ompF and ompC expression as well as in vivo and in vitro phosphorylation experiments also demonstrated that while Asp-55 is the primary phosphate acceptor site in OmpR, Asp-11 may also serve as a phosphorylation site, particularly in the absence of Asp-55.  相似文献   

19.
AtsR is a membrane-bound hybrid sensor kinase of Burkholderia cenocepacia that negatively regulates quorum sensing and virulence factors such as biofilm production, type 6-secretion, and protease secretion. Here we elucidate the mechanism of AtsR phosphorelay by site-directed mutagenesis of predicted histidine and aspartic acid phosphoacceptor residues. We demonstrate by in vitro phosphorylation that histidine 245 and aspartic acid 536 are conserved sites of phosphorylation in AtsR, and we also identify the cytosolic response regulator AtsT (BCAM0381) as a key component of the AtsR phosphorelay pathway. Monitoring the function of AtsR and its derivatives in vivo by measuring extracellular protease activity and swarming motility confirmed the in vitro phosphorylation results. Together we find that the AtsR receiver domain plays a fine-tuning role in determining the levels of phosphotransfer from its sensor kinase domain to the AtsT response regulator.  相似文献   

20.
Listeria monocytogenes is a highly pathogenic foodborne bacterium that is ubiquitous in the natural environment and capable of forming persistent biofilms in food processing environments. This species has a rich repertoire of surface structures that enable it to survive, adapt and persist in various environments and promote biofilm formation. We review current understanding and advances on how L. monocytogenes organizes its surface for biofilm formation on surfaces associated with food processing settings, because they may be an important target for development of novel antibiofilm compounds. A synthesis of the current knowledge on the role of Listeria surfactome, comprising peptidoglycan, teichoic acids and cell wall proteins, during biofilm formation on abiotic surfaces is provided. We consider indications gained from genome-wide studies and discuss surfactome structures with established mechanistic aspects in biofilm formation. Additionally, we look at the analogies to the species L. innocua, which is closely related to L. monocytogenes and often used as its model (surrogate) organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号