首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Pinus species exhibit paternal chloroplast inheritance and maternal mitochondrial inheritance. This independent inheritance of two cytoplasmic genomes provides an exceptional environment for discriminating female (seeds) and male (pollen) components of gene flow across hybridizing species. We obtained mitochondrial genetic markers diagnostic toP. parviflora var.pentaphylla andP. pumila by PCR amplification of the intron ofnad1 on mtDNA, and examined the spatial-distribution pattern of the mtDNA haplotypes in a hybrid zone betweenP. parviflora var.pentaphylla andP. pumila in the Tanigawa Mountains of Japan. These data, in conjunction with previous information on cpDNA haplotypes and needle morphology, revealed contrastive patterns of introgression of two cytoplasmic genomes. CpDNA introgression has occurred uni-directionally fromP. parviflora var.pentaphylla toP. pumila. Conversely, mtDNA introgression has occurred in the opposite direction, fromP. pumila toP. parviflora var.pentaphylla. Levels of introgression are roughly equivalent for cpDNA and mtDNA. The contrastive spatial distribution pattern of cpDNA and mtDNA haplotypes could be caused by differential movement of seeds and pollen for interspecific genetic exchange.  相似文献   

2.
Pinus hakkodensis has been considered as a hybrid betweenP. pumila andP. parviflora var.pentaphylla. Chloroplast DNA typing of this putative hybrid and hypothesized parental species in the Tanigawa Mountains, Japan, was conducted by PCR and single-strand conformation polymorphism (SSCP) of the intergenic spacer betweentrnL(UAA)3′ exon andtrnF(GAA) of cpDNA. Each of the hypothesized parental species collected from other mountain regions displayed a diagnostic SSCP pattern, whereas all morphological intermediates sampled in the Tanigawa Mountains had the SSCP pattern ofP. parviflora var.pentaphylla. Furthermore, some individuals classified on the basis of needle morphology as belonging toP. pumila in this mountain region showed the SSCP pattern ofP. parviflora var.pentaphylla. This may suggest that pollen-mediated uni-directional introgression fromP. parviflora var.pentaphylla toP. pumila occurs in the Tanigawa Mountains.  相似文献   

3.
Pinus species exhibit a paternal chloroplast inheritance and a maternal mitochondrial inheritance. The levels and patterns of cpDNA and mtDNA introgression between the two pine species, P. pumila and P. parviflora var. pentaphylla, were examined at three mountain sites in Japan. The pine species were examined by using PCR-based diagnostic genetic markers of cpDNA and mtDNA. The survey which was carried out in multiple hybrid zones demonstrated a generality in the uni-directional pattern of cytoplasmic gene flow between the two pine species, i.e. paternal cpDNA flowed from P. parviflora var. pentaphylla to P. pumila, and in contrast, maternal mtDNA flowed from P. pumila to P. parviflora var. pentaphylla. Whenever plants which had a non-native combination of cpDNA and mtDNA were observed, they always had the cpDNA haplotype of P. parviflora var. pentaphylla and the mtDNA haplotype of P. pumila. The existence of only this type of cytoplasmic chimera may suggest that F1 hybrids are successfully produced only in the crossing of P. pumila as the maternal parent and P. parviflora var. pentaphylla as the paternal parent. The present study also detected extensive mtDNA capture in populations of P. parviflora var. pentaphylla located in the southern and middle parts of the Ohu Mountains, Tohoku, Japan. In that area, nearly all of the plants examined had the mtDNA haplotype of P. pumila. The extensive mtDNA introgression suggests that seed flow could be an effective medium for interspecific gene exchange. Received 17 August 1998/ Accepted in revised form 7 January 1999  相似文献   

4.
Speciation often involves the evolution of numerous prezygotic and postzygotic isolating barriers between divergent populations. Detailed knowledge of the strength and nature of those barriers provides insight into ecological and genetic factors that directly or indirectly influenced their origin, and may help predict whether they will be maintained in the face of sympatric hybridization and introgression. We estimated the magnitude of pre- and postzygotic barriers between naturally occurring sympatric populations of Mimulus guttatus and M. nasutus. Prezygotic barriers, including divergent flowering phenologies, differential pollen production, mating system isolation, and conspecific pollen precedence, act asymmetrically to completely prevent the formation of F(1) hybrids among seeds produced by M. guttatus (F(1)g), and reduce F(1) hybrid production among seeds produced by M. nasutus (F(1)n) to only about 1%. Postzygotic isolation is also asymmetric: in field experiments, F(1)g but not F(1)n hybrids had significantly reduced germination rates and survivorship compared to parental species. Both hybrid classes had flower, pollen, and seed production values within the range of parental values. Despite the moderate degree of F(1)g hybrid inviability, postzygotic isolation contributes very little to the total isolation between these species in the wild. We also found that F(1) hybrid flowering phenology overlapped more with M. guttatus than M. nasutus. These results, taken together, suggest greater potential for introgression from M. nasutus to M. guttatus than for the reverse direction. We also address problems with commonly used indices of isolation, discuss difficulties in calculating meaningful measures of reproductive isolation when barriers are asymmetric, and propose novel measures of prezygotic isolation that are consistent with postzygotic measures.  相似文献   

5.
Although it has been widely asserted that plants mate assortatively by flowering time, there is virtually no published information on the strength or causes of phenological assortment in natural populations. When strong, assortative mating can accelerate the evolution of plant reproductive phenology through its inflationary effect on genetic variance. We estimated potential assortative mating for flowering date in 31 old‐field species in Ontario, Canada. For each species, we constructed a matrix of pairwise mating probabilities from the individual flowering schedules, that is the number of flower deployed on successive dates. The matrix was used to estimate the phenotypic correlation between mates, ρ, for flowering date. We also developed a measure of flowering synchrony within species, S, based upon the eigenstructure of the mating matrix. The mean correlation between pollen recipients and potential donors for flowering date was  = 0.31 (range: 0.05–0.63). A strong potential for assortative mating was found among species with high variance in flowering date, flowering schedules of short duration and skew towards early flower deployment. Flowering synchrony, S, was negatively correlated with potential assortment (= ?0.49), but we go on to show that although low synchrony is a necessary condition for phenological assortative mating, it may not be sufficient to induce assortment for a given phenological trait. The potential correlation between mates showed no seasonal trend; thus, as climate change imposes selection on phenology through longer growing seasons, spring‐flowering species are no more likely to experience an accelerated evolutionary response than summer species.  相似文献   

6.

Background  

The structure and evolution of hybrid zones depend mainly on the relative importance of dispersal and local adaptation, and on the strength of assortative mating. Here, we study the influence of dispersal, temporal isolation, variability in phenotypic traits and parasite attacks on the male mating success of two parental species and hybrids by real-time pollen flow analysis. We focus on a hybrid zone population between the two closely related ash species Fraxinus excelsior L. (common ash) and F. angustifolia Vahl (narrow-leaved ash), which is composed of individuals of the two species and several hybrid types. This population is structured by flowering time: the F. excelsior individuals flower later than the F. angustifolia individuals, and the hybrid types flower in-between. Hybrids are scattered throughout the population, suggesting favorable conditions for their local adaptation. We estimate jointly the best-fitting dispersal kernel, the differences in male fecundity due to variation in phenotypic traits and level of parasite attack, and the strength of assortative mating due to differences in flowering phenology. In addition, we assess the effect of accounting for genotyping error on these estimations.  相似文献   

7.
Reproductive isolation plays a significant role in the prevention of gene flow between different plant species. Isolation factors can vary, acting either pre‐ or postzygotically. Trillium camschatcense and T. tschonoskii are herbaceous perennials which frequently grow together in Hokkaido, Japan. Natural hybrid formation, T. × hagae, between these species is common, and occurs asymmetrically with T. camschatcense as the maternal parent and T. tschonoskii as the paternal. Here, we examined the efficiency of each reproductive isolation factor to clarify which factor was responsible for the frequency and asymmetry of the hybridization. We found that prezygotic barriers, self fertilization and conspecific pollen precedence, are major isolation factors in both parental species, and that T. tschonoskii as a maternal parent has more effective prezygotic barriers than T. camschatcense. In addition, hybrids with T. tschonoskii as the maternal parent were not observed to reach the flowering stage. We concluded that prezygotic isolation factors in the both species act as main barriers to prevent natural hybridization, and that asymmetry of the isolating barriers between these species would promote T. camschatcense as the maternal parent of the hybrids.  相似文献   

8.
In closely related plant species that display strong similarities in phenology and pollinator communities, differences in breeding system and associated shifts in floral traits may have important effects on the magnitude and direction of heterospecific pollen flow and hybridization. Here, we quantified the strength of several pre‐ and postzygotic barriers acting between the facultatively outcrossing Centaurium erythraea and the predominantly selfing C. littorale via a suite of experiments, and estimated the frequency of hybridization in the field using molecular markers. The reproductive barriers primarily responsible for preventing hybridization were essentially prezygotic and these acted asymmetrically. Due to differences in floral display, pollen production, and pollen transfer rates, heterospecific pollen flow occurred predominantly from C. erythraea to C. littorale. In C. littorale, on the other hand, close anther–stigma positioning and resulting higher capacity for autonomous selfing functioned as an efficient barrier to counterbalance the higher risk for hybrid mating. In both species the action of all reproductive barriers resulted in a small opportunity for hybrid establishment, which was confirmed by the occurrence of only ~1% putative hybrids in the field. Our findings confirm that differences in breeding system affect heterospecific pollen transfer patterns and that autonomous selfing may efficiently prevent hybridization.  相似文献   

9.
Identifying the traits causing reproductive isolation and the order in which they evolve is fundamental to understanding speciation. Here, we quantify prezygotic and intrinsic postzygotic isolation among allopatric, parapatric, and sympatric populations of the butterflies Heliconius elevatus and Heliconius pardalinus. Sympatric populations from the Amazon (H. elevatus and H. p. butleri) exhibit strong prezygotic isolation and rarely mate in captivity; however, hybrids are fertile. Allopatric populations from the Amazon (H. p. butleri) and Andes (H. p. sergestus) mate freely when brought together in captivity, but the female F1 hybrids are sterile. Parapatric populations (H. elevatus and H. p. sergestus) exhibit both assortative mating and sterility of female F1s. Assortative mating in sympatric populations is consistent with reinforcement in the face of gene flow, where the driving force, selection against hybrids, is due to disruption of mimicry and other ecological traits rather than hybrid sterility. In contrast, the lack of assortative mating and hybrid sterility observed in allopatric populations suggests that geographic isolation enables the evolution of intrinsic postzygotic reproductive isolation. Our results show how the types of reproductive barriers that evolve between species may depend on geography.  相似文献   

10.
Disentangling the strength and importance of barriers to reproduction that arise between diverging lineages is central to our understanding of species origin and maintenance. To date, the vast majority of studies investigating the importance of different barriers to reproduction in plants have focused on short‐lived temperate taxa while studies of reproductive isolation in trees and tropical taxa are rare. Here, we systematically examine multiple barriers to reproduction in an Amazonian tree, Protium subserratum (Burseraceae) with diverging lineages of soil specialist ecotypes. Using observational, molecular, distributional, and experimental data, we aimed to quantify the contributions of individual prezygotic and postzygotic barriers including ecogeographic isolation, flowering phenology, pollinator assemblage, pollen adhesion, pollen germination, pollen tube growth, seed development, and hybrid fitness to total reproductive isolation between the ecotypes. We were able to identify five potential barriers to reproduction including ecogeographic isolation, phenological differences, differences in pollinator assemblages, differential pollen adhesion, and low levels of hybrid seed development. We demonstrate that ecogeographic isolation is a strong and that a combination of intrinsic and extrinsic prezygotic and postzygotic barriers may be acting to maintain near complete reproductive isolation between edaphically divergent populations of the tropical tree, P. subserratum.  相似文献   

11.
Glaucous‐winged gulls Larus glaucescens and western gulls L. occidentalis hybridize extensively where their ranges overlap along the coasts of Washington and Oregon, producing a continuum of phenotypic intergrades between the two parental species. This zone often is considered an example of geographically bounded hybrid superiority, but studies of relative success among parental types and hybrids have not provided consistent support for this model. We tested the predictions of the dynamic‐equilibrium and geographically bounded hybrid superiority hypotheses by studying mate choice and reproductive success among gulls on Protection Island, Washington, the largest breeding colony of glaucous‐winged/western gulls within the hybrid zone. The dynamic‐equilibrium hypothesis posits that hybridization due to dispersal balances selection against less fit hybrids and assortative mating is adaptive. Geographically bounded hybrid superiority posits that hybrids are better fit than parental types within an ecotone between the environments to which the parental species are adapted, and a preference for hybrid mates is adaptive. Additionally, we investigated whether hatching success and nest site choice are correlated for Protection Island gulls. We assigned a hybrid index to each sample bird by examining plumage melanism and bare part coloration in the field. Sheltered nests contained larger clutches and exhibited increased hatching success, but choice of nest habitat was not associated with hybrid index. Western gull‐like pairs produced smaller third eggs; however, hybrid index was not correlated with clutch size or hatching success. Protection Island gulls did exhibit assortative mating. In short, we did not find strong support for either geographically bounded hybrid superiority or the dynamic‐equilibrium hypothesis.  相似文献   

12.
Vitex negundo L. var. heterophylla (Franch.) Rehder (Lamiaceae) is an important tree species for soil and water conservation, yet the reproductive ecology of this species remains to be elucidated. To investigate the reproductive traits of V. negundo var. heterophylla, the phenology, morphological characteristics (a suite of characters was assessed: floral morphology, nectar production, pollen viability, and stigma receptivity) and mating system of this species were systematically revealed for the first time in this study. Phenological observations, morphological measurements, and nectar production analysis were conducted during anthesis. Pollen viability and stigma receptivity at different flowering stages were measured by biochemical methods. Finally, genetic analysis based on SSR markers was used to reveal the mating system; outcrossing index and pollen‐ovule ratio were also calculated to help analysis. V. negundo var. heterophylla showed several obvious characteristics of outcrossing, such as abundant and attractive flowers, secreting nectar, and emitting scent. In addition, mechanisms such as homogamy and a short anther‐stigma distance that can promote self‐fertilization were also identified in this species. The coexistence of selfing and outcrossing characteristics demonstrates a predominantly outcrossed mixed mating system (outcrossing rate, t = 95%). The scientific information provided by this study may contribute to conservation of V. negundo var. heterophylla from a reproductive perspective.  相似文献   

13.
1. The persistence of both geographical and reproductive boundaries between related species poses a fundamental puzzle in biology. Reproductive interactions between species can have a substantial impact on the maintenance of a boundary, potentially contributing to its collapse (e.g. via hybridisation) or facilitating reproductive isolation (e.g. via reinforcement). 2. The degree to which two parapatric insect species in the genus Phymata are reproductively isolated was evaluated and several mechanisms that could contribute to the maintenance of species boundaries were assessed. 3. Behavioural assays showed no indication of species‐assortative mating, nor any fecundity costs associated with heterospecific mating. Thus, there was no evidence of prezygotic mechanisms of reproductive isolation between the two species. 4.In laboratory crosses, it was found that the two species were indeed capable of producing viable F1 hybrids. Morphologically, these hybrids were phenotypically intermediate to the two parental species, and similar to the phenotypes seen in natural populations thought to occur in a hybrid zone. F1 hybrids did not show reduced viability, although there was some suggestion of ‘hybrid breakdown’, evident from the lower viability observed for progeny of ‘natural hybrids’. 5. Collectively, we show that despite genetically based morphological differences between species, P. americana and pennsylvanica can, and probably do hybridise. More studies are needed to understand the mechanisms that maintain the distinct phenotypes and geographical ranges of these species, despite the considerable potential for introgression.  相似文献   

14.
Flowering phenology and allozyme variation were studied to test the existence of positive assortative mating for flowering time in a natural population of Primula sieboldii E. Morren, a heterostylous perennial herb, consisting of approximately 180 genets in a deciduous forest. There was significant variation in flowering date among genets, but not between heterostylous morphs. The temporal order of the flowering time of genets was fairly constant for the two years of the study. The spatial heterogeneity of light availability at the study site was small during the flowering season of the species. In order to analyze the extent of genetic differentiation between early- and late-flowering genet groups, allozyme diversities were analyzed with 10 loci. The GST between the early- and late-flowering groups was not significantly different from zero. Evidence of positive assortative mating for flowering time was not detected. Prolongation of flowering duration due to pollen limitation may be one important factor preventing the genetic differentiation of early- and late-flowering groups by enhancing the overlap of flowering time among genets.  相似文献   

15.
The phenology of different genotypes and the distribution of genetic variation among flowering plants and their progeny were examined to assess the levels of assortative mating and selection in a hybrid population of Iris. This study and a previous survey of RAPD nuclear markers and chloroplast markers indicate that the population consists of parental genotypes and recombinant hybrid genotypes that are similar to the parental species (I. fulva and I. brevicaulis), although lacking intermediate genotypes. Early in the season only I. fulva genotypes produced flowers, but as flowering in these plants decreased, the hybrid genotypes and I. brevicaulis genotypes began flowering, resulting in a 24-d period of coincidental flowering. The genotypic distribution of seeds produced during the period of flowering overlap contained a high frequency of intermediate genotypes that were not present in the adult generation. The degree of effective assortative mating was examined by comparing the observed progeny genotypic distributions with expected distributions from a mixed-mating model. The model included selfing and random outcrossing to the nearest plants that had pollen-bearing flowers on the day the recipient flower was receptive. The observed genotypic distribution of progeny from plants with I. brevicaulis chloroplast DNA (cpDNA) was not significantly different from the expected distribution. For I. fulva genotypes, however, there were higher than expected frequencies in the extreme genotypic classes, although intermediate genotypes were absent, indicating that these plants were preferentially mating with similar genotypes. Compared with the extreme genotypes, a larger proportion of the intermediate seed progeny produced were aborted, indicating that intermediate genotypes have lower viability. On the basis of the observed progeny genotypes and genetic disequilibria estimates for the adults and the progeny, there appears to be a pattern of effective asymmetrical mating in this population. This asymmetry is most likely due to pollen-style interactions that reduce the fertilization ability of genetically dissimilar pollen, or preferential abortion of genetically intermediate zygotes by I. fulva-like genotypes. The lack of any apparent discrimination by I. brevicaulis-like genotypes creates a directional exchange of nuclear genetic elements that will have implications for introgression and the evolution of hybrid genotypes.  相似文献   

16.
The flowering patterns of Ulmus pumila and Fraxinus excelsior were studied during the 1990 growing season in order to investigate their pollen dispersion curves. The use of airborne pollen records as predictors of flowering of allergenic trees was evaluated. A sampling method to describe quantitative flowering phenophases was applied. A Burkard trap recorded airborne pollen in the city of Mar del Plata. The phenological sampling method showed that floral phenophase development is not always synchronous between trees. The variability registered was larger for F. excelsior than for U. pumila. A delay between flowering and the airborne pollen recorded was not noticed for Ulmus. The greatest amount of Ulmus pollen came from the local vegetation, mainly from U. pumila. Fraxinus pollen was recorded for a longer period after the F. excelsior flowering season the ended. Fraxinus pollen income came from F. excelsior but also from F. americana and F. excelsior var. aurea that flower later. An immediate decrease in airborne concentration was noticed for both pollen types following rain. When relatively strong rainfall was registered a decrease in the number of open flowers occurred only in F. excelsior.  相似文献   

17.
Pseudorasbora pumila, one of the endangered freshwater minnows in eastern Japan, has been largely replaced by the accidentally introduced species, P. parva, which originated from western Japan. In the contact zone, P. pumila and P. parva have hybridized intensively, producing sterile F1 hybrids. The present study determined the maternal parent of F1 hybrids using mtDNA haplotypes to investigate the mating system between P. parva and P. pumila in the hybrid zone. We also pursued the successive changes in the genetic structures of hybridizing populations over a 5-year period using allozymes. A total of 100 natural F1 hybrids collected from six different populations had P. pumila mtDNA without exception, suggesting that sterile F1 hybrids resulted from mating only between P. pumila females and P. parva males. Such asymmetrical hybridization implies that P. pumila females waste considerably greater reproductive efforts compared with P. parva males. The data suggest that the rapid replacement of P. pumila by P. parva has been promoted by asymmetrical hybridization, resulting in sterile F1 hybrids.  相似文献   

18.
Polyploidy has played an important role in angiosperm diversification, but how polyploidy contributes to reproductive isolation remains poorly understood. Most work has focused on postzygotic reproductive barriers, and the influence of ploidy differences on prezygotic barriers is understudied. To address these gaps, we quantified hybrid occurrence, interspecific self‐compatibility differences, and the contributions of multiple pre‐ and postzygotic barriers to reproductive isolation between diploid Erythronium mesochoreum (Liliaceae) and its tetraploid congener Erythronium albidum. Reproductive isolation between the study species was nearly complete, and naturally occurring hybrids were infrequent and largely sterile. Although postzygotic barriers effected substantial reproductive isolation when considered in isolation, the study species’ spatial distributions and pollinator assemblages overlapped little, such that interspecific pollen transfer is likely uncommon. We did not find evidence that E. albidum and E. mesochoreum differed in mating systems, indicating that self‐incompatibility release may not have fostered speciation in this system. Ultimately, we demonstrate that E. albidum and E. mesochoreum are reproductively isolated by multiple, hierarchically‐operating barriers, and we add to the currently limited number of studies demonstrating that early acting barriers such as pollinator‐mediated isolation can be important for effecting and sustaining reproductive isolation in diploid‐polyploid systems.  相似文献   

19.
Interspecific hybrids between woody Parthenium argentatum Gray (guayule), native to Mexico and Southwest Texas, and herbaceous perennial P. hispidum var. auriculatum (Britton) Rollins, native to the United States, were obtained successfully. The F1 hybrids were intermediate for most morphological characters with the exception of the short woody stem, yellow pollen color, and the trichome morphology. Chromosome counts revealed the presence of 2n = 36 A-chromosomes in P. argentatum. The same number of A-chromosomes and four B-chromosomes were found in P. hispidum var. auriculatum. Observations of pollen mother cells showed regular meiosis in both parental species. At diakinesis, chiasmata averaged 1.12 and 1.24 per bivalent for P. argentatum and P. hispidum var. auriculatum, respectively. Meiotic behavior of the F1 hybrids was irregular. F1 hybrids averaged 4.43 univalents at metaphase I, 1.95 laggards at anaphase I, and 1.62 micronuclei at the tetrad stage. The low pollen stainability (5.1%) in the F1 hybrids and the limited number of viable BC1 seeds (4.07%) may be reflections of the irregular meiosis. Although these primary hybrids are partially fertile, they can be used to introduce desirable characteristics of P. hispidum var. auriculatum, such as herbaceous perennial habit, regrowth ability, and cold tolerance into guayule.  相似文献   

20.
Polyploidy has played a key role in plant evolution and diversification. Despite this, the processes governing reproductive isolation among cytotypes growing in mixed-ploidy populations are still largely unknown. Theoretically, coexistence of diploid and polyploid individuals in sympatric populations is unlikely unless cytotypes are prezygotically isolated through assortative pollination. Here, we investigated the pre-mating barriers involved in the maintenance of three co-occurring cytotypes from the genus Gymnadenia (Orchidaceae): tetraploid and octoploid G. conopsea and tetraploid G. densiflora. We assessed differences in flowering phenology, floral morphology, and visual and olfactory cues, which could lead to assortative mating. Gas chromatography coupled with electroantennographic detection was used to identify scent compounds with physiological activity in the two main pollinators, Deilephila porcellus and Autographa gamma. The importance of olfactory cues was also assessed in the field by analysing the moths’ responses to the olfactory display of the plants, and by following the pollinator’s behaviour on artificial arrays. Our complex approach demonstrated that the coexistence of Gymnadenia cytotypes in mixed-ploidy populations was only partly explained by differences in floral phenology, as cytotypes with overlapping flowering (i.e., octoploid G. conopsea and tetraploid G. densiflora) might freely exchange pollen due to only 1 mm differences in spur lengths and the lack of assortative behaviour of pollinators. While floral colour among the cytotypes was similar, floral scent differed significantly. Though both pollinator species seemed to physiologically detect these differences, and the floral scent alone was sufficient to attract them, pollinators did not use this cue to discriminate the cytotypes in the field. The absence of pre-mating barriers among cytotypes, except partial temporal segregation, suggests the existence of other mechanisms involved in the cytotypes’ coexistence. The genetic differences in ITS sequences among cytotypes were used to discuss the cytotype’s origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号