首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Question: Does experimental warming, designed to simulate future warming of the Arctic, change the biomass allocation and mycorrhizal infection of tundra plants? Location: High Arctic tundra near Barrow, Alaska, USA (71°18′N 156°40′W). Methods: Above and below ground plant biomass of all species was harvested following 3–4 yr of 1‐2°C of experimental warming. Biomass allocation and arbuscular mycorrhizal infection were also examined in the two dominant species, Salix rotundifolia and Carex aquatilis. Results: Above‐ground biomass of graminoids increased in response to warming but there was no difference in total plant biomass or the ratio of above‐ground to below‐ground biomass for the community as a whole. Carex aquatilis increased above‐ground biomass and proportionally allocated more biomass above ground in response to warming. Salix rotundifolia increased the amount of above‐ and below‐ground biomass allocated per leaf in response to warming. Mycorrhizal infection rates showed no direct response to warming, but total abundance was estimated to have likely increased in response to warming owing to increased root biomass of S. rotundifolia. Conclusions: The community as a whole was resistant to short‐term warming and showed no significant changes in above‐ or below‐ground biomass despite significant increases in above‐ground biomass of graminoids. However, the patterns of biomass allocation for C. aquatilis and S. rotundifolia did change with warming. This suggests that long‐term warming may result in changes in the above‐ground to below‐ground biomass ratio of the community.  相似文献   

2.
Aim To investigate large‐scale patterns of above‐ground and below‐ground biomass partitioning in grassland ecosystems and to test the isometric theory at the community level. Location Northern China, in diverse grassland types spanning temperate grasslands in arid and semi‐arid regions to alpine grasslands on the Tibetan Plateau. Methods We investigated above‐ground and below‐ground biomass in China's grasslands by conducting five consecutive sampling campaigns across the northern part of the country during 2001–05. We then documented the root : shoot ratio (R/S) and its relationship with climatic factors for China's grasslands. We further explored relationships between above‐ground and below‐ground biomass across different grassland types. Results Our results indicated that the overall R/S of China's grasslands was larger than the global average (6.3 vs. 3.7). The R/S for China's grasslands did not show any significant trend with either mean annual temperature or mean annual precipitation. Above‐ground biomass was nearly proportional to below‐ground biomass with a scaling exponent (the slope of log–log linear relationship between above‐ground and below‐ground biomass) of 1.02 across various grassland types. The slope did not differ significantly between temperate and alpine grasslands or between steppe and meadow. Main conclusions Our findings support the isometric theory of above‐ground and below‐ground biomass partitioning, and suggest that above‐ground biomass scales isometrically with below‐ground biomass at the community level.  相似文献   

3.
Question: In fen meadows with Junco‐Molinion plant communities, falling groundwater levels may not lead to a boosted above‐ground biomass production if limitation of nutrients persists. Instead, depending on drainage intensity and micro‐topography, acidification may trigger a shift into drier and more nutrient‐poor plant communities. Location: Nature reserve, central Netherlands, 5 m a.s.l. Methods: Long‐term study (1988‐1997) in a fen meadow along a gradient in drainage intensity at different scales. Results: Above‐ground biomass increased only slightly over ten years, despite a lower summer groundwater table. The accountable factors were probably a limited availability of nutrients (K in the higher well‐drained plots, P in the intermediate plots and N in the lower hardly drained plots), plus removal of hay. Junco‐Molinion species increased in dry sites and Parvo‐caricetea species increased in wet sites, presumably primarily because of soil acidification occurring when rainwater becomes more influential than base‐rich groundwater. The extent of the shift in species composition depends primarily on the drainage intensity and secondarily on microtopography. Local hydrological measures have largely failed to restore wetter and more basic‐rich conditions. Conclusions: Acidification and nutrient removal, leaching and immobilization resulted in the succession towards Junco‐Molinion at the cost of Calthion palustris elements. Lower in the gradient this change was reduced by the presence of buffered groundwater in slightly drained sites. To conserve the typical plant communities of the Junco‐Molinion to Calthion gradient in the long term, further acidification must be prevented, for example by inundation with base‐rich surface water.  相似文献   

4.
The effects of disturbance by recreational activities (trampling) on changes in soil organic matter (SOM) and on mycorrhizal roots of seedlings and mature trees were studied in four stands of a beech (Fagus sylvatica L.) forest near Basel, Switzerland. At each site, comparable disturbed and undisturbed plots were selected. Disturbance reduced ground cover vegetation and leaf litter. Beech seedlings had lower biomass after disturbance. Ergosterol concentration in seedling roots, an indicator of mycorrhizal fungi, was lower in two of the four disturbed plots compared to undisturbed plots; these two disturbed sites had especially low litter levels. Based on ergosterol measurements, mycorrhizas of mature trees did not appear to be negatively affected by trampling. Total fine roots and SOM were higher in the disturbed than in the undisturbed plots at three sites. At the fourth site, fine roots and SOM in the disturbed areas were lower than in the undisturbed areas most probably due to nutrient input following picnic activities. Principal component analysis revealed a close correlation between SOM and fine roots of mature trees as well as litter and seedling biomass. Trampling due to recreational activities caused considerable damage to the vegetation layer and in particular to the beech seedlings and their mycorrhizal fine roots, whereas, roots of mature trees were apparently resilient to trampling.  相似文献   

5.
Abstract Net primary production (NPP) and nutrient dynamics of grasslands are regulated by different biotic and abiotic factors, which may differentially affect functional plant groups. Most studies have dealt with grasslands that have extremely low or zero production over a significant period of the year. Here we explore the relative importance of a few environmental factors as controls of aerial and below‐ground plant biomass production and nutrient dynamics in a grassland that is active throughout the year. We investigate their effect on the response of three main plant functional groups (warm‐ and cool‐season graminoids and forbs). We conducted a factorial experiment in a continuously grazed site in the Flooding Pampa grassland (Argentina). Factors were seasons (summer, autumn, winter and spring), and environmental agents (mowing, shade, addition of phosphorus [P] and nitrogen [N]). N addition had the largest and most extended impact: it tripled aerial NPP in spring and summer but had no effect on below‐ground biomass. This positive effect was accompanied by higher N acquisition and higher soil N availability. Mowing increased aerial NPP in winter, increased root biomass in the first 10 cm during autumn and winter and promoted N and P uptake by plants. Shading did not affect aerial NPP, but stimulated N and P uptake by plants. P addition had no effect on aerial NPP, but increased shallow root biomass and its N content in spring, and tripled P accumulation in plant biomass. The three plant functional groups differentially accounted for these ecosystem‐level responses. Graminoids explained the greater biomass production of N‐fertilized plots and mowing tended to promote forbs. These results suggest that the environmental controls of aerial NPP in this grassland vary among seasons, differentially impact the major floristic groups, and affect the energy and nutrient transfer to herbivores.  相似文献   

6.
Question: Can prescribed winter burning compensate atmospheric nutrient loads for dry heathlands? What effects does prescribed burning have on nutrient balances, particularly as regards the limiting nutrients N and P? Location: Lueneburg Heath, NW Germany. Methods: In two burning experiments (in 10/15 year old Calluna‐stands) nutrient balances (for N, Ca, K, Mg, P) were calculated by analysing nutrient inputs (atmospheric deposition, ash deposition), nutrient stores (above‐ground biomass, organic horizon) and nutrient outputs (biomass combustion, leaching). Results: Atmospheric nutrient deposition amounted to 22.8 kg.ha‐1.a‐1 for N and < 0.5 kg.ha‐1.a‐1 for P. Nutrient stores in the above‐ground biomass were 95/197 kg.ha‐1 for N and 5/13 kg.ha‐1 for P (first/second experiment, respectively). From these stores 90/53% (for N) and 25/14% (for P) were removed by burning. Effects of leaching on nutrient balances were low. In the first two years after burning, leaching rates of N increased by about 4/6 kg.ha‐1, whereas leaching rates of P did not change significantly. Input/output‐ratios showed that prescribed burning leads to positive nutrient balances for N, Ca and Mg in the long term. For example, the amounts of N removed by prescribed burning are equivalent to ca. five years of atmospheric inputs. Applied in ten‐year cycles, this measure alone cannot prevent N accumulation in the long term. Conclusion: Regarding 10/15 year old Calluna‐heaths, we assume that prescribed burning cannot compensate for atmospheric N inputs, thus making long‐term changes in the nutritional state inevitable. Therefore, prescribed burning should be applied in combination with high‐intensity management measures.  相似文献   

7.
Abstract

Non‐destructive assessment of root systems is important in order to understand and optimise the potential of resource capture and allocation by the plant. We studied the relationships between electrical capacitance (EC) and the below‐ and above‐ground biomass of willows. Cuttings of Salix viminalis × Salix schwerinii cv. Olof were maintained in pots and root development was followed up using a portable capacitance meter over the course of 2.5 months. Pot observations were compared with excavation of two‐year‐old established trees. A strong significant linear relationship (R 2 = 0.81, p < 0.001) was obtained between EC and root biomass (dry weight [DW]) for the pot experiment. EC also showed good correlations with stem and leaf biomass, as well as with stem height. In the excavated willow trees, there was a strong logarithmic relationship between EC and root biomass (R 2 = 0.66, p < 0.001). These results suggest that EC is a good estimator of below‐ground biomass in willow and may become useful in screening varieties for differences in root biomass traits, especially in distinguishing below‐ground resource allocation at an early stage.  相似文献   

8.
Knowledge of nutrient storage and partitioning in forests is imperative for ecosystem models and ecological theory. Whether the nutrients (N, P, K, Ca, and Mg) stored in forest biomass and their partitioning patterns vary systematically across climatic gradients remains unknown. Here, we explored the global‐scale patterns of nutrient density and partitioning using a newly compiled dataset including 372 forest stands. We found that temperature and precipitation were key factors driving the nutrients stored in living biomass of forests at global scale. The N, K, and Mg stored in living biomass tended to be greater in increasingly warm climates. The mean biomass N density was 577.0, 530.4, 513.2, and 336.7 kg/ha for tropical, subtropical, temperate, and boreal forests, respectively. Around 76% of the variation in biomass N density could be accounted by the empirical model combining biomass density, phylogeny (i.e., angiosperm, gymnosperm), and the interaction of mean annual temperature and precipitation. Climate, stand age, and biomass density significantly affected nutrients partitioning at forest community level. The fractional distribution of nutrients to roots decreased significantly with temperature, suggesting that forests in cold climates allocate greater nutrients to roots. Gymnosperm forests tended to allocate more nutrients to leaves as compared with angiosperm forests, whereas the angiosperm forests distributed more nutrients in stems. The nutrient‐based Root:Shoot ratios (R:S), averaged 0.30 for R:SN, 0.36 for R:SP, 0.32 for R:SK, 0.27 for R:SCa, and 0.35 for R:SMg, respectively. The scaling exponents of the relationships describing root nutrients as a function of shoot nutrients were more than 1.0, suggesting that as nutrient allocated to shoot increases, nutrient allocated to roots increases faster than linearly with nutrient in shoot. Soil type significantly affected the total N, P, K, Ca, and Mg stored in living biomass of forests, and the Acrisols group displayed the lowest P, K, Ca, and Mg.  相似文献   

9.
This investigation determined the response of soil microbial communities to enhanced UV‐B radiation and disturbance in upland grassland. A factorial field experiment encompassing two levels of UV‐B supplementation (simulating ambient and a 30% increase in stratospheric ozone) and two levels of disturbance (disturbed and undisturbed) was established at Buxton Climate Change Impacts Laboratory, Derbyshire, UK, and maintained for 7 years prior to sampling. Enhanced UV‐B increased microbial utilization of carbohydrates, carboxylic acids, polymers and aromatic compounds present in Biolog® GN plates when inoculated with soils taken from disturbed plots, but did not affect carbon utilization of soil microbial communities associated with undisturbed plots (UV‐B×Disturbance interaction, P<0.05 for each substrate type). UV‐B treatment did not affect numbers of bacteria or fungi. Direct microscopic counts showed fewer bacteria in soil originating from disturbed plots than from undisturbed plots (Disturbance, P<0.001), although a greater number of culturable bacteria and fungi were isolated from disturbed than from undisturbed soils (Disturbance, P<0.001). No UV‐B‐ or disturbance‐related differences in protein, starch or urea hydrolysis were exhibited by bacterial isolates. UV‐B treatment did not affect total plant biomass within undisturbed plots or the biomass of individual groupings of grasses, forbs and mosses. Per cent root length colonized by arbuscular mycorrhizal fungi (AMF) was not affected by enhanced UV‐B radiation in the undisturbed plots. Neither AMF nor plant biomass was measured in disturbed plots. The key findings of this study show that UV‐B‐mediated alterations in carbon utilization occurred in soil microbial communities subjected to disturbance, but such changes were not observed in communities sampled from undisturbed grassland. Differences in the catabolic potential of microbial communities from disturbed grassland subjected to enhanced UV‐B are probably related to plant‐mediated changes in resource availability or quality.  相似文献   

10.
To clarify the role of dense understory vegetation in the stand structure, and in carbon (C) and nitrogen (N) dynamics of forest ecosystems with various conditions of overstory trees, we: (i) quantified the above‐ and below‐ground biomasses of understory dwarf bamboo (Sasa senanensis) at the old canopy‐gap area and the closed‐canopy area and compared the stand‐level biomasses of S. senanensis with that of overstory trees; (ii) determined the N leaching, soil respiration rates, fine‐root dynamics, plant area index (PAI) of S. senanensis, and soil temperature and moisture at the tree‐cut patches (cut) and the intact closed‐canopy patches (control). The biomass of S. senanensis in the canopy‐gap area was twice that at the closed‐canopy area. It equated to 12% of total biomass above ground but 41% below ground in the stand. The concentrations of NO3? and NH4+ in the soil solution and soil respiration rates did not significantly change between cut and control plots, indicating that gap creation did not affect the C or N dynamics in the soil. Root‐length density and PAI of S. senanensis were significantly greater at the cut plots, suggesting the promotion of S. senanensis growth following tree cutting. The levels of soil temperature and soil moisture were not changed following tree cutting. These results show that S. senanensis is a key component species in this cool‐temperate forest ecosystem and plays significant roles in mitigating the loss of N and C from the soil following tree cutting by increasing its leaf and root biomass and stabilizing the soil environment.  相似文献   

11.
In many ecosystems, browsing of large mammals can affect plant species compositions. However, much less is known about potential above‐ and below‐ground trophic interactions of large browsing mammals. This study focused on the direct and indirect effects of browsing on trophic and abiotic interactions within forest ecosystems. To quantify above‐ and below‐ground cascade effects, white‐tailed deer have been excluded for over 18 years from three 4‐ha plots, which were paired with same sized deer access plots. Our results demonstrate complex direct and indirect cascade effects on forest food webs. Deer exclusion directly altered woody species composition and significantly increased shrub and sapling density. Above‐ground cascade effects include greater leaf litter accumulation and higher arthropod density and biomass within the exclosures. Below‐ground indirect effects include significant decrease in soil nutrients, and higher arbuscular mycorrhizal fungal inoculum potential in the exclosures. Because ecosystems have finite resource availability, high deer density may imbalance the system by redirecting resources toward maintaining deer biomass at the expense of multiple trophic levels throughout the forest community. Both complex bottom up and top down trophic cascade effects demonstrated largely unidirectional negative responses suggesting that high deer density has reduced the biodiversity of the forest community.  相似文献   

12.
杨振安  姜林  徐颖怡  詹伟  朱二雄  陈槐 《生态学报》2017,37(23):7903-7911
为探讨青藏高原高寒草甸对短期禁牧的响应,设置冬季自由放牧和短期(2年)禁牧的对比试验。采用随机样方法调查植被群落盖度,分析地上和地下生物量、根冠比、植被地上和地下部分以及表层(0-10cm)土壤全碳、全氮和全磷含量、生态化学计量以及营养元素的关联性。研究结果显示:1)短期禁牧显著改变高寒草甸植被盖度、地上生物量、根冠比、植被全磷含量和N∶P,以及土壤全磷含量。2)相关性分析表明,禁牧后土壤全碳含量与植被地上全碳含量呈显著相关性,自由放牧后土壤全碳和全氮含量分别与植被地下部分全碳和全氮含量呈显著相关性。结果表明,不同的草原管理措施(禁牧、放牧)会改变高寒草甸植被与土壤养分分配及其平衡关系,同时,植被与表层土壤主要养分含量之间的关联性仅存在于部分植物器官与部分营养元素之间。  相似文献   

13.
Feral pigs (Sus scrofa) are a widespread invasive species, and cause biotic disturbance. This study evaluated the impacts associated with ground disturbance by feral pigs in the North Island of New Zealand. Exclosure cages were erected over feral pig-disturbed ground and visually undisturbed ground (the latter as controls). Buried resin bags and litter bags were located in these plots to examine differences in soil nutrients and decomposition rates and seedling/sapling recruitment (abundance, species composition and richness) was monitored over 21 months. No difference was found in the litter decomposition between the disturbed and visually undisturbed plots. Significantly more nitrate (NO3-N/NO2-N) was found in the disturbed exclosures. Seedling density was not significantly affected by feral pig disturbance. However, seedling/sapling species richness was lower in disturbed areas. Species composition changes occurred at disturbed sites with species increasing and decreasing in density after feral pig disturbance. However, no pattern was observed between species that were negatively affected by feral pig disturbance. This study shows that feral pig disturbance affects vegetation through direct removal, but also indirectly through increased nitrate, potentially leading to seedling and sapling species composition changes. Feral pigs are known to return to previously disturbed areas to re-disturb. These areas may remain in a re-disturbed state if not protected, and through continued disturbance and increased nitrate, ecosystem changes may occur, especially in characteristically nutrient poor environments.  相似文献   

14.
Abstract

An increasing importance is assigned to the estimation and verification of carbon stocks in forests. Forestry practice has several long‐established and reliable methods for the assessment of above‐ground biomass; however, we still miss accurate predictors of below‐ground biomass. A major windthrow event exposing the coarse root systems of Norway spruce trees allowed us to assess the effects of contrasting soil stone and water content on below‐ground allocation. Increasing stone content decreases the root/shoot ratio, while soil waterlogging leads to an increase in this ratio. We constructed allometric relationships for below‐ground biomass prediction and were able to show that only soil waterlogging significantly impacts model parameters. We showed that diameter at breast height is a reliable predictor of below‐ground biomass and, once site‐specific parameters have been developed, it is possible to accurately estimate below‐ground biomass in Norway spruce.  相似文献   

15.
16.
Anthropogenic disturbances have serious impacts on ecosystems across the world. Understanding the effects of disturbance on woodlands, especially in regions where local people depend on these natural resources, is essential for sustainable natural resource management and biodiversity conservation. In this study, we evaluated the effects of anthropogenic disturbance, specifically selective logging of Brachystegia floribunda, on woodlands by comparing species composition, species diversity and functional diversity of woody plants between disturbed and undisturbed woodlands. We combined species data and functional trait data for leaves, fruits and other traits related to resource and disturbance responses to calculate functional indices (functional richness, evenness and divergence) and community‐weighted means of each trait. Shifts in taxonomic species composition were analysed using nonmetric multi‐dimensional scaling. Species composition differed significantly between disturbed and undisturbed woodlands. Tree density was greater in disturbed woodlands, whereas evenness, functional evenness and functional divergence were greater in undisturbed woodlands. In terms of forest cover, selective logging of B. floribunda appeared to have little impact on Miombo woodlands, but some shifts in functional traits, such as the shift from a deciduous to evergreen phenology, may increase the vulnerability of these ecosystems to environmental change, especially drought.  相似文献   

17.
Question: What are the mechanisms by which fire reduces competition for both a short‐lived and a long‐lived species in old‐growth ground‐cover plant communities of wet pine savannas (originally Pinus palustris, replaced by P. elliottii)? Location: Outer coastal plain of southeastern Mississippi, USA. Methods: I reviewed previous competition experiments and proposed a new hypothesis to explain the relationship between fire, competition, and species co‐existence in wet longleaf pine savannas. The first study is about growth and seedling emergence responses of a short‐lived carnivorous plant, Drosera capillaris, to reduction in below‐ground competition and above‐ plus below‐ground competition. The second study deals with growth and survival responses of a long‐lived perennial carnivorous plant, Sarracenia alata, to neighbour removal and prey‐exclusion to determine if a reduction in nutrient supply increased the intensity of competition in this nutrient‐poor system. Results: Fire increased seedling emergence of the short‐lived species by reducing above‐ground competition through the destruction of above‐ground parts of plants and the combustion of associated litter. Prey exclusion did not increase competitive effects of neighbours on the long‐lived species. However, because the experiment was conducted in a year without fire, shade reduced nutrient demand, which may have obviated competition for soil nutrients between Sarracenia alata and its neighbours. Conclusion: Repeated fires likely interact with interspecific differences in nutrient uptake to simultaneously reduce both above‐ground competition and competition for nutrients in old‐growth ground cover communities in pine savannas. Restoration practitioners should consider the possibility that the composition of the plant community is just as important as fire in ensuring that frequent fires maintain species diversity.  相似文献   

18.
不同种植方式对花生土壤微生物生物量及活性的影响   总被引:2,自引:1,他引:1  
在大田条件下,采用随机区组设计研究了春播覆膜(CBFM)、春播露地(CBLD)、麦田套种(MT)、麦田套种露地对照(MTLD)、夏播覆膜(XBFM)和夏播露地(XBLD)6种花生种植方式对土壤微生物生物量碳、活跃微生物生物量和土壤呼吸的影响.结果表明: 花生生育期和种植方式均显著影响土壤微生物生物量及活性.从始花期开始,随着生育进程的推进,土壤微生物生物量碳、活跃微生物生物量和呼吸速率逐渐升高,到结荚期达到最大值,随后下降.露地栽培花生提高了土壤微生物生物量碳和土壤呼吸速率,但是降低了活跃微生物生物量,对土壤养分的转化和吸收不利;覆膜花生提高了活跃微生物生物量,促进土壤养分的分解和有效化;麦田套种花生比同期播种的露地对照花生提高了土壤微生物生物量碳、活跃微生物生物量和土壤呼吸速率,固结养分较多,不利于花生生长.  相似文献   

19.
Studies on soil quality of mangrove forests would be of immense use in minimizing soil degradation and in adopting strategies for soil management at degraded sites. Among the various parameters of soil quality, biological and biochemical soil properties are very sensitive to environmental stress and provide rapid and accurate estimates on changes in quality of soils subjected to degradation. In this study, we determined the general and specific biochemical characteristics of soils (0-30 cm) of inter-tidal areas of 10 undisturbed mangrove forest sites of S. Andaman, India. In order to determine the effects of disturbance, soils from the inter-tidal areas of 10 disturbed mangrove forest sites were also included in the study. The general biochemical properties included all the variables directly related to microbial activity and the specific biochemical parameters included the activities of extracellular hydrolytic enzymes that are involved in the carbon, nitrogen, sulfur and phosphorus cycles in soil. The pH, clay, cation exchange capacity, Al2O3 and Fe2O3 levels exhibited minimum variation between the disturbed and undisturbed sites. In contrast, organic C, total N, Bray P and K levels exhibited marked variation between the sites and were considerably lower at the disturbed sites. The study also revealed marked reductions in microbial biomass and activity at the disturbed sites. In comparison to the undisturbed sites, the levels of all the general biochemical parameters viz., microbial biomass C, microbial biomass N, N flush, basal respiration, metabolic quotient (qCO2), ATP, N mineralization rates and the activities of dehydrogenase and catalase were considerably lower at the disturbed sites. Similarly, drastic reductions in the activities of phosphomonoesterase, phosphodiesterase, ß-g1ucosidase, urease, BAA-protease, casein-protease, arylsulfatase, invertase and carboxymethylcellulase occurred at the disturbed sites due mainly to significant reductions in organic matter/substrate levels. The data on CO2 evolution, qCO2 and ATP indicated the dominance of active individuals in the microbial communities of undisturbed soils and the ratios of biomass C:N, ATP:biomass C and ergosterol:biomass C ratios indicated low N availability and the possibility of fungi dominating over bacteria at both the mangrove sites. Significant and positive correlations between soil variables and biochemical properties suggested that the number and activity of soil microorganisms depend mainly on the quantity of mineralizable substrate and the availability of nutrients in these mangrove soils.  相似文献   

20.
Fogarty  Gael  Facelli  José M. 《Plant Ecology》1999,144(1):27-35
English broom (Cytisus scoparius) is an aggressive invasive shrub in native sclerophyll forests of South Australia. We studied its relative growth rate (RGR) and competitive ability in soils from invaded and uninvaded woodlands, in comparison to three native species it commonly displaces:Hakea rostrata, Acacia verniciflua, and A. myrtifolia. Hakea was the slowest growing species throughout the year. Both native species had their highest RGR during spring. The RGR of broom was higher than that of both hakea and acacia in the winter and spring. Despite losing its leaves in the summer, the RGR of broom through the year was higher than that of either of the native species. Soil from the invaded stands had higher organic C, N and soluble P than that from uninvaded sites. Broom and acacia grew better in the higher nutrient soil than in the lower nutrient soil. Competition did not decrease the final biomass of any of the species in low nutrient soil. In the higher nutrient soil the biomass of broom was reduced by competition with acacia, but not by competition with hakea. Competition by broom reduced the biomass of hakea but not that of acacia. Broom's earlier and higher RGR, high competitiveness in nutrient rich soils, and probably its ability to change nutrient availability could be important contributors to the mechanisms by which it invades native woodlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号