首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies have shown a strong linkage between zooplankton and fisheries' potential in tropical lakes. High zooplankton production provides the basis for fish production, but knowledge of zooplankton production dynamics in African lakes is extremely limited. Crustacean zooplankton production and the biomass of dominant rotifers in Lake Bosumtwi were assessed over a 2‐year period. The crustaceans comprised an endemic and extremely abundant cyclopoid copepod, Mesocyclops bosumtwii and the cladoceran Moina micrura. Mean standing stock of the crustaceans was 429 mg dw m?3, whilst annual production averaged 2.1 g dw m?3 y?1. Production doubled from 1.4 g dw m?3 y?1 in 2005 to 2.8 g dw m?3 y?1 in 2006. Copepods accounted for 98.5% of crustacean production. The biomass of the dominant rotifers Brachionus calyciflorus and Hexarthra intermedia was less than 1% of total zooplankton biomass. Daily turnover rate and turnover time of the crustaceans was 0.19 day?1 and 6.2 days respectively. Crustacean production yielded no statistical relationship with phytoplankton biomass. Production was well within the range of tropical lakes. Peak crustacean production synchronized maximum rainfall, lake mixing and phytoplankton production. Most importantly, no one year's set of dynamics can be used to characterize zooplankton production in the lake.  相似文献   

2.
Movement of plankton through lake-stream systems   总被引:2,自引:0,他引:2  
1. River plankton are often assumed to come from upstream lakes, but the factors controlling the movement of plankton between lakes and rivers into outflow streams are unclear. We tested the possibility that the physical structure of the littoral zone near the lake outlet (depth, presence of macrophytes) and diurnal differences in plankton composition at the lake surface influence the movement of plankton from the lake into the stream and determine their persistence downstream. 2. Zooplankton and phytoplankton biomass, community composition and mean body size were compared between two deep lakes without macrophytes at the lake edge and two shallow lakes with macrophytes at the lake edge. Samples were collected day and night on three dates, in the lake centre, in the littoral zone adjacent to the lake outlet, at the outlet and at two sites downstream in Algonquin Park, Ontario, Canada. 3. The morphology of lake edges clearly affects the movement of lake zooplankton into outlet streams. Outlets draining deeper littoral zones had higher zooplankton biomass than shallow littoral outlets (P < 0.0001), but these differences disappeared within 50 m downstream of the lake. There was no difference in mean zooplankton body size among lake outlets or between littoral and outlet samples. However, shallow littoral zones were dominated by cyclopoid copepods and deeper littoral zones were dominated by Bosmina longirostris. In contrast, phytoplankton biomass entering the outlet was similar to that found within the lake and did not vary with lake outlet morphology. These effects were consistent across several sampling weeks and were not affected by surface zooplankton biomass changes associated with diurnal vertical migration in the lake centre. 4. A comparison with published river zooplankton data suggests that zooplankton are rapidly eliminated from shallow outlet streams (≤1 m deep) but persist in most deeper outlet rivers (≥2 m deep). Because the depth of an outlet river determines downstream zooplankton community development, the contribution of lakes to river plankton communities may be influenced by the location of each lake within the drainage basin. These findings suggest that lake and outflow physical structure influences connection strength between spatially successive habitats.  相似文献   

3.
An investigation was conducted examining the horizontal and vertical distribution of zooplankton in Lake Miramar, a southern California reservoir. Daphnia and Mesocyclops populations were most abundant offshore and in deeper water during the day but appeared to move toward shore and upward at night. The results of inshore zooplankton sampling provided no evidence chat the diel horizontal migration pattern was a result of sampler avoidance by zooplankton. Inshore-offshore differences in Daphnia and Mesocyclops abundance and diel migrations were reduced during winter and early spring. Rotifer zooplankters exhibited less seasonal variation in their horizontal distributions than did the large crustacean zooplankters at all times of the year. It is hypothesized that the spatial distribution of zooplankton is related to predation gradients in Lake Miramar. The dominant planktivore in the reservoir, young-of-the-year Micropterus salmoides. was abundant from late May through December and much less so from January to early May. They were largely restricted to the littoral zone and this produced horizontal gradients of planktivory which varied in strength seasonally and from day lo night. It appears that crustacean zooplankton in Lake Miramar avoid areas with abundant planktivores during the day but migrate into these areas at night when the intensity of planktivory is reduced. Rotifers exhibit less horizontal heterogeneity and no significant diel migrations, which is attributed to the reduced risk of predation that rotifers experience relative to crustacean zooplankters. A graphical model is proposed to integrate our understanding of diel vertical and horizontal migrations of zooplankton. In this model, gradients of predation are completely vertical in offshore areas and strongly horizontal in near shore areas. Gradients of food availability are roughly similar to those of predation intensity. Plankiers respond to these gradients by migrating in a path parallel to gradients of predation at dawn and parallel to gradients of food availability after dark.  相似文献   

4.
1. Responses of zooplankton to nutrient enrichment and fish predation were studied in 1998 and 1999 by carrying out parallel mesocosm experiments in six lakes across Europe. 2. Zooplankton community structure, biomass and responses to nutrient and fish manipulation showed geographical and year‐to‐year differences. Fish had a greater influence than nutrients in regulating zooplankton biomass and especially the relative abundances of different functional groups of zooplankton. When fish reduced the biomass of large crustaceans, there was a complementary increase in the biomasses of smaller crustacean species and rotifers. 3. High abundance of submerged macrophytes provided refuge for zooplankton against fish predation but this refuge effect differed notably in magnitude among sites. 4. Large crustacean grazers (Daphnia, Diaphanosoma, Sida and Simocephalus) were crucial in controlling algal biomass, while smaller crustacean grazers and rotifers were of minor importance. Large grazers were able to control phytoplankton biomass even under hypereutrophic conditions (up to 1600 μg TP L?1) when grazer biomass was high (>80–90 μg dry mass L?1) or accounted for >30% of the grazer community. 5. The littoral zooplankton community was less resistant to change following nutrient enrichment in southern Spain, at high temperatures (close to 30 °C), than at lower temperatures (17–23 °C) characterising the other sites. This lower resistance was because of a greater importance of nutrients than zooplankton in controlling algal biomass. 6. Apart from the reduced role of large crustacean grazers at the lowest latitude, no consistent geographical patterns were observed in the responses of zooplankton communities to nutrient and fish manipulation.  相似文献   

5.
Reichwaldt ES  Stibor H 《Oecologia》2005,146(1):50-56
Diel vertical migration (DVM) of large zooplankton is a very common phenomenon in the pelagic zone of lakes and oceans. Although the underlying mechanisms of DVM are well understood, we lack experimental studies on the consequences of this behaviour for the zooplankton’s food resource—the phytoplankton. As large zooplankton species or individuals migrate downwards into lower and darker water strata by day and upwards into surface layers by night, a huge amount of herbivorous biomass moves through the water column twice a day. This migration must have profound consequences for the phytoplankton. It is generally assumed that migration supports an enhanced phytoplankton biomass and a change in the composition of the phytoplankton community towards smaller, edible algae in the epilimnion of a lake. We tested this assumption for the first time in field experiments by comparing phytoplankton biomass and community assemblage in mesocosms with and without artificially migrating natural stocks of Daphnia hyalina. We show that DVM can enhance phytoplankton biomass in the epilimnion and that it has a strong impact on the composition of a phytoplankton community leading to an advantage for small, edible algae. Our results support the idea that DVM of Daphnia can have strong effects on phytoplankton dynamics in a lake.  相似文献   

6.
Two pairs of neighboring subalpine lakes located in the Northern Calcareous Alps of Austria were investigated. Each pair comprised a deeper lake containing European minnows (Phoxinus phoxinus ), and a corresponding shallower lake harboring Alpine newts (Triturus alpestris ) as top predators. Plankton successions within fish and amphibian lakes differed markedly from each other. Throughout the year rotifers numerically dominated within the minnow lakes, while pigmented copepods (Genera Heterocope, Acanthodiaptomus , Arctodiaptomus , Mixodiaptomus ) and Daphnia were prominent in the amphibian lakes, at least early during the ice‐free period. We argue that size‐selective predation by minnows was the ultimate reason for this predominance of smaller zooplankton. While one of the minnow lakes was characterized by a succession of spatially and temporally segregated rotifer species, the other minnow lake permitted the development of populations of small‐sized Bosmina and Ceriodaphnia during summer, probably due to the existence of a strong oxycline allowing zooplankton crustaceans to avoid predation from shore‐based shoals of minnows. Once trout were introduced into this lake, minnows were visibly reduced in abundance. Bosmina and Ceriodaphnia disappeared and Daphnia together with a predacious copepod (Heterocope ) emerged either from egg banks or arrived from nearby source populations. We argue that the crustacean communities within the fishless lakes were adapted to the comparatively weak predation rates of Alpine newts. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The dynamics of crustacean zooplankton in the littoral and pelagic zones of four forest lakes having variable water qualities (colour range 130–340 mg Pt l−1, Secchi depth 70–160 cm) were studied. The biomass of zooplankton was higher in the littoral zone than in the pelagic zone only in the lake having the highest transparency. In the three other lakes, biomass was significantly higher in the pelagic zone than in the littoral zone. In the two lakes with highest transparency, the littoral biomass of cladocerans significantly followed the development of macrophyte vegetation, and cladoceran biomass reached the maximum value at the time of highest macrophyte coverage. In lakes with lowest transparency, littoral zooplankton biomass developed independently of macrophyte density and decreased when macrophyte beds were densest. The seasonal development of the littoral copepod biomass did not follow the development of macrophytes in any of the lakes. The mean size of cladocerans in the pelagic zone decreased with increasing Secchi depth of the lake, whereas in the littoral zone no such phenomenon was detected. Seasonally, when water transparency increased temporarily in two of the lakes, the mean size of cladocerans in the pelagic zone decreased steeply. For copepods, no relationship between water transparency and body size was observed. The results suggested that in humic lakes the importance of the littoral zone as a refuge decreases with decreasing transparency of the water and that low water transparency protects cladocerans from fish predation. All the observed between-lake differences could not be explained by fish predation, but were probably attributed to the presence of chaoborid larvae with variable densities. Feeding efficiency of chaoborids is not affected by visibility and thus they can obscure the relationship between water quality, fish density, and the structure of crustacean zooplankton assemblages. Handling editor: S. I. Dodson  相似文献   

8.
We report here the results of an experimental study designed to compare algal responses to short-term manipulations of zooplankton in three California lakes which encompass a broad range of productivity (ultra-oligotrophic Lake Tahoe, mesotrophic Castle Lake, and strongly eutrophic Clear Lake). To assess the potential strength of grazing in each lake, we evaluated algal responses to a 16-fold range of zooplankton biomass. To better compare algal responses among lakes, we determined algal responses to grazing by a common grazer (Daphnia sp.) over a range ofDaphnia densities from 1 to 16 animals per liter. Effects of both ambient grazers andDaphnia were strong in Castle Lake. However, neither ambient zooplankton norDaphnia had much impact on phytoplankton in Clear Lake. In Lake Tahoe, no grazing impacts could be demonstrated for the ambient zooplankton butDaphnia grazing had dramatic effects. These results indicate weak coupling between phytoplankton and zooplankton in Clear Lake and Lake Tahoe, two lakes which lie near opposite extremes of lake trophic status for most lakes. These observations, along with work reported by other researchers, suggest that linkages between zooplankton and phytoplankton may be weak in lakes with either extremely low or high productivity. Biomanipulation approaches to recover hypereutrophic lakes which aim only to alter zooplankton size structure may be less effective if algal communities are dominated by large, inedible phytoplankton taxa.  相似文献   

9.
1. Return of large‐bodied zooplankton populations is of key importance for creating a shift from a turbid to a clear‐water state in shallow lakes after a nutrient loading reduction. In temperate lakes, recovery is promoted by submerged macrophytes which function as a daytime refuge for large zooplankton. However, recovery of macrophytes is often delayed and use of artificial plant beds (APB) has been suggested as a tool to enhance zooplankton refuges, thereby reinforcing the shift to a clear‐water state and, eventually, colonisation of natural plants. 2. To further evaluate the potential of APB in lake restoration, we followed the day–night habitat choices of zooplankton throughout summer in a clear and a turbid lake. Observations were made in the pelagic and littoral zones and in APB in the littoral representing three different plant densities (coverage 0%, 40% and 80%). 3. In the clear lake, the zooplankton (primarily Daphnia) were mainly found in the pelagic area in spring, but from mid‐May they were particularly abundant in the APB and almost exclusively so in mid‐June and July, where they appeared in extremely high densities during day (up to 2600 ind. L−1). During night Daphnia densities were overall more equally distributed between the five habitats. Ceriodaphnia was proportionally more abundant in the APB during most of the season. Cyclopoids were more abundant in the high APB during day but were equally distributed between the five habitats during night. 4. In the turbid lake, however, no clear aggregation was observed in the APB for either of the pelagic genera (Daphnia and Bosmina). This may reflect a higher refuge effect in the open water due to the higher turbidity, reduced ability to orient to plant beds and a significantly higher fish density (mainly of roach, Rutilus rutilus, and perch, Perca fluviatilis) in the plant beds than in the clear lake. Chydorus was found in much higher proportions among the plants, while cyclopoids, particularly the pelagic Cyclops vicinus, dominated in the pelagic during day and in the pelagic and high density plants during night. 5. Our results suggest that water clarity is decisive for the habitat choice of large‐bodied zooplankton and that introduction of APB as a restoration measure to enhance zooplankton survival is only a useful tool when water clarity increases following loading reduction. Our results indicate that dense APB will be the most efficient.  相似文献   

10.
Vertical, lateral and longitudinal movement of zooplankton in a large river   总被引:1,自引:0,他引:1  
1. The spatial distribution and movement patterns of zooplankton in large rivers are little known compared with those in lake environments. We conducted a series of studies in the Ohio River (U.S.A.) during the low flow period to assess diel vertical (DVM), longitudinal and lateral movement of crustacean zooplankton. 2. The dominant large zooplankter, the copepod Eurytemora affinis, showed a consistent vertical migration pattern of daytime ascent and night‐time descent during all sampling periods – the reverse of the most common migratory pattern of zooplankton in lakes. The cladoceran Bosmina migrated in a similar way in two of the three sampling periods. Surveys taken longitudinally in the river showed similar trends for both taxa. 3. During the lateral surveys, E. affinis was significantly more abundant in the shallow littoral zone during the night than in the daytime. The combination of vertical and lateral movement patterns along with the diel distribution of zooplanktivorous fish suggest that these movements are a predator‐avoidance mechanism. 4. Sampling programmes in large rivers should consider that larger zooplankton such as E. affinis may not be randomly distributed in the river channel and behaviours such as diel vertical migration may be just as evident in river habitats as in lakes.  相似文献   

11.
鄱阳湖浮游甲壳动物群落结构特征   总被引:8,自引:3,他引:5  
刘宝贵  刘霞  吴瑶  钟正  陈宇炜 《生态学报》2016,36(24):8205-8213
鄱阳湖是中国第一大淡水湖,具有"丰水为湖,枯水为河"的独特特点。为探讨鄱阳湖浮游甲壳动物群落结构及其时空分布的特征,于2009年全年采集其不同季节、不同水位期的浮游甲壳动物样品进行定量分析。结果显示,鄱阳湖浮游甲壳动物群落结构总体与河流浮游甲壳群落具有相似性。无节幼体、象鼻溞、剑水蚤等河流优势类群在鄱阳湖浮游甲壳动物中占优势;而哲水蚤和溞属仅在低水位季节占优势,枝角类丰度仅在高温、高水位、流速缓的季节高过桡足类。丰水期浮游甲壳动物平均丰度和生物量远远高于枯水期,可达枯水期的50倍,差异极其显著(P0.01)。温度和水位变化引起的环境因子改变是导致鄱阳湖浮游甲壳动物发生季节演替的主要原因;而营养盐对浮游甲壳动物的影响并不显著。空间上浮游甲壳动物群落构成明显不同,年均丰度最高和最低的点均出现在河口地区。因此:对于换水周期短,水交换速率快的水体,应该充分考虑水文条件对生物的影响。  相似文献   

12.
The biomass and population dynamics of crustacean zooplankton were determined in oligotrophic Lake Toya in Japan over 5 years from May 1992 to May 1997. In 1992 and 1993, zooplankton biomass was up to 4.3 g dry weight m?2, whereas it decreased to <1 g dry weight m?2 after 1994. This extreme change in biomass was associated with the succession of dominant species from larger ones, such as Daphnia longispina and Cyclops strenuus (s. lat.), to smaller ones, such as Eubosmina tanakai and Bosmina longirostris. Consequently, this biomass change seemed to cause an increase in the chlorophyll a concentration in the euphotic zone and a decline in lake transparency. Because the birth rates of the dominant species were somewhat higher after 1994, the decline in the populations of larger crustaceans seemed to depend more on their rate of death rather than rate of birth, and this higher death rate is not considered to be attributed to food shortage. Although these results strongly suggest a top-down cascading effect of fish predation upon crustaceans, annual catches of two commercially important planktivorous fish species have also decreased in the lake, coincidentally with decreases in zooplankton biomass. This may be attributable to fishing regulations that prohibit catching smaller fish, implying that such smaller fish affect zooplankton and phytoplankton, as well as lake transparency.  相似文献   

13.
Seasonal and daily patterns of zooplankton populations are often predictable in natural lakes. Distinct zonation and geomorphic differences in reservoirs, however, make ecological extrapolations from lakes to reservoirs uncertain. We describe the spatial and temporal distribution of zooplankton, algae, and water clarity across reservoir zones and along a depth gradient in Glen Elder Reservoir, Kansas. Daphnia species were most abundant in the lacustrine zone, with D. pulicaria numerically dominant in early spring and D. mendotae dominant later in 1999 and 2000. Rotifers (Keratella quadrata, Asplanchnaspp.) were dominant in the riverine zone in 1999, 2000, and 2001. Algal biomass was not significantly different between zones through most of the sampling periods, except late April in 1999 and mid-April in 2000. Chlorophyll a exceeded 81 μg l?1 in the lacustrine zone in mid- to late-April in 1999 and 2000, and exceeded 90μg l?1in the riverine zone in mid-April. Water clarity was significantly lower in the riverine zone in 1999 and 2000. Most zooplankton taxa had similar depth distributions at night and day, indicating a lack of diel vertical migration behavior on a large scale. However, in small scale (30 cm vertical enclosures) laboratory experiments, both D. pulicaria and D. mendotae occupied significantly deeper depths (>25 cm) under lighted conditions in the presence of fish chemical cues compared to shallow water (7–17 cm) under dark conditions and in the absence of fish cues. These contrasting results suggest that, as in other studies, Daphnia sense cues from predators and alter their depth in the water column on small scales without natural constraints on movement and choices. However, other factors in the reservoir such as wind-generated water movements and cues from other predators may prevent depth choices similar to those seen under controlled conditions. These results illustrate biotic and abiotic differences between riverine and lacustrine zones in a large reservoir, and contrast with Daphnia depth segregation and migration patterns in natural lakes.  相似文献   

14.
Field and experimental studies were conducted to evaluate the combined impacts of cyanobacterial blooms and small algae on seasonal and long-term changes in the abundance and community structure of crustacean zooplankton in a large, eutrophic, Chinese lake, Lake Chaohu. Seasonal changes of the crustacean zooplankton from 22 sampling stations were investigated during September 2002 and August 2003, and 23 species belonging to 20 genera were recorded. Daphnia spp. dominated in spring but disappeared in mid-summer, while Bosmina coregoni and Ceriodaphnia cornuta dominated in summer and autumn. Both maximum cladoceran density (310 ind. l−1) and biomass (5.2 mg l−1) appeared in autumn. Limnoithona sinensis, Sinocalanus dorrii and Schmackeria inopinus were the main species of copepods. Microcystis spp. were the dominant phytoplankton species and formed dense blooms in the warm seasons. In the laboratory, inhibitory effects of small colonial Microcystis on growth and reproduction of Daphnia carinata were more remarkable than those of large ones, and population size of D. carinata was negatively correlated with density of fresh large colonial Microcystis within a density range of 0–100 mg l−1 (r = −0.82, P< 0.05). Both field and experimental results suggested that seasonal and long-term changes in the community structure of crustacean zooplankton in the lake were shaped by cyanobacterial blooms and biomass of the small algae, respectively, i.e., colonial and filamentous cyanobacteria contributed to the summer replacement of dominant crustacean zooplankton from large Daphnia spp. to small B. coregoni and C. cornuta, while increased small algae might be responsible for the increased abundance of crustacean zooplankton during the past decades.  相似文献   

15.
Diel vertical migrations of zooplankton were studied in a small, dystrophic Kruczy Staw Lake. Two rotifer species (Synchaeta pectinata Ehrenberg, Trichocerca simonei DeSmet) inhabiting the lake occurred near lake bottom (7–8 m depth) in the daytime. At night they were observed in surface waters (0–2 m). Both amplitude and speed of the rotifer migration were markedly higher than those of crustaceans. As invertebrate predators are scarce or altogether lacking in the lake, vertical stratification of rotifer and crustacean communities both seasonally and dielly may be caused by strong competition for very low food resources in the lake. This assumption is supported by the observed reverse changes in densities of zooplankton and their food (i.e. picoplankton) during a diel cycle.  相似文献   

16.
The abundances, biomass, and seasonal succession of rotifer and crustacean zooplankton were examined in a man-made, eutrophic lake, Lake Oglethorpe, over a 13 month period. There was an inverse correlation between the abundance of rotifers and crustaceans. Rotifers were most abundant and dominated (>69%) the rotifer-crustacean biomass during summer months (June–September) while crustacean zooplankton dominated during the remainder of the year (>89%). Peak biomasses of crustaceans were observed in the fall (151 µg dry wt l–1 in October) and spring (89.66 µg dry wt l–1 in May). Mean annual biomass levels were 46.99 µg dry wt l–1 for crustaceans and 19.26 µg dry wt l–1 for rotifers. Trichocerca rousseleti, Polyarthra sp., Keratella cochlearis and Kellicottia bostoniensis were the most abundant rotifers in the lake. Diaptomus siciloides and Daphnia parvula were the most abundant crustaceans. Lake Oglethorpe is distinct in having an unusually high abundance of rotifers (range 217–7980 l–1). These high densities can be attributed not only to the eutrophic conditions of the lake but also to the detailed sampling methods employed in this study.The research was supported by National Science Foundation grants DEB 7725354 and DEB 8005582 to Dr. K. G. Porter. It is lake Oglethorpe Limnological Association Contribution No. 25 and Contribution No. 371 of the Harbor Branch Foundation, Inc.  相似文献   

17.
Cladocerans and copepods are globally important freshwater zooplankton groups, differing in reproductive modes and dispersal abilities. We compared genetic variation of two common taxa of these crustaceans, the Daphnia longispina species complex (known to harbour multiple cryptic lineages) and Eucyclops serrulatus (morphologically and ecologically variable morphospecies), in lakes of ten Eastern European mountain ranges. We expected to discover cryptic lineages in both groups, and to observe different geographical patterns of diversity because of differences in life cycles. Within E. serrulatus, limited sampling through lowland habitats indeed showed the presence of eight highly divergent clades, probably cryptic species, but most of these were not found in the studied mountain lakes. Such a pattern was congruent with the diversity of the D. longispina complex. Regional coexistence of multiple clades within respective species complexes (two in Eucyclops and three in Daphnia) was observed only in the Tatra Mountains (on the Polish?Slovak border). In all other studied mountain ranges (in the Balkans), only single lineages of Daphnia and Eucyclops, respectively, were present, showing similar intraspecific patterns and no evidence for stronger dispersal limitation in Eucyclops than in Daphnia. Our results indicate that substantial cryptic variation may be expected in seemingly widespread copepod taxa. However, detection of cryptic lineages is not a general pattern in mountain lakes, although these habitats harbour substantial genetic diversity in crustacean zooplankton. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166 , 754–767.  相似文献   

18.
1. The fish fauna of many shallow Mediterranean Lakes is dominated by small‐bodied exotic omnivores, with potential implications for fish–zooplankton interactions still largely unknown. Here we studied diel variation in the vertical and horizontal distribution of the crustacean plankton in Lake Vela, a shallow polymictic and eutrophic lake. Diel sampling was carried out on three consecutive days along a horizontal transect, including an open‐water station and a macrophyte (Nymphaea alba) bed. Since transparency is a key determinant of the predation risk posed by fish, the zooplankton sampling campaigns were conducted in both the turbid (autumn) and clear water (spring) phases. 2. In the turbid phase, most taxa were homogeneously distributed along the vertical and horizontal axes in the three consecutive days. The only exception was for copepod nauplii, which showed vertical heterogeneity, possibly as a response to invertebrate predators. 3. In the clear water phase, most zooplankton taxa displayed habitat selection. Vertically, the general response consisted of a daily vertical migration (DVM), despite the limited depth (1.6 m). Horizontally, zooplankters showed an overall preference for the pelagic zone, independent of the time of the day. Such evidence is contrary to the postulated role of macrophytes as an anti‐predator refuge for the zooplankton. 4. These vertical (DVM) and horizontal (macrophyte‐avoidance) patterns were particularly conspicuous for large Daphnia, suggesting that predation risk from size‐selective predators (fish) was the main factor behind the spatial heterogeneity of zooplankton in the spring. Thus, the difference in the zooplankton spatial distribution pattern and habitat selection among seasons (turbid and clear water phases) seems to be mediated the predation risk from fish, which is directly related to water transparency. 5. The zooplankton in Lake Vela have anti‐predator behaviour that minimises predation from fish. We hypothesise that, due to the distinct fish community of shallow Mediterranean lakes, aquatic macrophytes may not provide adequate refuge to zooplankters, as seen in northern temperate lakes.  相似文献   

19.
Shuji Hino 《Hydrobiologia》1992,230(3):179-192
Variations in physiological state and biomass of the phytoplankton community were examined in three different types of lakes, namely Lake Barato, Lake Akan, and Lake Shikaribetu. When the physiological state of the phytoplankton community was estimated by its adenylate energy charge (AEC), low biomass and low physiological state co-appeared gradually in the metalimnion and hypolimnion during stratification. The physiological state of the phytoplankton as estimated by its AEC value did not always correspond to its biomass, estimated by chlorophyll-a and ATP in these three lakes. A high physiological state of the community was usually observed in the euphotic zone, but the low AEC value observed in the euphotic zone of Lake Barato was not identified in the euphotic zones of the other lakes. Thus, the relationship between the value of AEC, and biomass of phytoplankton is a complex variable, which is further discussed in this paper.  相似文献   

20.
Limnological features of Lake Puma Yum Co, a typical alpine lake located at the altitude of 5030 m in the Tibetan Plateau, China, are described based on the findings of the second expedition in September 2004. The lake surface is about 280km2 and maximal depth is 65 m. Total inflow just after the rainy season was estimated to be about 860 000m3 day−1, and the lake water was drained from a newly excavated channel at a rate of 960 000m3 day−1. We may have to expect undesirable lowering of the water level by this new drainage, especially in the dry season. Thermocline developed from 20 to 30 m depth, and the euphotic zone reached the 50 m depth. Dissolved oxygen in surface water was supersaturated as in productive lakes, although there were no large point and nonpoint sources of nutrient in the catchment. Vertical distribution of phytoplankton biomass and primary production suggested the presence of photoinhibition. What should be noted about the flora and fauna is that a Chara zone and a shell zone were distributed at about 30 or 40 m of depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号