首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Palm and palm-kernel oils and their olein and stearin fractions were suitable as the main carbon sources for growth and production of clavulanic acid by Streptomyces clavuligerus. However, oleic and lauric acids were not utilized for growth. A spontaneous mutant, which was selected for higher cephamycin C production, also produced more clavulanic acid with these oils in the medium.  相似文献   

2.
Production of clavulanic acid (CA) by Streptomyces clavuligerus ATCC 27064 in shake-flask culture (28 °C, 250 rev min–1) was evaluated, with media containing different types and concentrations of edible vegetable oil. Firstly, four media based on those reported in the literature were examined. The medium containing soybean oil and starch as carbon and energy source gave the best production results. This medium, with the starch replaced by glycerol, and with various soybean oil concentrations (16, 23 and 30 g l–1) was utilized to further investigate CA production. Medium containing 23 g l–1 led to the highest CA productivity (722 mg l–1 in 120 h) and that one containing 30 g l–1 gave the highest CA titre (753 mg l–1 in 130 h). Also, substitution of corn and sunflower edible oils furnished similarly good results in terms of CA titre and productivity. It can be concluded that easily available vegetable oil is a very promising substrate for CA production, since it is converted slowly to glycerol and fatty acids, which are the main carbon and energy source for the microorganism.  相似文献   

3.
In this work, in silico flux balance analysis is used for predicting the metabolic behavior of Streptomyces clavuligerus during clavulanic acid production. To choose the best objective function for use in the analysis, three different optimization problems are evaluated inside the flux balance analysis formulation: (i) maximization of the specific growth rate, (ii) maximization of the ATP yield, and (iii) maximization of clavulanic acid production. Maximization of ATP yield showed the best predictions for the cellular behavior. Therefore, flux balance analysis using ATP as objective function was used for analyzing different scenarios of nutrient limitations toward establishing the effect of limiting the carbon, nitrogen, phosphorous, and oxygen sources on the growth and clavulanic acid production rates. Obtained results showed that ammonia and phosphate limitations are the ones most strongly affecting clavulanic acid biosynthesis. Furthermore, it was possible to identify the ornithine flux from the urea cycle and the α‐ketoglutarate flux from the TCA cycle as the most determinant internal fluxes for promoting clavulanic acid production. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1226–1236, 2015  相似文献   

4.
In order to obtain high productivity of clavulanic acid, a newly-introduced carrier, polyurethane pellet (PUP) Z97-020 was used for the immobilization process. In a stirred-tank bioreactor, batch cultivation by Streptomyces clavuligerus KK immobilized on PUP Z97-020 gave about 3100 mg of clavulanic acid per litre, representing an increase of 200% in productivity compared with that by fed-batch cultivation of free cells (1500 mg/l). However, the clavulanic acid produced rapidly decomposed due to the pH change during batch cultivation. Fed-batch cultivation by immobilized S. clavuligerus KK gave an excellent level of clavulanic acid up to 3250 mg/l, a productivity increase of 220% compared with that by fed-batch cultivation of free cells. These results suggest that immobilization with PUP Z97-020 is a more effective process for the production of clavulanic acid and that the maintenance of pH by fed-batch cultivation with glycerol as a limiting substrate prevents the clavulanic acid from decomposing during the fermentation.  相似文献   

5.
Among four different commercially available nitrogen sources containing soybean derivatives, a protein extract of soybean gave the highest yield for clavulanic acid production by Streptomyces clavuligerus. A statistical method based on factorial design of experiments was applied to optimise the medium. An empirical model was obtained by applying response surface statistical analysis. The analysis of variance showed that concentrations of protein extract of soybean and glycerol and the interaction between these two variables were significant at 95% level of confidence. The maximum clavulanic acid concentration obtained in 72 h was 1.2 g l–1.  相似文献   

6.
Glycerol at 10–20 g l–1 increased clavulanic acid production by Streptomyces clavuligerus in shake-flask culture. The biosynthesis of clavulanic acid continued for longer by feeding glycerol and production increased to 250 mg l–1 compared with 115 mg l–1 without feeding. In fermenter batch culture, degradation of clavulanic acid began after 72 h. With glycerol feeding in fed-batch culture, clavulanic acid production was not only increased further to about 280 mg l–1 but also remained stable up to 130 h.  相似文献   

7.
8.
9.
Clavulanic acid, a β-lactamase inhibitor, is used together with β-lactam antibiotics to create drug mixtures possessing potent antimicrobial activity. In view of the clinical and industrial importance of clavulanic acid, identification of the clavulanic acid biosynthetic pathway and the associated gene cluster(s) in the main producer species, Streptomyces clavuligerus, has been an intriguing research question. Clavulanic acid biosynthesis was revealed to involve an interesting mechanism common to all of the clavam metabolites produced by the organism, but different from that of other β-lactam compounds. Gene clusters involved in clavulanic acid biosynthesis in S. clavuligerus occupy large regions of nucleotide sequence in three loci of its genome. In this review, clavulanic acid biosynthesis and the associated gene clusters are discussed, and clavulanic acid improvement through genetic manipulation is explained.  相似文献   

10.
11.
Cephamycin C production was blocked in wild-type cultures of the clavulanic acid-producing organism Streptomyces clavuligerus by targeted disruption of the gene (lat) encoding lysine -aminotransferase. Specific production of clavulanic acid increased in the lat mutants derived from the wild-type strain by 2- to 2.5-fold. Similar beneficial effects on clavulanic acid production were noted in previous studies when gene disruption was used to block the production of the non-clavulanic acid clavams produced by S. clavuligerus. Therefore, mutations in lat and in cvm1, a gene involved in clavam production, were introduced into a high-titer industrial strain of S. clavuligerus to create a double mutant with defects in production of both cephamycin C and clavams. Production of both cephamycin C and non-clavulanic acid clavams was eliminated in the double mutant, and clavulanic acid titers increased about 10% relative to those of the parental strain. This represents the first report of the successful use of genetic engineering to eliminate undesirable metabolic pathways in an industrial strain used for the production of an antibiotic important in human medicine.  相似文献   

12.
We constructed four recombinant plasmids to enhance the production of clavulanic acid (CA) inStreptomyces clavuligerus NRRL3585: (1) plBRHL1, which includesccaR, a pathway-specific regulatory gene involved in cephamycin C and CA biosynthesis; (2) plBRHL2, containingclaR, again a regulatory gene, which controls the late steps of CA biosynthesis; (3) pGIBR containingafsR-p, a global regulatory gene fromStreptomyces peucetius, and (4) pKS, which harbors all of the genes (ccaR/claR/afsR-p). The plasmids were expressed inS. clavuligerus NRRL3585 along with theermE * promoter. All of them enhanced the production of CA; 2.5-fold overproduction for plBRHL1, 1.5-fold for plBRHL2, 1.6-fold for pGIBR, and 1.5-fold for pKS compared to the wild type.  相似文献   

13.
Summary Streptomyces clavuligerus produced simultaneously cephamycin C and clavulanic acid in defined medium in long-term fermentations and in resting-cell cultures. Biosynthesis of cephamycin by phosphate-limited resting cells was dissociated from clavulanic acid formation by removing either glycerol or sulphate from the culture medium. In absence of glycerol no clavulanic acid was formed but cephamycin production occurred, whereas in absence of sulphate no cephamycin was synthesized but clavulanic biosynthesis took place. Sulphate, sulphite and thiosulphate were excellent sulphur sources for cephamycin biosynthesis while l-methionine and l-cysteine were poor precursors of this antibiotic. Increasing concentrations of sulphate also stimulated clavulanic acid formation. The biosynthesis of clavulanic acid was much more sensitive to phosphate (10–100 mM) regulation than that of cephamycin. Therefore, the formation of both metabolites was pertially dissociated at 25 mM phosphate. By contrast, nitrogen regulation by ammonium salts or glutamic acid strongly reduced the biosynthesis of both cephamycin and clavulanic acid.  相似文献   

14.
The ability of Alcaligenes eutrophus to grow and produce polyhydroxyalkanoates (PHA) on plant oils was evaluated. When olive oil, corn oil, or palm oil was fed as a sole carbon source, the wild-type strain of A. eutrophus grew well and accumulated poly(3-hydroxybutyrate) homopolymer up to approximately 80% (w/w) of the cell dry weight during its stationary growth phase. In addition, a recombinant strain of A. eutrophus PHB4 (a PHA-negative mutant), harboring a PHA synthase gene from Aeromonas caviae, was revealed to produce a random copolyester of 3-hydroxybutyrate and 3-hydroxyhexanoate from these plant oils with a high cellular content (approximately 80% w/w). The mole fraction of 3-hydroxyhexanoate units was 4–5 mol% whatever the structure of the triglycerides fed. The polyesters produced by the A. eutrophus strains from olive oil were 200–400 kDa (the number-average molecular mass). The results demonstrate that renewable and inexpensive plant oils are excellent carbon sources for efficient production of PHA using A. eutrophus strains. Received: 3 September 1997 / Received revision: 10 November 1997 / Accepted: 16 November 1997  相似文献   

15.
Summary Ligninase activity of Phanerochaete chrysosporium INA-12 was increased when vegetable oils emulsified with sorbitan polyoxyethylene monooleate (Tween 80) were added to growth medium. Maximal enzyme yield was 22.0 nkat·ml-1 in olive oil cultures after 4 days incubation. P. chrysosporium INA-12 was also able to utilize tall oil fatty acids for ligninase synthesis. An extracellular lipase activity was detected during the primary phase of growth in culture containing vegetable oils. On the other hand, ligninase production was 1.5-fold enhanced when olive oil cultures were supplemented with soybean asolectin as a phospholipid source. In cultures supplied with olive oil plus asolectin, P. chrysosporium INA-12 mycelium exhibited a preferential enrichment of oleic acid (C18:1), phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) as compared to lipid-free medium. PC and LPC enrichment was associated with an increased ratio of saturated versus unsaturated fatty acids of phospholipids.  相似文献   

16.
Microbial modification of naturally occurring materials is one of the efficient ways to add new values to them. Hydroxylation of free unsaturated fatty acids by microorganism is a good example of those modifications. Among microbial strains studied for that purpose, a new bacterial isolate Pseudomonas aeruginosa PR3 has been well studied to produce several hydroxy fatty acids from different unsaturated fatty acids. Of those hydroxy fatty acids, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) was efficiently produced from oleic acid by strain PR3. However, it was highly plausible to use vegetable oil containing oleic acid rather than free oleic acid as a substrate for DOD production by strain PR3. In this study, we firstly tried to use olive oil containing high content of oleic acid as a substrate for DOD production. DOD production from olive oil was confirmed by structural determination with GC, TLC, and GC/MS analysis. DOD production yield from olive oil was 53.5%. Several important environmental factors were also tested. Galactose and glutamine were optimal carbon and nitrogen sources, and magnesium ion was critically required for DOD production from olive oil. Results from this study demonstrated that natural vegetable oils containing oleic acid could be used as efficient substrate for the production of DOD by strain PR3.  相似文献   

17.
The genus Streptomyces comprises bacteria that undergo a complex developmental life cycle and produce many metabolites of importance to industry and medicine. Streptomyces clavuligerus produces the β-lactamase inhibitor clavulanic acid, which is used in combination with β-lactam antibiotics to treat certain β-lactam resistant bacterial infections. Many aspects of how clavulanic acid production is globally regulated in S. clavuligerus still remains unknown. We conducted comparative proteomics analysis using the wild type strain of S. clavuligerus and two mutants (ΔbldA and ΔbldG), which are defective in global regulators and vary in their ability to produce clavulanic acid. Approximately 33.5 % of the predicted S. clavuligerus proteome was detected and 192 known or putative regulatory proteins showed statistically differential expression levels in pairwise comparisons. Interestingly, the expression of many proteins whose corresponding genes contain TTA codons (predicted to require the bldA tRNA for translation) was unaffected in the bldA mutant.  相似文献   

18.
Streptomyces clavuligerus is a Gram‐positive bacterium that is a high producer of secondary metabolites with industrial applications. The production of antibiotics such as clavulanic acid or cephamycin has been extensively studied in this species; nevertheless, other aspects, such as evolution or ecology, have received less attention. Furthermore, genes that arise from ancient events of lateral transfer have been demonstrated to be implicated in important functions of host species. This approximation discovered relevant genes that genomic analyses overlooked. Thus, we studied the impact of horizontal gene transfer in the S. clavuligerus genome. To perform this task, we applied whole‐genome analysis to identify a laterally transferred sequence from different domains. The most relevant result was a putative antimicrobial peptide (AMP) with a clear origin in the Hymenoptera order of insects. Next, we determined that two copies of these genes were present in the megaplasmid pSCL4 but absent in the S. clavuligerus ATCC 27064 chromosome. Additionally, we found that these sequences were exclusive to the ATCC 27064 strain (and so were not present in any other bacteria) and we also verified the expression of the genes using RNAseq data. Next, we used several AMP predictors to validate the original annotation extracted from Hymenoptera sequences and explored the possibility that these proteins had post‐translational modifications using peptidase cleavage prediction. We suggest that Hymenoptera AMP‐like proteins of S. clavuligerus ATCC 27064 may be useful for both species adaptation and as an antimicrobial molecule with industrial applications.  相似文献   

19.
Vegetable oils were investigated to evaluate their potential to act as the sole carbon source for production of cephamycin C in shake and jar-fermentor cultures. Soybean oil was the best carbon source for cephamycin C production. Bioautography and HPLC analyses showed that cephamycin C was exclusively produced even when soybean oil was used as the sole cabon source. The optimal pH and initial concentration of soybean oil was 7.5 and 7 g/l, respectively. Both pH and the pH-control agent affected cephamycin C production, and among phosphoric acid, acetic acid and sulfuric acid, phosphoric acid was associated with the best production. Soybean oil was slowly consumed after the soluble nitrogen source was consumed. When the initial soybean oil concentration was 7 g/l, cephamycin C production was maximal, 2.0 g/l, which was twice as high as that from starch. The product yield from soybean oil was 4.7 times higher than that from starch. These results show that vegetable oils, which are cheaper than other carbon sources, could be used as the sole carbon source in the production of antibiotics. Correspondence to: M. Okabe  相似文献   

20.
Some properties of an extracellular lipase produced byLactobacillus delbrueckii subsp.bulgaricus were studied. Maximum enzyme activity was found against olive and butter oil as enzyme substrates. Addition of 9% acacia gum, 0.1% Na-deoxycholate and 0.01 M CaCl2 to the enzyme reaction mixture increased-lipase activity from 5.3 to 14.5 (FFA/mg protein/minute) at pH 6.0 and at 40° C. Maximum lipase production was reached in the presence of glucose as a sole source of carbon, wheat bran as nitrogen source, olive oil as a sole lipid source and butyric acid as fatty acid supporting the growth medium. An initial pH value of the culture medium of 6.0 and a temperature of 35° C gave the highest lipolytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号