首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have recently reported that a ~19‐kDa polypeptide, rPK‐4, is a protein kinase Cs inhibitor that is 89% homologous to the 1171–1323 amino acid region of the 228‐kDa human pericentriolar material‐1 (PCM‐1) protein (Chakravarthy et al. 2012). We have now discovered that rPK‐4 binds oligomeric amyloid‐β peptide (Aβ)1‐42 with high affinity. Most importantly, a PCM‐1‐selective antibody co‐precipitated Aβ and amyloid β precursor protein (AβPP) from cerebral cortices and hippocampi from AD (Alzheimer's disease) transgenic mice that produce human AβPP and Aβ1‐42, suggesting that PCM‐1 may interact with amyloid precursor protein/Aβ in vivo. We have identified rPK‐4′s Aβ‐binding domain using a set of overlapping synthetic peptides. We have found with ELISA, dot‐blot, and polyacrylamide gel electrophoresis techniques that a ~ 5 kDa synthetic peptide, amyloid binding peptide (ABP)‐p4‐5 binds Aβ1‐42 at nM levels. Most importantly, ABP‐p4‐5, like rPK‐4, appears to preferentially bind Aβ1‐42 oligomers, believed to be the toxic AD‐drivers. As expected from these observations, ABP‐p4‐5 prevented Aβ1‐42 from killing human SH‐SY5Y neuroblastoma cells via apoptosis. These findings indicate that ABP‐p4‐5 is a possible candidate therapeutic for AD.  相似文献   

2.
To investigate the pharmacological mechanism of the traditional Chinese medicine, Pulsatilla decoction (PD), the levels of nitric oxide (NO), endothelin‐1 (ET‐1), tumor necrosis factor‐α (TNF‐α), and interleukin‐1α (IL‐1α) secreted by cultured rat intestinal microvascular endothelial cells (RIMECs) were determined after treatment with PD and its seven active ingredients, namely anemoside B4, anemonin, berberine, jatrorrhizine, palmatine, aesculin, and esculetin. RIMECs were challenged with lipopolysaccharide (LPS) at 1 µg ml?1 for 3 h and then treated with PD at 1, 5, and 10 mg ml?1 and its seven ingredients at 1, 5, and 10 µg ml?1 for 21 h, respectively. The results revealed that PD, anemonin, berberine, and esculetin inhibited the production of NO; PD, anemonin, and esculetin inhibited the secretion of ET‐1; PD, anemoside B4, berberine, jatrorrhizine, and aesculin downregulated TNF‐α expression; PD, anemoside B4, berberine, and palmatine decreased the content of IL‐1α. It showed that PD and its active ingredients could significantly inhibit the secretion of NO, ET‐1, TNF‐α, and IL‐1α in LPS‐induced RIMECs and suggested they would reduce inflammatory response via these cytokines. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Leaf-color mutants play an important role in the study of chlorophyll metabolism, chloroplast development, and photosynthesis system. In this study, the yellow leaf 1 (yl1) rice mutant was identified from the ethyl methane sulfonate-treated mutant progeny of Lailong, a glutinous japonica rice landrace cultivated in Guizhou Province, China. Results showed that yl1 exhibited yellow leaves with decreased chlorophyll content throughout the growth period. Chloroplast development in the yl1 mutant was disrupted, and the grana lamellae was loosely packed and disordered. RNA sequencing and real-time quantitative polymerase chain reaction (qRT-PCR) analysis revealed that the chlorophyll synthesis-related genes OsCHLH, OsCHLM, OsCHLG, PORB, and YGL8, as well as the chloroplast development-related genes FtsZ, OsRpoTp, and RbcL, were down-regulated in the yl1 mutant. Genetic analysis revealed that the yellow leaf phenotype of yl1 was controlled by recessive nuclear gene. By employing the MutMap method, the mutation responsible for the phenotype was mapped to a 6.17 Mb region between 17.34 and 23.51 Mb on chromosome 3. Two non-synonymous single-nucleotide polymorphisms (SNPs) located in the gene locus LOC_Os03g31210 and LOC_Os03g36760 were detected in this region. The two SNPs were further confirmed by PCR and Sanger sequencing. The expression patterns of the two candidate genes indicated that LOC_Os03g36760 showed greater potential for functional verification. Subcellular protein localization revealed that the encoded product of LOC_Os03g36760 was localized in the nucleus, cytoplasm, and plasma membrane. These results will be useful for further characterization and cloning of the yl1 gene, and for research on the molecular mechanisms controlling biogenesis and chloroplast biochemical processes.  相似文献   

4.
BACKGROUND: Bryostatin‐1, a highly oxygenated marine macrolide with a unique polyacetate backbone isolated from the marine animal Bugula neritina (Linnaeus), is now being developed as an anti‐cancer drug for treating malignancy. In the present study, developmental toxicity of bryostatin‐1 was evaluated in Sprague–Dawley rats. METHODS: Bryostatin‐1 was intravenously administered to rats on gestation days 6–15 at 4.0, 8.0, and 16.0 µg/kg on a daily basis. Then the reproductive parameters were determined in animals, and fetuses were examined for external, visceral, and skeletal malformations. RESULTS: The total weight gains were significantly different in animals between the control group and 8.0 and 16.0 µg/kg bryostatin‐1 groups during and after treatment. The resorption and death fetus rates were significantly different between the bryostatin‐1 group (16 µg/kg) and the control group. The fetal weight and fetal crown‐rump length in the bryostatin‐1 groups were significantly lower than that in the control group. CONCLUSIONS: Our results indicated that maternal toxicity occurred when the dose of bryostatin‐1 was at 8.0 µg/kg, embryotoxicity at 16.0 µg/kg, and fetotoxicity at 4.0 µg/kg; but bryostatin‐1 showed no teratogenic effect in rats. In light of our findings, bryostatin‐1 should be used with caution in pregnant women with cancer, if they would like to continue the pregnancy. Birth Defects Res (Part B) 89:171–174, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
6.
7.
8.
9.
10.
SNF1‐related protein kinase–1 (SnRK1), the plant kinase homolog of mammalian AMP‐activated protein kinase (AMPK), is a sensor that maintains cellular energy homeostasis via control of anabolism/catabolism balance. AMPK‐dependent phosphorylation of p27KIP1 affects cell‐cycle progression, autophagy and apoptosis. Here, we show that SnRK1 phosphorylates the Arabidopsis thaliana cyclin‐dependent kinase inhibitor p27KIP1 homologs AtKRP6 and AtKRP7, thus extending the role of this kinase to regulation of cell‐cycle progression. AtKRP6 and 7 were phosphorylated in vitro by a recombinant activated catalytic subunit of SnRK1 (AtSnRK1α1). Tandem mass spectrometry and site‐specific mutagenesis identified Thr152 and Thr151 as the phosphorylated residues on AtKRP6‐ and AtKRP7, respectively. AtSnRK1 physically interacts with AtKRP6 in the nucleus of transformed BY–2 tobacco protoplasts, but, in contrast to mammals, the AtKRP6 Thr152 phosphorylation state alone did not modify its nuclear localization. Using a heterologous yeast system, consisting of a cdc28 yeast mutant complemented by A. thaliana CDKA;1, cell proliferation was shown to be abolished by AtKRP6WT and by the non‐phosphorylatable form AtKRP6T152A, but not by the phosphorylation‐mimetic form AtKRP6T152D. Moreover, A. thaliana SnRK1α1/KRP6 double over‐expressor plants showed an attenuated AtKRP6‐associated phenotype (strongly serrated leaves and inability to undergo callogenesis). Furthermore, this severe phenotype was not observed in AtKRP6T152D over‐expressor plants. Overall, these results establish that the energy sensor AtSnRK1 plays a cardinal role in the control of cell proliferation in A. thaliana plants through inhibition of AtKRP6 biological function by phosphorylation.  相似文献   

11.
We investigated the effect of 2,6‐dimethoxy‐1,4‐benzoquinone (DMBQ) on induced resistance to Magnaporthe oryzae in rice. DMBQ concentrations greater than 50 μg/ml inhibited spore germination and appressorium formation in M. oryzae. When rice leaves pretreated with 10 μg/ml DMBQ, which did not show antifungal activity against spore germination and appressorium formation of M. oryzae, were inoculated with M. oryzae spores 5 days after DMBQ pretreatment, blast lesion formation was inhibited compared with control leaves pretreated with distilled water. In addition, infection‐inhibiting activity against M. oryzae was significantly enhanced in rice leaf sheaths pretreated with 10 μg/ml DMBQ. H2O2 generation was observed in rice leaves pretreated with DMBQ, and PAL, POX, CHS and PR10a were significantly expressed in these leaves. These results suggested that DMBQ can protect rice from blast disease caused by M. oryzae.  相似文献   

12.
13.
14.
Plasmodesmata (PD) are microscopic pores connecting plant cells and enable cell‐to‐cell transport. Currently, little information is known about the molecular mechanisms regulating PD formation and development. To uncover components of PD development we made use of the 17 kDa movement protein (MP17) encoded by the Potato leafroll virus (PLRV). The protein is required for cell‐to‐cell movement of the virus and localises to complex PD. Forward genetic screening for Arabidopsis mutants with altered PD binding of MP17 revealed several mutant lines, while molecular genetics, biochemical and microscopic studies allowed further characterisation. Map‐based cloning of one mutant revealed a point mutation in the choline transporter‐like 1 (CHER1) protein, changing glycine247 into glutamate. Mutation in CHER1 resulted in a starch excess phenotype and stunted growth. Ultrastructure analysis of shoot apical meristems, developing and fully developed leaves showed reduced PD numbers and the absence of complex PD in fully developed leaves. This indicates that cher1 mutants are impaired in PD formation and development. Global lipid profiling revealed only slight modifications in the overall lipid composition, however, altered composition of PD‐associated lipids cannot be ruled out. Thus, cher1 is devoid of complex PD in developed leaves and provides insights into the formation of complex PD at the molecular level.  相似文献   

15.
16.
Thyroid cancer (TC) is a prevalent endocrine malignant cancer whose pathogenic mechanism remains unclear. The aim of the study was to investigate the roles of long non‐coding RNA (lncRNA) NR2F1‐AS1/miRNA‐338‐3P/CCND1 axis in TC progression. Differentially expressed lncRNAs and mRNAs in TC tissues were screened out and visualized by R program. Relative expression of NR2F1‐AS1, miRNA‐338‐3p and cyclin D1 (CCND1) was determined by quantitative real time polymerase chain reaction. In addition, Western blot analysis was adopted for evaluation of protein expression of CCND1. Targeted relationships between NR2F1‐AS1 and miRNA‐338‐3p, as well as miRNA‐338‐3p and CCND1 were predicted using bioinformatics analysis and validated by dual‐luciferase reporter gene assay. Besides, tumour xenograft assay was adopted for verification of the role of NR2F1‐AS1 in TC in vivo. NR2F1‐AS1 and CCND1 were overexpressed, whereas miRNA‐338‐3p was down‐regulated in TC tissues and cell lines. Down‐regulation of NR2F1‐AS1 and CCND1 suppressed proliferation and migration of TC cells yet greatly enhanced cell apoptotic rate. Silence of NR2F1‐AS1 significantly suppressed TC tumorigenesis in vivo. NR2F1‐AS1 sponged miRNA‐338‐3p to up‐regulate CCND1 expression to promote TC progression. Our study demonstrated that up‐regulation of NR2F1‐AS1 accelerated TC progression through regulating miRNA‐338‐3P/CCND1 axis.  相似文献   

17.
BRI1‐ASSOCIATED KINASE 1 (BAK1) was initially identified as a co‐receptor of the brassinosteroid (BR) receptor BRI1. Genetic analyses also revealed that BAK1 and its closest homolog BAK1‐LIKE 1 (BKK1) regulate a BR‐independent cell‐death control pathway. The double null mutant bak1 bkk1 displays a salicylic acid‐ and light‐dependent cell‐death phenotype even without pathogen invasion. Molecular mechanisms of the spontaneous cell death mediated by BAK1 and BKK1 remain unknown. Here we report our identification of a suppressor of bak1 bkk1 (sbb1–1). Genetic analyses indicated that cell‐death symptoms in a weak double mutant, bak1–3 bkk1–1, were completely suppressed by the loss‐of‐function mutation in SBB1, which encodes a nucleoporin (NUP) 85‐like protein. Genetic analyses also demonstrated that individually knocking out three other nucleoporin genes from the SBB1‐located sub‐complex was also able to rescue the cell‐death phenotype of bak1–3 bkk1–1. In addition, a DEAD‐box RNA helicase, DRH1, was identified in the same protein complex as SBB1 via a proteomic approach. The drh1 mutation also rescues the cell‐death symptoms of bak1–3 bkk1–1. Further analyses indicated that export of poly(A)+ RNA was greatly blocked in the nup and drh1 mutants, resulting in accumulation of significant levels of mRNAs in the nuclei. Over‐expression of a bacterial NahG gene to inactivate salicylic acid also rescues the cell‐death phenotype of bak1–3 bkk1–1. Mutants suppressing cell‐death symptoms always showed greatly reduced salicylic acid contents. These results suggest that nucleocytoplasmic trafficking, especially of molecules directly or indirectly involved in endogenous salicylic acid accumulation, is critical in BAK1‐ and BKK1‐mediated cell‐death control.  相似文献   

18.
Mutagenized populations have provided important materials for introducing variation and identifying gene function in plants. In this study, an ethyl methanesulfonate (EMS)‐induced soybean (Glycine max) population, consisting of 21,600 independent M2 lines, was developed. Over 1,000 M4 (5) families, with diverse abnormal phenotypes for seed composition, seed shape, plant morphology and maturity that are stably expressed across different environments and generations were identified. Phenotypic analysis of the population led to the identification of a yellow pigmentation mutant, gyl, that displayed significantly decreased chlorophyll (Chl) content and abnormal chloroplast development. Sequence analysis showed that gyl is allelic to MinnGold, where a different single nucleotide polymorphism variation in the Mg‐chelatase subunit gene (ChlI1a) results in golden yellow leaves. A cleaved amplified polymorphic sequence marker was developed and may be applied to marker‐assisted selection for the golden yellow phenotype in soybean breeding. We show that the newly developed soybean EMS mutant population has potential for functional genomics research and genetic improvement in soybean.  相似文献   

19.
Our experiments have previously demonstrated that rutin (RUT) can improve myocardial damage caused by pirarubicin (THP). However, the underlying molecular mechanisms remain uncertain. In this study, we developed an microRNA (miRNA) chip by replicating the rat model of THP‐induced myocardial injury and identified miR‐22‐5p and the RAP1‐member of RAS oncogene family/extracellular regulated protein kinases (RAP1/ERK) signaling pathway as an object of study. Also, in vivo experiments demonstrated that THP caused abnormal changes in the electrocardiogram, cardiac function, and histomorphology in rats (P < .01). THP also reduces the expression of miR‐22‐5p (P < .01) and increases the levels of RAP1/ERK signaling pathway‐related proteins (P < .01, P < .05). RUT significantly improved THP‐induced myocardial damage (P < .01), increased the expression of miR‐22‐5p (P < .01), and decreased the levels of RAP1/ERK signaling pathway‐related proteins (P < .01, P < .05). In vitro studies confirmed that Rap1a is one of the target genes of miR‐22‐5p. miR‐22‐5p overexpression in cardiomyocytes can affect the RAP1/ERK pathway and reduce reactive oxygen species production and cardiomyocyte apoptosis caused by THP (P < .01), which is consistent with the effect of RUT. Our results indicate that RUT treats THP‐induced myocardial damage, which may be achieved by upregulating miR‐22‐5p, causing changes in its target gene Rap1a and the RAP1/ERK pathway.  相似文献   

20.
Systemic acquired resistance (SAR) is a plant defence response that provides immunity to distant uninfected leaves after an initial localised infection. The lipid transfer protein (LTP) Defective in Induced Resistance1 (DIR1) is an essential component of SAR that moves from induced to distant leaves following a SAR‐inducing local infection. To understand how DIR1 is transported to distant leaves during SAR, we analysed DIR1 movement in transgenic Arabidopsis lines with reduced cell‐to‐cell movement caused by the overexpression of Plasmodesmata‐Located Proteins PDLP1 and PDLP5. These PDLP‐overexpressing lines were defective for SAR, and DIR1 antibody signals were not observed in phloem sap‐enriched petiole exudates collected from distant leaves. Our data support the idea that cell‐to‐cell movement of DIR1 through plasmodesmata is important during long‐distance SAR signalling in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号