首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Abstract Intense cyclones might be expected to adversely affect populations of arboreal mammals, either directly or as a consequence of the destruction of food resources and other key habitat elements. However, such impacts have rarely been quantified. The present study examined the response of five species of arboreal folivorous marsupials to Severe Cyclone Larry at nine sites in upland rainforests of the Atherton Tableland, north‐east Australia. Sites were originally surveyed for folivores in 1995–1997, and then resurveyed in 2006, 6–8 months after Cyclone Larry had traversed the region. All sites showed evidence of structural damage to vegetation, but overall damage levels (assessed in terms of canopy cover, damage to trees, basal area of dead trees and volume of woody debris) decreased from east to west across the study region. The detectability of rainforest possums increased after the cyclone. For the most commonly observed species, the proportion of individuals observed >5 m from survey transects was correlated with the amount of structural damage to vegetation. To avoid confounding changes in detectability with changes in abundance, only observations close (<5 m) to transects were used to estimate folivore abundance before and after the cyclone. On this basis, there were no significant differences between pre‐ and post‐cyclone abundance estimates for any folivore species. Further, changes in folivore abundance after the cyclone were not correlated with damage to vegetation across sites. Cyclone Larry does not appear to have caused a catastrophic loss of key habitat resources for marsupial folivores at the sites surveyed. The high degree of folivory practiced by marsupial folivores may help make them resilient to cyclone impacts. These conclusions are more robust for three commonly observed folivore species (Hemibelideus lemuroides, Pseudochirulus herbertensis and Trichosurus vulpecula johnstonii) than for two less frequently encountered species (Pseudochirops archeri and Dendrolagus lumholtzi).  相似文献   

2.
Abstract Severe category 4 Tropical Cyclone Larry, which crossed north‐east Queensland on 20 March 2006, provided a unique opportunity to examine the short‐term impacts of a major disturbance event on the population of a highly mobile threatened species, Pteropus conspicillatus. As we had recorded, the species’ population distribution in colonial roosts (camps) across the region each month for almost 2 years prior to Cyclone Larry, we continued monthly surveying of P. conspicillatus camp‐sites for a year post‐cyclone. Here we report on how P. conspicillatus responded and redistributed immediately after the cyclone, and over the subsequent year. Post‐cyclone, P. conspicillatus typically roosted in smaller camps than pre‐cyclone, suggesting that these animals had largely dispersed to locate available blossoms and fruit. For 6 months after Cyclone Larry, up to 90% of the pre‐cyclone P. conspicillatus population (ca. 250 000) was unaccounted for across the region. Information provided by the general public assisted us in locating six small camps of P. conspicillatus at ‘new’ locations, but contributed little to increase our overall population estimate for the species at this time. After November 2006, the number of P. conspicillatus built up at located camp‐sites until a post‐cyclone peak of 209 000 at the end of the study in March 2007, comparable with the population estimates in March 2005 and 2006. There is no evidence that the cyclone caused significant direct mortality among P. conspicillatus, although there may yet be longer‐term and indirect effects on population size. We suggest that redistribution by P. conspicillatus makes sense ecologically in the face of major habitat disturbance and short‐ to long‐term food resource limitation, and is not unlike the response of other Australian mainland Pteropus species to seasonal changes in food availability.  相似文献   

3.
Abstract This study investigated the feeding ecology of the green ringtail possum, Pseudochirops archeri (Pseudocheiridae) in a tropical rainforest with 94 plant species in the canopy. Over 50% of tree use was from only four tree species, Aleurites rockinghamensis, Ficus fraseri, Arytera divaricata and Ficus copiosa. These species were used significantly more frequently than would be expected if tree species were selected randomly in proportion to their relative abundance in the forest. Conversely, 88 other tree species present were used less frequently than expected. Possums also favoured particular individual trees within some of the preferred tree species. In 91% of feeding observations, possums consumed mature leaves only. The availability of young leaves, flowers and fruit varied throughout the year, with a peak in availability of these resources during the early wet season. By primarily selecting mature leaves, green ringtail possums reduce their dependence on seasonally variable resources. We suggest that green ringtail possums should be considered as specialist folivores, focusing on only a few of the tree species available, possibly due to advantages associated with limiting the number of plant secondary metabolites in their diet. Furthermore, they favour certain individual trees within species, perhaps due to intraspecific variation in plant secondary metabolites or nutrient content, behaviour that has been well established in eucalypt folivores. We conclude that green ringtail possums are highly specialized in their feeding ecology, limiting their diet to a small number of continuously available food items.  相似文献   

4.
Abstract Bird surveys were conducted to assess the impact of a severe cyclone on bird communities in three fragments of the endangered rainforest Type 5b on the Atherton Tablelands of far north Queensland. Bird communities were surveyed using timed area searches in three sites in each of the three fragments and were undertaken prior to and following Tropical Cyclone Larry. Cyclone Larry caused short‐term changes in the abundance of some species of birds in Type 5b rainforest fragments. Two weeks after the storm, in two of three fragments surveyed, abundance of the frugivorous wompoo fruit‐dove (Ptilinopus magnificus) and figbird (Sphecotheres viridis) had decreased while the omnivorous Macleay's honeyeater (Xanthotis macleayana) and Lewin's honeyeater (Meliphaga lewinii) decreased in abundance in all three locations. Most insectivorous species increased in some sites and decreased in others following Cyclone Larry. Rapid recovery of bird communities to approximately their pre‐cyclone state after only 7 months appeared to reflect the capacity of species to either modify their foraging behaviour, switch foods, or to move within or between fragments or to other food sources in the landscape.  相似文献   

5.
Abstract Ecological degradation within areas of remnant forest may be amplified if the effects of fragmentation interact with the effects of other environmental disturbances such as wind storms. We used before–after comparisons to assess the effects of Tropical Cyclone Larry on remnant and continuous rainforest in the Wet Tropics uplands of north‐eastern Australia. Vegetation structure was measured 3 years before the cyclone and 6 months afterwards, at eight continuous forest sites and eight remnants (6–37 ha), within 20 km of the cyclone's track. The cyclone caused extensive defoliation, felling and breakage of stems and branches (greatest among the trees >100 cm diameter which had around 50% stem loss), and increased litter and woody debris. Cyclone effects were strongly influenced by a site's spatial position (P = 0.005, 0.001 in multivariate analyses of overall damage). Maximum damage occurred 10–15 km south of the cyclone track, perhaps because of the additive effects of the west‐moving air at the southern eyewall combined with the cyclone's own rapid westward movement. Most fragments were south of the cyclone track, as a consequence of spatially selective deforestation practices, and therefore, showed greatest damage. However, once the effects of spatial position were considered, the independent differences in cyclone effects between fragments and continuous forest were lost (P = 0.23, 0.41 when north‐south distance was included as a covariate in analyses). The expected protection afforded by a continuous forest canopy seems to have disappeared in the face of extremely strong cyclonic winds and down‐draughts. Nevertheless, an interaction between fragmentation and disturbance may yet occur, during the period of post‐cyclone recovery, owing to the effects of landscape context on plant recruitment. For example, there was a higher diversity of exotic seedling germination in fragments, independent of the extent of cyclone damage.  相似文献   

6.
Madagascar's ecosystems are subject to high levels of anthropogenic disturbance and stochastic events, including cyclones. We investigated the abundance of gray‐headed lemurs (Eulemur cinereiceps) and vegetation structure in the fragmented forest of Manombo from 1995 to 2007, including 10 yr following Cyclone Gretelle in January 1997. We predicted that the density of this arboreal, frugivorous lemur would be similar in the pre‐ and post‐cyclone intervals only if tree measures demonstrate trends toward recovery in the post‐cyclone period. Initial impacts included severe damage to over 60 percent of trees. After 10 yr, all vegetation metrics except for stem density remained low relative to the pre‐cyclone period, including dbh, height, and basal area. To investigate vegetation changes separately from cyclone effects, we compared forest structure in the pre‐cyclone period alone. Basal area declined but dbh and stem density did not vary between 1995 and 1997; thus, anthropogenic activities or other factors did not consistently alter forest structure in this 2‐yr period. Subsequent changes may be linked to cyclone response, presumably in synergy with human disturbance. Contrary to predictions, recent gray‐headed lemur population densities were nearly identical to those recorded in 1995 (13.5 ± 3.2 vs. 13.6 ± 6.4 individuals/km2, respectively). Lemur populations may have remained stable or declined initially and then recovered in the last 10 yr. Life history and ecological adaptations may explain their resistance or resilience when faced with habitat change. Recent models suggest that lemurs have evolved in response to unpredictable environmental conditions. Such environmental variability may increase with projected climate change.  相似文献   

7.
Abstract Cyclone Larry (category 4) was the most severe cyclone to impact on the Wet Tropics bioregion since the devastating 1918 Innisfail cyclone. Based on an analysis of earlier cyclones impacting on this region over the period 1856–2006, it was determined that Larry was a ‘1 in 50 year’ event. This paper provides an overview of the landscape‐scale impacts of Larry on the forest ecosystems of the Wet Tropics region, based on low‐level helicopter surveys 2 weeks after the event. Cyclone Larry has been described as a ‘midget’ cyclone. Severe forest damage only extended about 30 km from the central track of the cyclone while moderate to severe damage extended some 50 km. Moderate to slight canopy disturbance was rarely identified more than 75 km from the centre of the cyclone's track. Beyond 75 km, forest damage was restricted to exposed areas of elevated terrain and in places exposed to strong lee (gravity) waves from the west. The ecological role of cyclones as important disturbance agents affecting the structure and function of forest ecosystems in the region is discussed, followed by an evaluation of likely effects of climate change on cyclone frequency and intensity.  相似文献   

8.
Abstract Cyclones cause profound immediate impacts on tropical rainforest trees, including defoliation, limb loss, snapping of stems and uprooting. Some studies have shown that plant functional traits such as tree size, buttress roots and wood density are correlated with these forms of cyclone damage. On 20 March 2006, Severe Tropical Cyclone Larry crossed the north Queensland coast and proceeded inland across the Atherton Tablelands, impacting the critically endangered Mabi Type 5b rainforest. We investigated the effects of Cyclone Larry on common tree species by categorizing damage to trees as uprooted, snapped, limbs damaged (light, moderate, severe) or upright and estimating levels of defoliation. Damage was then related to functional traits including tree size, presence of buttress roots, wood density, and leaf size and strength. Levels of damage differed between species. Tree size (diameter at breast height) and the presence of buttress roots were not related to damage levels. Wood density was significantly negatively correlated to proportion of trees with snapped stems and significantly positively correlated with the proportion of trees upright with no or light limb damage. Levels of defoliation were significantly related to leaf strength (specific leaf area – SLA) and to leaf width, but not other components of leaf size (area or length) or petiole length. Species with high wood density and low SLA (e.g. Argyrodendron spp.) were found to have high cyclone resistance, the ability to resist damage, while species with low wood density and high SLA (e.g. Dendrocnide photinophylla) exhibited low resistance. However, traits related to low resistance are also those linked to rapid growth and high cyclone resilience, the ability to recover from damage, so it is unlikely that the Mabi forest will experience long‐term changes in floristic composition following Cyclone Larry.  相似文献   

9.
Abstract We examined the impact of severe cyclone ‘Larry’ on the vegetation structure of monoculture and mixed species timber plantations, restoration plantings and reference sites in upland rainforests on the Atherton Tableland, north Queensland, Australia. Sites were initially assessed in 2000 and resurveyed in 2006, 6–8 months after the cyclone traversed the region. In both surveys, timber plantations had a relatively open canopy, grassy understorey and few shrubs or small‐sized trees; whereas restoration plantings had a relatively closed canopy, an understorey of bare ground, leaf litter and rainforest seedlings, a high density of small‐diameter trees and a moderate representation of special life forms characteristic of rainforest. Cyclone damage varied with tree size, site type, proximity to the cyclone and stem density. First, the proportion of trees that were severely damaged by the cyclone (major branches broken, stem snapped or pushed over) increased with the diameter of trees across all site types. Second, damage to larger‐sized trees (>10 cm d.b.h., >20 cm d.b.h.) was proportionally highest in monoculture plantations, intermediate in mixed species plantations and rainforest, and lowest in restoration plantings. Third, within site types, damage levels decreased with distance from the cyclone track and with stem density. There was no evidence that topographical position influenced damage levels, at least for timber plantations. We tentatively attribute the high levels of damage experienced by timber plantations to their relatively open structure and the large size of stems in plantations. Restoration plantings generally escaped severe damage by the cyclone, but their continued development towards rainforest conditions may require a coordinated monitoring and maintenance programme to address the potential threat of weed invasion.  相似文献   

10.
Abstract Cyclones have been instrumental in shaping the structural and floristic composition of tropical forests, including tropical rainforests of north Queensland, Australia. The response of tropical riparian rehabilitation sites to cyclonic wind damage, however, is currently unknown. This lack of knowledge may severely hamper long‐term success of riparian restoration efforts, particularly in light of predictions that cyclones in north Queensland may become less frequent but more severe. In this study, we examined the extent, type and magnitude of damage inflicted on revegetation works in the Tully‐Murray floodplain of north Queensland by Severe Tropical Cyclone Larry. We compared wind damaged in 20 paired revegetated and associated rainforest remnant sites, using (i) gross community damage scores, (ii) mean weighted damage scores, and (iii) type of damage sustained by individual plants. Overall, wind damage due to Severe Tropical Cyclone Larry was surprisingly similar in revegetated and remnant sites. Both gross community damage scores and mean weighted damage scores did not differ between paired revegetated and remnant sites. In contrast, the type of damage sustained by individual plants was not independent of site, with a larger proportion in revegetated sites sustaining severe damage compared with remnant sites. This larger proportion of severely damaged individuals in revegetated sites was at least in part due to the significantly higher proportion of pioneers at these sites. The pioneer species Homalanthus novoguineensis was particularly susceptible to wind damage. The potential effects of spatial differences, such as consistent bias due to size, shape or exposure between the remnants and revegetated sites, on our results are discussed. In light of our results, we recommend that future revegetation sites include fewer pioneer species that are highly susceptible to wind damage, more pioneer species that are resistant to wind damage, and alteration of pioneer species distribution within planting matrices.  相似文献   

11.
Abstract Severe Tropical Cyclone Larry damaged a large swathe of rainforest to the west of Innisfail in north‐eastern Queensland on 20 March 2006. Within the path of the most destructive core of the cyclone were sites previously established along human‐made (powerlines and highways) and natural (streams) linear canopy openings for a study of edge effects on adjacent rainforest plant communities and associated microclimates. Vegetation damage and understorey microclimate parameters were measured 6 months after the passage of Cyclone Larry and compared with results before the cyclone. We examined the spatial patterns of vegetation damage in relation to natural and artificial linear clearing edges and the vegetation structural factors influencing these patterns as well as resulting alterations to microclimate regimes experienced in the rainforest understorey. Vegetation damage was spatially patchy and not elevated near linear clearing edges relative to the forest interior and did not differ between edge types. Vegetation damage was influenced, albeit relatively weakly, by structural traits of individual trees and saplings, especially size (diameter at breast height, d.b.h.) and successional status: tree damage was greater in pioneer species and in larger trees, while sapling damage was greater in canopy tree species than in understorey tree or shrub species. Changes in the understorey microclimate mirrored the degree of damage to vegetation. Where vegetation damage appeared greater, the understorey microclimate was brighter, warmer, drier and windier than below less‐damaged areas of the forest canopy. Overall, understorey light availability, wind speed and the diurnal ranges of air temperature and vapour pressure deficit increased dramatically after Cyclone Larry, while pre‐cyclone edge gradients in light availability were lost and temperature and vapour pressure deficit gradients were reversed.  相似文献   

12.
Although critically endangered western ringtail possums (Pseudocheirus occidentalis) have been recorded from a variety of vegetation types in southwestern Australia, the extent to which many of these vegetation types are occupied by the species remains unknown. We conducted spotlight surveys for western ringtail possums between March and April 2018 in Albany, southwestern Australia, to determine the species’ occupancy in 2 vegetation types. Using occupancy models, we demonstrated that sheoak (Allocasuarina fraseriana) woodlands, previously unrecognized as providing western ringtail possum habitat, support the species, although the median probability of their occupancy was lower than in marri (Corymbia calophylla) and eucalypt (Eucalyptus marginata and E. staeri) woodlands. Use of trees and other habitat components by western ringtail possums varied within and between vegetation types. Sheoak woodlands are likely critical for western ringtail possums and given the apparent flexibility in vegetation types used by the species, investigation of the potential value of other vegetation types for this species has conservation merit. © 2019 The Wildlife Society.  相似文献   

13.
Traditional approaches to the question of the effects of plant secondary metabolites on the feeding choices of folivores of Eucalyptus have focused on the tree species level, although numerous field studies of foraging behaviour have identified selection at the level of the individual trees. Attempts to relate these decisions to deterrency resulting from secondary leaf chemistry have been inconclusive because assays used have focused on broad groups of compounds such as “total” phenolics. In this study we have conducted no-choice feeding trials with two arboreal mammalian folivores, the common ringtail possum (Pseudocheirus peregrinus) and the koala (Phascolarctos cinereus), to measure deterrency of individual trees of two species of Eucalyptus, E. ovata and E. viminalis. Average daily intakes of E. ovata foliage by common ringtail possums ranged from 2.5 to 50 g kg−0.75 body mass. Koala intakes of foliage from the same individual trees ranged from 22.4 to 36.3 g kg−0.75 body mass. When fed foliage from different individual E. viminalis trees, common ringtail possums ate between 1.26 and 6.28 g kg−0.75 body mass while koalas ate from 14.3 to 45.9 g kg−0.75 body mass. Correlative analyses showed no relationships between feeding and several measures of nutritional quality, nor with total phenolics or condensed tannins. They did, however, identify two groups of plant secondary metabolites that may cause deterrency: terpenes, and a defined group of phenolic compounds, the diformylphloroglucinols (DFPs). Further bioassay experiments with common ringtail possums showed that only the DFPs could cause the effects seen with the foliage experiments at concentrations similar to those found in the leaves. We argue that, when in sufficiently high concentrations, DFPs determine the level of food intake by these animals irrespective of other questions of nutritional quality of the leaves. Received: 20 October 1997 / Accepted: 23 March 1998  相似文献   

14.
Cyclones are relatively infrequent, may cause massive and widespread disturbance to tropical regions, and are recognized as important determinants of the structure of tropical rainforest communities. Climate change scientists predict that the intensity of cyclones will increase in the future; understanding the long‐term implications of these major disturbances for tropical forest composition and structure will be vital in anticipating and adapting to future changes and impacts. We established a long‐term monitoring site in a rainforest area impacted by severe tropical Cyclone Larry which crossed the North Queensland coast of Australia in March 2006. We monitored recruitment, growth and mortality of nearly 17 000 seedlings in 90 quadrats across the study area for almost 5 years following the cyclone and measured the impact of variation in cyclone disturbance and debris load on community diversity, composition and dispersion as the forest recovered. We show that the level of structural disturbance sustained by the forest has a strong and immediate influence on community dynamics. Quadrats in severely disturbed areas, which were characterized by multiple treefalls and extensive canopy loss, had higher levels of diversity and variation in community assemblage than quadrats in areas characterized primarily by branch loss and defoliation. A rapid divergence in community composition between quadrats in the most‐ and least‐severely disturbed areas resulted in the development of statistically distinct community states across relatively small scales. This provides further evidence that severe cyclones are important in maintaining species diversity in tropical forests.  相似文献   

15.

Background

Buruli ulcer (BU) is a skin disease caused by Mycobacterium ulcerans, with endemicity predominantly in sub-Saharan Africa and south-eastern Australia. The mode of transmission and the environmental reservoir(s) of the bacterium and remain elusive. Real-time PCR investigations have detected M. ulcerans DNA in a variety of Australian environmental samples, including the faeces of native possums with and without clinical evidence of infection. This report seeks to expand on previously published findings by the authors'' investigative group with regards to clinical and subclinical disease in selected wild possum species in BU-endemic areas of Victoria, Australia.

Methodology/Principal Findings

Twenty-seven clinical cases of M. ulcerans infection in free-ranging possums from southeastern Australia were identified retrospectively and prospectively between 1998–2011. Common ringtail possums (Pseudocheirus peregrinus), a common brushtail possum (Trichosurus vulpecula) and a mountain brushtail possum (Trichosurus cunninghami) were included in the clinically affected cohort. Most clinically apparent cases were adults with solitary or multiple ulcerative cutaneous lesions, generally confined to the face, limbs and/or tail. The disease was minor and self-limiting in the case of both Trichosurus spp. possums. In contrast, many of the common ringtail possums had cutaneous disease involving disparate anatomical sites, and in four cases there was evidence of systemic disease at post mortem examination. Where tested using real-time PCR targeted at IS2404, animals typically had significant levels of M. ulcerans DNA throughout the gut and/or faeces. A further 12 possums without cutaneous lesions were found to have PCR-positive gut contents and/or faeces (subclinical cases), and in one of these the organism was cultured from liver tissue. Comparisons were made between clinically and subclinically affected possums, and 61 PCR-negative, non-affected individuals, with regards to disease category and the categorical variables of species (common ringtail possums v others) and sex. Animals with clinical lesions were significantly more likely to be male common ringtail possums.

Conclusions/Significance

There is significant disease burden in common ringtail possums (especially males) in some areas of Victoria endemic for M. ulcerans disease. The natural history of the disease generally remains unknown, however it appears that some mildly affected common brushtail and mountain brushtail possums can spontaneously overcome the infection, whereas some severely affected animals, especially common ringtail possums, may become systemically, and potentially fatally affected. Subclinical gut carriage of M. ulcerans DNA in possums is quite common and in some common brushtail and mountain brushtail possums this is transient. Further work is required to determine whether M. ulcerans infection poses a potential threat to possum populations, and whether these animals are acting as environmental reservoirs in certain geographical areas.  相似文献   

16.
A comprehensive and contemporary understanding of habitat and resource requirements has been critical to the conservation of multiple taxa and ecosystems globally. Until recently, much of the ecological knowledge that contributes to conservation priorities and strategies for the Critically Endangered western ringtail possum (Pseudocheirus occidentalis) was largely derived from decades‐old observations in peppermint (Agonis flexuosa) and marri‐jarrah (Corymbia calophylla and Eucalyptus marginanta) woodlands in the northern parts of the species range. These observations do not account for more recent evidence of their flexible use of habitat resources in other regions of its range. This may represent a significant conservation opportunity for the species through the identification of additional habitats that warrant protection. In a region where knowledge of their ecology is scarce, we used scat analysis and quantitative spotlighting to determine the diet and density of western ringtail possums in three vegetation types: peppermint, sheoak (Allocasuarina fraseriana) and marri‐eucalypt (C. calophylla, E. marginanta and Eucalyptus staerii) woodlands. Given the species’ reported dependence on peppermint woodlands and dominant canopy species for food sources, we hypothesised that western ringtail possums would be most abundant in this habitat type and that their diet would comprise the foliage of few (≤2 species) canopy species. We found western ringtail possums consumed a higher diversity of plant species than expected (8–14), exhibited dietary preference for non‐dominant canopy species and were present in all sampled vegetation types at substantially higher densities than previously recorded for the region (as high as 17 possums ha?1). Our results confirm (i) the western ringtail possum is flexible in its use of habitat resources and (ii) the significant conservation value of sheoak and marri‐eucalypt woodlands in the southernmost portion of its distribution.  相似文献   

17.
Abstract If changes in the structural characteristics of rainforest at edges are caused by wind, then physical damage from a tropical cyclone might be greatest at edges or in small fragments that have a high proportion of edge. We tested whether this was true of a fragmented rainforest landscape impacted by a category 4 severe tropical cyclone in March 2006. Six structural variables (canopy cover, canopy height, cover of ground vegetation, leaf litter, stem density and counts of woody debris) were surveyed at 18 rainforest sites (six small linear remnants, and both edges and interiors of six large remnants) on the Atherton Tableland in north‐eastern Queensland, Australia. Data collected 7 and 12 months after the passage of Cyclone Larry were compared with an identical survey conducted 4 years prior to the cyclone. The cyclone had large effects across many components of forest structure. However, sites within 30 m of forest edges in small and large remnants were not impacted more than the interiors of large remnants. It is likely that the high wind intensity from severe tropical cyclones overrides the modest wind protection provided by surrounding forest. The cyclone's effects were highly patchy at local scales (0.5–1.0 km), leading to an increase in among‐site variation in forest structure and the disappearance of significant spatial autocorrelation among large remnant edge‐interior site pairs which had existed prior to the cyclone. The main effect of Cyclone Larry at these study sites was to increase the spatial heterogeneity of forest structure at local scales.  相似文献   

18.
Only about 20 vertebrate species are known to feed regularly on tree sap. One of these is the yellow‐bellied glider (Petaurus australis), a marsupial that obtains between 16% and 80% of its diet from eucalypt sap. We reviewed the literature on sap feeding by the yellow‐bellied glider and identified 10 species from which it most frequently obtains sap. These species come mainly from a few sections of the subgenus Symphyomyrtus, which accounts for two‐thirds of over 2000 sap trees reported, but more specifically sections Latoangulatae and Maidenii within this subgenus. Some of these key species contain relatively high concentrations of foliar nutrients and each is an important food tree for at least one of the arboreal folivores – koala (Phascolarctos cinereus), greater glider (Petauroides volans), and common ringtail (Pseudocheirus peregrinus) and brushtail possums (Trichosurus vulpecula). Because yellow‐bellied gliders, like the arboreal folivores, prefer to feed from certain individuals within a species, we hypothesized that these trees possess a unique chemical signature that links sap‐feeding with the concentrations of available nitrogen and formylated phloroglucinol compounds in leaves – the nutritive and defensive chemicals that influence feeding on these species by marsupial folivores. We tested this hypothesis in samples of leaves and bark collected from E. punctata and E. viminalis but found no link between chemistry and sap feeding and conclude that other aspects of an individual tree, such as sap flow or sap chemistry, determine whether gliders will target it for sap.  相似文献   

19.
Abstract Severe Tropical Cyclone ‘Larry’ caused damage to 10 long‐term 0.5 ha monitoring plots in the rain forests of Queensland's Wet Tropics on 20 March 2006. We assessed the community‐level damage and the impact of the cyclone on the most abundant tree species in each plot. Damage was positively correlated with distance from the cyclone eye, though some plots received less damage than predicted owing to topographic shielding. Damage was patchy within plots, which is reflected in the range of damage‐classes recorded for each species, but there are broad trends in the type of response shown by different species. At the plot level, some species were either more susceptible or less susceptible to damage than the rest of the community. Species tended to show similar patterns of damage between plots with different community damage ratings. We discuss these response types in terms of adaptive tolerance to particular wind speeds and the trade‐off between frequently losing canopy volume in light winds, or rarely suffering substantial damage. We suggest that increased frequency of intense cyclones may affect the distribution of some species in the future, with those species most susceptible to high levels of damage at lower wind speeds becoming restricted to leeward‐facing slopes and upland areas away from the coast, and an increased abundance of resilient species in lowland coastal areas.  相似文献   

20.
Abstract We surveyed canopy damage in upland and lowland rainforests following Cyclone Larry, which severely impacted the Innisfail and Atherton Tableland regions in March 2006. An existing damage‐classification was used as a basis for field assessment of rainforest canopy damage. Our field measurements showed that the damage categories were not clearly separated. Upland and lowland sites significantly differed in tree fall variables and measures of forest structure. There was a difference in recruitment of disturbance indicator species owing to varying levels of coarse woody debris at sites. Aspect was not found to be a significant variable in predicting damage owing to complexity of topography and the cyclone wind field. Analysis of remotely sensed imagery indicated that only high damage levels could be reliably discerned. Areas of very rapid vegetation growth in severely damaged sites are most easily detected with vegetation indices based on both near infrared and short wave infrared data. Numbers of fallen trees and their trunk orientations can be reliably quantified using high resolution (sub‐metre) colour aerial photography. This permits some estimation of whether the wind field was unidirectional or locally vortical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号