首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Staphylococcus aureus is frequently isolated from patients with community‐acquired pneumonia and acute respiratory distress syndrome (ARDS). ARDS is associated with staphylococcal phosphatidylinositol‐specific phospholipase C (PI‐PLC); however, the role of PI‐PLC in the pathogenesis and progression of ARDS remains unknown. Here, we showed that recombinant staphylococcal PI‐PLC possesses enzyme activity that causes shedding of glycosylphosphatidylinositol‐anchored CD55 and CD59 from human umbilical vein endothelial cell surfaces and triggers cell lysis via complement activity. Intranasal infection with PI‐PLC‐positive S. aureus resulted in greater neutrophil infiltration and increased pulmonary oedema compared with a plc‐isogenic mutant. Although indistinguishable proinflammatory genes were induced, the wild‐type strain activated higher levels of C5a in lung tissue accompanied by elevated albumin instillation and increased lactate dehydrogenase release in bronchoalveolar lavage fluid compared with the plc? mutant. Following treatment with cobra venom factor to deplete complement, the wild‐type strain with PI‐PLC showed a reduced ability to trigger pulmonary permeability and tissue damage. PI‐PLC‐positive S. aureus induced the formation of membrane attack complex, mainly on type II pneumocytes, and reduced the level of CD55/CD59, indicating the importance of complement regulation in pulmonary injury. In conclusion, S. aureus PI‐PLC sensitised tissue to complement activation leading to more severe tissue damage, increased pulmonary oedema, and ARDS progression.  相似文献   

3.
The human genome encodes ~750 G‐protein‐coupled receptors (GPCRs), including prokineticin receptor 2 (PROKR2) involved in the regulation of sexual maturation. Previously reported pathogenic gain‐of‐function mutations of GPCR genes invariably encoded aberrant receptors with excessive signal transduction activity. Although in vitro assays demonstrated that an artificially created inactive mutant of PROKR2 exerted paradoxical gain‐of‐function effects when co‐transfected with wild‐type proteins, such a phenomenon has not been observed in vivo. Here, we report a heterozygous frameshift mutation of PROKR2 identified in a 3.5‐year‐old girl with central precocious puberty. The mutant mRNA escaped nonsense‐mediated decay and generated a GPCR lacking two transmembrane domains and the carboxyl‐terminal tail. The mutant protein had no in vitro signal transduction activity; however, cells co‐expressing the mutant and wild‐type PROKR2 exhibited markedly exaggerated ligand‐induced Ca2+ responses. The results indicate that certain inactive PROKR2 mutants can cause early puberty by enhancing the functional property of coexisting wild‐type proteins. Considering the structural similarity among GPCRs, this paradoxical gain‐of‐function mechanism may underlie various human disorders.  相似文献   

4.
5.
Mutation of staphylococcal accessory regulator (sarA) results in increased production of extracellular proteases in Staphylococcus aureus, which has been correlated with decreased biofilm formation and decreased accumulation of extracellular toxins. We used murine models of implant‐associated biofilm infection and S. aureus bacteraemia (SAB) to compare virulence of USA300 strain LAC, its isogenic sarA mutant, and derivatives of each of these strains with mutations in all 10 of the genes encoding recognized extracellular proteases. The sarA mutant was attenuated in both models, and this was reversed by eliminating production of extracellular proteases. To examine the mechanistic basis, we identified proteins impacted by sarA in a protease‐dependent manner. We identified 253 proteins where accumulation was reduced in the sarA mutant compared with the parent strain, and was restored in the sarA/protease mutant. Additionally, in SAB, the LAC protease mutant exhibited a hypervirulent phenotype by comparison with the isogenic parent strain, demonstrating that sarA also positively regulates production of virulence factors, some of which are subject to protease‐mediated degradation. We propose a model in which attenuation of sarA mutants is defined by their inability to produce critical factors and simultaneously repress production of extracellular proteases that would otherwise limit accumulation of virulence factors.  相似文献   

6.
Potassium (K+) plays a vital role in bacterial physiology, including regulation of cytoplasmic pH, turgor pressure and transmembrane electrical potential. Here, we examine the Staphylococcus aureus Ktr system uniquely comprised of two ion‐conducting proteins (KtrB and KtrD) and only one regulator (KtrA). Growth of Ktr system mutants was severely inhibited under K+ limitation, yet detectable after an extended lag phase, indicating the presence of a secondary K+ transporter. Disruption of both ktrA and the Kdp‐ATPase system, important for K+ uptake in other organisms, eliminated regrowth in 0.1 mM K+, demonstrating a compensatory role for Kdp to the Ktr system. Consistent with K+ transport mutations, S. aureus devoid of the Ktr system became sensitive to hyperosmotic conditions, exhibited a hyperpolarized plasma membrane, and increased susceptibility to aminoglycoside antibiotics and cationic antimicrobials. In contrast to other organisms, the S. aureus Ktr system was shown to be important for low‐K+ growth under alkaline conditions, but played only a minor role in neutral and acidic conditions. In a mouse competitive index model of bacteraemia, the ktrA mutant was significantly outcompeted by the parental strain. Combined, these results demonstrate a primary mechanism of K+ uptake in S. aureus and a role for this system in pathogenesis.  相似文献   

7.
Human glucose 6-phosphate dehydrogenase (G6PD) has both the “catalytic” NADP+ site and a “structural” NADP+ site where a number of severe G6PD deficiency mutations are located. Two pairs of G6PD clinical mutants, G6PDWisconsin (R393G) and G6PDNashville (R393H), and G6PDFukaya (G488S) and G6PDCampinas (G488V), in which the mutations are in the vicinity of the “structural” NADP+ site, showed elevated Kd values of the “structural” NADP+, ranging from 53 nM to 500 nM compared with 37 nM for the wild-type enzyme. These recombinant enzymes were denatured by Gdn-HCl and refolded by rapid dilution in the presence of l-Arg, NADP+ and DTT at 25 °C. The refolding yields of the mutants exhibited strong NADP+-dependence and ranged from 1.5% to 59.4% with 1000 μM NADP+, in all cases lower than the figure of 72% for the wild-type enzyme. These mutant enzymes also displayed decreased thermostability and high susceptibility to chymotrypsin digestion, in good agreement with their corresponding melting temperatures in CD experiments. Taken together, the results support the view that impaired binding of “structural” NADP+ can hinder folding as well as cause instability of these clinical mutant enzymes in the fully folded state.  相似文献   

8.
Staphylococcus aureus, a versatile Gram‐positive bacterium, is the main cause of bone and joint infections (BJI), which are prone to recurrence. The inflammasome is an immune signaling platform that assembles after pathogen recognition. It activates proteases, most notably caspase‐1 that proteolytically matures and promotes the secretion of mature IL‐1β and IL‐18. The role of inflammasomes and caspase‐1 in the secretion of mature IL‐1β and in the defence of S. aureus‐infected osteoblasts has not yet been fully investigated. We show here that S. aureus‐infected osteoblast‐like MG‐63 but not caspase‐1 knock‐out CASP1 ?/?MG‐63 cells, which were generated using CRISPR‐Cas9 technology, activate the inflammasome as monitored by the release of mature IL‐1β. The effect was strain‐dependent. The use of S. aureus deletion and complemented phenole soluble modulins (PSMs) mutants demonstrated a key role of PSMs in inflammasomes‐related IL‐1β production. Furthermore, we found that the lack of caspase‐1 in CASP1 ?/?MG‐63 cells impairs their defense functions, as bacterial clearance was drastically decreased in CASP1 ?/? MG‐63 compared to wild‐type cells. Our results demonstrate that osteoblast‐like MG‐63 cells play an important role in the immune response against S. aureus infection through inflammasomes activation and establish a crucial role of caspase‐1 in bacterial clearance.  相似文献   

9.
10.
Saccharomyces cerevisiae NAD(H)‐dependent 2,3‐butanediol dehydrogenase (Bdh1), a medium chain dehydrogenase/reductase is the main enzyme catalyzing the reduction of acetoin to 2,3‐butanediol. In this work we focused on altering the coenzyme specificity of Bdh1 from NAD(H) to NADP(H). Based on homology studies and the crystal structure of the NADP(H)‐dependent yeast alcohol dehydrogenase Adh6, three adjacent residues (Glu221, Ile222, and Ala223) were predicted to be involved in the coenzyme specificity of Bdh1 and were altered by site‐directed mutagenesis. Coenzyme reversal of Bdh1 was obtained with double Glu221Ser/Ile222Arg and triple Glu221Ser/Ile222Arg/Ala223Ser mutants. The performance of the triple mutant for NADPH was close to that of native Bdh1 for NADH. The three engineered mutants were able to restore the growth of a phosphoglucose isomerase deficient strain (pgi), which cannot grow on glucose unless an alternative NADPH oxidizing system is provided, thus demonstrating their in vivo functionality. These mutants are interesting tools to reduce the excess of acetoin produced by engineered brewing or wine yeasts overproducing glycerol. In addition, they represent promising tools for the manipulation of the NADP(H) metabolism and for the development of a powerful catalyst in biotransformations requiring NADPH regeneration. Biotechnol. Bioeng. 2009; 104: 381–389 © 2009 Wiley Periodicals, Inc.  相似文献   

11.
12.
Coxiella burnetii, the causative agent of the zoonotic disease Q fever, is a Gram‐negative bacterium that replicates inside macrophages within a highly oxidative vacuole. Screening of a transposon mutant library suggested that sdrA, which encodes a putative short‐chain dehydrogenase, is required for intracellular replication. Short‐chain dehydrogenases are NADP(H)‐dependent oxidoreductases, and SdrA contains a predicted NADP+ binding site, suggesting it may facilitate NADP(H) regeneration by C. burnetii, a key process for surviving oxidative stress. Purified recombinant 6×His‐SdrA was able to convert NADP+ to NADP(H) in vitro. Mutation to alanine of a conserved glycine residue at position 12 within the predicted NADP binding site abolished significant enzymatic activity. Complementation of the sdrA mutant (sdrA::Tn) with plasmid‐expressed SdrA restored intracellular replication to wild‐type levels, but expressing enzymatically inactive G12A_SdrA did not. The sdrA::Tn mutant was more susceptible in vitro to oxidative stress, and treating infected host cells with L‐ascorbate, an anti‐oxidant, partially rescued the intracellular growth defect of sdrA::Tn. Finally, stable isotope labelling studies demonstrated a shift in flux through metabolic pathways in sdrA::Tn consistent with the presence of increased oxidative stress, and host cells infected with sdrA::Tn had elevated levels of reactive oxygen species compared with C. burnetii NMII.  相似文献   

13.
Klebsiella pneumoniae HR526, a new isolated 1,3‐propanediol (1,3‐PD) producer, exhibited great productivity. However, the accumulation of lactate in the late‐exponential phase remained an obstacle of 1,3‐PD industrial scale production. Hereby, mutants lacking D ‐lactate pathway were constructed by knocking out the ldhA gene encoding fermentative D ‐lactate dehydrogenase (LDH) of HR526. The mutant K. pneumoniae LDH526 with the lowest LDH activity was studied in aerobic fed‐batch fermentation. In experiments using pure glycerol as feedstock, the 1,3‐PD concentrations, conversion, and productivity increased from 95.39 g L?1, 0.48 and 1.98 g L?1 h?1 to 102. 06 g L?1, 0.52 mol mol?1 and 2.13 g L?1 h?1, respectively. The diol (1,3‐PD and 2,3‐butanediol) conversion increased from 0.55 mol mol?1 to a maximum of 0.65 mol mol?1. Lactate would not accumulate until 1,3‐PD exceeded 84 g L?1, and the final lactate concentration decreased dramatically from more than 40 g L?1 to <3 g L?1. Enzymic measurements showed LDH activity decreased by 89–98% during fed‐batch fermentation, and other related enzyme activities were not affected. NADH/NAD+ enhanced more than 50% in the late‐exponential phase as the D ‐lactate pathway was cut off, which might be the main reason for the change of final metabolites concentrations. The ability to utilize crude glycerol from biodiesel process and great genetic stability demonstrated that K. pnemoniae LDH526 was valuable for 1,3‐PD industrial production. Biotechnol. Bioeng. 2009; 104: 965–972. © 2009 Wiley Periodicals, Inc.  相似文献   

14.
Cyclic diadenosine monophosphate (c‐di‐AMP) is a conserved nucleotide second messenger critical for bacterial growth and resistance to cell wall‐active antibiotics. In Listeria monocytogenes, the sole diadenylate cyclase, DacA, is essential in rich, but not synthetic media and ΔdacA mutants are highly sensitive to the β‐lactam antibiotic cefuroxime. In this study, loss of function mutations in the oligopeptide importer (oppABCDF) and glycine betaine importer (gbuABC) allowed ΔdacA mutants to grow in rich medium. Since oligopeptides were sufficient to inhibit growth of the ΔdacA mutant we hypothesized that oligopeptides act as osmolytes, similar to glycine betaine, to disrupt intracellular osmotic pressure. Supplementation with salt stabilized the ΔdacA mutant in rich medium and restored cefuroxime resistance. Additional suppressor mutations in the acetyl‐CoA binding site of pyruvate carboxylase (PycA) rescued cefuroxime resistance and resulted in a 100‐fold increase in virulence of the ΔdacA mutant. PycA is inhibited by c‐di‐AMP and these mutations prompted us to examine the role of TCA cycle enzymes. Inactivation of citrate synthase, but not down‐stream enzymes suppressed ΔdacA phenotypes. These data suggested that c‐di‐AMP modulates central metabolism at the pyruvate node to moderate citrate production and indeed, the ΔdacA mutant accumulated six times the concentration of citrate present in wild‐type bacteria.  相似文献   

15.
A Staphylococcus aureus transpeptidase, sortase A (SrtA), which catalyzes a peptide ligation with high substrate specificity, is a useful tool to site‐specifically attach proteinaceous/peptidic functional molecules to target proteins. However, its strong Ca2+ dependency makes SrtA difficult for use under low Ca2+ concentrations and in the presence of Ca2+‐binding substances. To overcome this problem, we designed a SrtA mutant that Ca2+‐independently demonstrates a high catalytic activity. The heptamutant (P94R/E105K/E108A/D160N/D165A/K190E/K196T), which resulted from a combination of known mutations at the Ca2+‐binding site and around the substrate‐binding site, successfully catalyzed a selective protein‐protein ligation in the cytoplasm of Escherichia coli. Selective protein modification in living cells is a promising approach for investigating cellular events and regulating cell functions. This SrtA mutant may prove to be a versatile tool for adding new functionalities to proteins of interest by incorporating functional proteins and chemically modified peptides in living cells, which usually retain low Ca2+ concentrations.  相似文献   

16.
A traditional 2‐oxoglutarate dehydrogenase complex is missing in the cyanobacterial tricarboxylic acid cycle. To determine pathways that convert 2‐oxoglutarate into succinate in the cyanobacterium Synechocystis sp. PCC 6803, a series of mutant strains, Δsll1981, Δslr0370, Δslr1022 and combinations thereof, deficient in 2‐oxoglutarate decarboxylase (Sll1981), succinate semialdehyde dehydrogenase (Slr0370), and/or in γ‐aminobutyrate metabolism (Slr1022) were constructed. Like in Pseudomonas aeruginosa, N‐acetylornithine aminotransferase, encoded by slr1022, was shown to also function as γ‐aminobutyrate aminotransferase, catalysing γ‐aminobutyrate conversion to succinic semialdehyde. As succinic semialdehyde dehydrogenase converts succinic semialdehyde to succinate, an intact γ‐aminobutyrate shunt is present in Synechocystis. The Δsll1981 strain, lacking 2‐oxoglutarate decarboxylase, exhibited a succinate level that was 60% of that in wild type. However, the succinate level in the Δslr1022 and Δslr0370 strains and the Δsll1981/Δslr1022 and Δsll1981/Δslr0370 double mutants was reduced to 20–40% of that in wild type, suggesting that the γ‐aminobutyrate shunt has a larger impact on metabolite flux to succinate than the pathway via 2‐oxoglutarate decarboxylase. 13C‐stable isotope analysis indicated that the γ‐aminobutyrate shunt catalysed conversion of glutamate to succinate. Independent of the 2‐oxoglutarate decarboxylase bypass, the γ‐aminobutyrate shunt is a major contributor to flux from 2‐oxoglutarate and glutamate to succinate in Synechocystis sp. PCC 6803.  相似文献   

17.
Pandoraea sp. MA03 wild type strain was subjected to UV mutation to obtain mutants unable to grow on propionic acid (PA) but still able to produce poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) [P(3HB‐co‐3HV)] from glycerol and PA at high 3HV yields. In shake flask experiments, mutant prp25 was selected from 52 mutants affected in the propionate metabolism exhibiting a conversion rate of PA into 3HV units of 0.78 g g?1. The use of crude glycerol (CG) plus PA or valeric acid resulted in a copolymer with 3HV contents varying from 21.9 to 30 mol% and 22.2 to 36.7 mol%, respectively. Fed‐batch fermentations were performed using CG and PA and reached a 3HV yield of 1.16 g g?1, which is 86% of the maximum theoretical yield. Nitrogen limitation was a key parameter for polymer accumulation reaching up to 63.7% content and 18.1 mol% of 3HV. Henceforth, mutant prp25 is revealed as an additional alternative to minimize costs and support the P(3HB‐co‐3HV) production from biodiesel by‐products. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1077–1084, 2017  相似文献   

18.
Using an automated cell counting technique developed previously (Case et al., Ecology and Evolution 2014; 4: 3494), we explore the lifespan effects of lac‐1, a ceramide synthase gene paralogous to lag‐1 in Neurospora crassa in conjunction with the band bd (ras‐1) gene. We find that the replicative lifespan of a lac‐1KO bd double mutants is short, about one race tube cycle, and this double mutant lacks a strong ~21‐hr clock cycle as shown by race tube and fluorometer analysis of fluorescent strains including lac‐1KO. This short replicative lifespan phenotype is contrasted with a very long estimated chronological lifespan for lac‐1KO bd double mutants from 247 to 462 days based on our regression analyses on log viability, and for the single mutant lac‐1KO, 161 days. Both of these estimated lifespans are much higher than that of previously studied WT and bd single mutant strains. In a lac‐1 rescue and induction experiment, the expression of lac‐1+ as driven by a quinic acid‐dependent promoter actually decreases the median chronological lifespan of cells down to only 7 days, much lower than the 34‐day median lifespan found in control bd conidia also grown on quinic acid media, which we interpret as an effect of balancing selection acting on ceramide levels based on previous findings from the literature. Prior work has shown phytoceramides can act as a signal for apoptosis in stressed N. crassa cells. To test this hypothesis of balancing selection on phytoceramide levels, we examine the viability of WT, lag‐1KO bd, and lac‐1KO bd strains following the dual stresses of heat and glycolysis inhibition, along with phytoceramide treatments of different dosages. We find that the phytoceramide dosage–response curve is altered in the lag‐1KO bd mutant, but not in the lac‐1KO bd mutant. We conclude that phytoceramide production is responsible for the previously reported longevity effects in the lag‐1KO bd mutant, but a different ceramide may be responsible for the longevity effect observed in the lac‐1KO bd mutant.  相似文献   

19.
Rett syndrome (RTT) is a regressive developmental disorder characterized by motor and breathing abnormalities, anxiety, cognitive dysfunction and seizures. Approximately 95% of RTT cases are caused by more than 200 different mutations in the X‐linked gene encoding methyl‐CpG‐binding protein 2 (MeCP2). While numerous transgenic mice have been created modeling common mutations in MeCP2, the behavioral phenotype of many of these male and, especially, female mutant mice has not been well characterized. Thorough phenotyping of additional RTT mouse models will provide valuable insight into the effects of Mecp2 mutations on behavior and aid in the selection of appropriate models, ages, sexes and outcome measures for preclinical trials. In this study, we characterize the phenotype of male and female mice containing the early truncating MeCP2 R168X nonsense point mutation, one of the most common in RTT individuals, and compare the phenotypes to Mecp2 null mutants. Mecp2R168X mutants mirror many clinical features of RTT. Mecp2R168X/y males exhibit impaired motor and cognitive function and reduced anxiety. The behavioral phenotype is less severe and with later onset in Mecp2R168X/+ females. Seizures were noted in 3.7% of Mecp2R168X mutant females. The phenotype in Mecp2R168X/y mutant males is remarkably similar to our previous characterizations of Mecp2 null males, whereas Mecp2R168X/+ females exhibit a number of phenotypic differences from females heterozygous for a null Mecp2 mutation. This study describes a number of highly robust behavioral paradigms that can be used in preclinical drug trials and underscores the importance of including Mecp2 mutant females in preclinical studies .  相似文献   

20.
Drosophila melanogaster Meigen mutants for N‐β‐alanyldopamine (NBAD) metabolism have altered levels of NBAD, dopamine and other neurotransmitters. The ebony1 mutant strain has very low levels of NBAD and higher levels of dopamine, whereas the opposite situation is observed in the tan1 mutant. Dopamine is implicated in the control of movement, memory and arousal, as well as in the regulation of sleep and wakefulness in D. melanogaster. N‐β‐alanyldopamine, which is best known as a cuticle cross‐linking agent, is also present in nervous tissue and has been proposed to promote locomotor activity in this fly. The daily locomotor activity and the sleep patterns of ebony1 and tan1 mutants are analyzed, and are compared with wild‐type flies. The tan1 mutant shows reduced locomotor activity, whereas ebony1 shows higher levels of activity than wild‐type flies, suggesting that NBAD does not promote locomotor activity. Both mutants spend less time asleep than wild‐type flies during night‐time; ebony shows more consolidated activity during night‐time and increased sleep latency, whereas tan is unable to consolidate locomotor activity and sleep in either phase of the day. The daily level of NBAD‐synthase activity is measured in vitro using wild‐type and tan1 protein extracts, and the lowest NBAD synthesis is observed at the time of higher locomotor activity. The abnormalities in several parameters of the waking/sleep cycle indicate some dysfunction in the processes that regulates these behaviours in both mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号