共查询到20条相似文献,搜索用时 15 毫秒
1.
消费者多样性对食物网结构和生态系统功能的影响 总被引:1,自引:0,他引:1
前所未有的生物多样性丧失使人们越来越关注生物多样性的生态系统功能.现有的绝大多数研究都是局限在单一营养级别上,主要是植物上,但是今天越来越多的证明表明消费者的多样性对生态系统结构和功能具有深刻影响.综述了消费者多样性对相邻或非相邻营养级的种群密度、物种多样性和生产力等方面影响的最新进展,同时也提出了若干研究展望.总体上.消费者多样性,无论是草食动物还是肉食动物,都倾向于增加该消费者所在营养级的养分和能量利用效率,以及生产力.这可能源于取样效应,或者物种之间的互补作用,类似于植物物种多样性影响初级生产力的机制.草食动物可能降低或者提高植物物种多样性,或者没有显著影响,其具体效应取决于生态系统生产力水平和草食动物的大小.捕食者哌能通过直接抑制草食动物而间接提高植物的多样性和生产力,但这种效应的大小差异很大,甚至效应的方向,都可能随团体内捕食者所占的比例而改变.未来的研究,应该考虑应用较大尺度的实验来检测食物网复杂营养关系对生态系统特性的影响,继续探讨消费者对生态系统功能的影响机制.认为异速生长法则和生态化学计量学在食物网组分关系研究中的应用将有利于增强人们对消费者.生态系统功能关系的理解.另外,全球变暖和转基因植物对食物网中消费者结构和生态系统的功能的影响也将是未来的一个重要研究方向. 相似文献
2.
3.
Community composition and diversity of riparian forests regulate decomposition of leaf litter in stream ecosystems 下载免费PDF全文
Riparian forest plantings are a well‐established restoration technique commonly used to stabilize banks and intercept nutrient flow from adjacent agricultural fields. Tree species planted for these efforts may not reflect mature forest communities within the same region. Given contemporary research on links between biodiversity and ecosystem functioning, we conducted a leaf‐litter decomposition study to investigate how mixing of detrital resources that reflect forest community composition would regulate in‐stream leaf litter. Leaf litter bags containing material from a mature forest (Liriodendron tulipifera, Acer rubrum, Quercus rubra, full factorial treatments = 7) and a restored riparian forest (Cornus sericea, Fraxinus pennsylvanica, Platanus occidentalis, full factorial treatments = 7) were deployed in a stream reach that experienced riparian reforestation in 2004. Litter from the restored riparian community had less mass remaining (45.28 ± 2.27%) than that from the mature riparian community (54.95 ± 2.19%) after 5 weeks. In addition, mixed litter treatments in the restored riparian community had less mass remaining (40.54 ± 2.37%) than single‐species treatments (51.80 ± 4.05%), a pattern not observed in the mature forest community. Results highlight the importance of planting mixed‐species assemblages as this structure may regulate processes such as decomposition and food‐web structure, processes often not targeted in the restoration plans. 相似文献
4.
Over‐harvesting, habitat loss and exotic invasions have altered predator diversity and composition in a variety of communities which is predicted to affect other trophic levels and ecosystem functioning. We tested this hypothesis by manipulating predator identity and diversity in outdoor mesocosms that contained five species of macroalgae and a macroinvertebrate herbivore assemblage dominated by amphipods and isopods. We used five common predators including four carnivores (crabs, shrimp, blennies and killifish) and one omnivore (pinfish). Three carnivorous predators each induced a strong trophic cascade by reducing herbivore abundance and increasing algal biomass and diversity. Surprisingly, increasing predator diversity reversed these effects on macroalgae and altered algal composition, largely due to the inclusion and performance of omnivorous fish in diverse predator assemblages. Changes in predator diversity can cascade to lower trophic levels; the exact effects, however, will be difficult to predict due to the many complex interactions that occur in diverse food webs. 相似文献
5.
Allan Raffard Frdric Santoul Julien Cucherousset Simon Blanchet 《Biological reviews of the Cambridge Philosophical Society》2019,94(2):648-661
Understanding the relationships between biodiversity and ecosystem functioning has major implications. Biodiversity–ecosystem functioning relationships are generally investigated at the interspecific level, although intraspecific diversity (i.e. within‐species diversity) is increasingly perceived as an important ecological facet of biodiversity. Here, we provide a quantitative and integrative synthesis testing, across diverse plant and animal species, whether intraspecific diversity is a major driver of community dynamics and ecosystem functioning. We specifically tested (i) whether the number of genotypes/phenotypes (i.e. intraspecific richness) or the specific identity of genotypes/phenotypes (i.e. intraspecific variation) in populations modulate the structure of communities and the functioning of ecosystems, (ii) whether the ecological effects of intraspecific richness and variation are strong in magnitude, and (iii) whether these effects vary among taxonomic groups and ecological responses. We found a non‐linear relationship between intraspecific richness and community and ecosystem dynamics that follows a saturating curve shape, as observed for biodiversity–function relationships measured at the interspecific level. Importantly, intraspecific richness modulated ecological dynamics with a magnitude that was equal to that previously reported for interspecific richness. Our results further confirm, based on a database containing more than 50 species, that intraspecific variation also has substantial effects on ecological dynamics. We demonstrated that the effects of intraspecific variation are twice as high as expected by chance, and that they might have been underestimated previously. Finally, we found that the ecological effects of intraspecific variation are not homogeneous and are actually stronger when intraspecific variation is manipulated in primary producers than in consumer species, and when they are measured at the ecosystem rather than at the community level. Overall, we demonstrated that the two facets of intraspecific diversity (richness and variation) can both strongly affect community and ecosystem dynamics, which reveals the pivotal role of within‐species biodiversity for understanding ecological dynamics. 相似文献
6.
Loss of biodiversity and nutrient enrichment are two of the main human impacts on ecosystems globally, yet we understand very little about the interactive effects of multiple stressors on natural communities and how this relates to biodiversity and ecosystem functioning. Advancing our understanding requires the following: (1) incorporation of processes occurring within and among trophic levels in natural ecosystems and (2) tests of context‐dependency of species loss effects. We examined the effects of loss of a key predator and two groups of its prey on algal assemblages at both ambient and enriched nutrient conditions in a marine benthic system and tested for interactions between the loss of functional diversity and nutrient enrichment on ecosystem functioning. We found that enrichment interacted with food web structure to alter the effects of species loss in natural communities. At ambient conditions, the loss of primary consumers led to an increase in biomass of algae, whereas predator loss caused a reduction in algal biomass (i.e. a trophic cascade). However, contrary to expectations, we found that nutrient enrichment negated the cascading effect of predators on algae. Moreover, algal assemblage structure varied in distinct ways in response to mussel loss, grazer loss, predator loss and with nutrient enrichment, with compensatory shifts in algal abundance driven by variation in responses of different algal species to different environmental conditions and the presence of different consumers. We identified and characterized several context‐dependent mechanisms driving direct and indirect effects of consumers. Our findings highlight the need to consider environmental context when examining potential species redundancies in particular with regard to changing environmental conditions. Furthermore, non‐trophic interactions based on empirical evidence must be incorporated into food web‐based ecological models to improve understanding of community responses to global change. 相似文献
7.
8.
Invasive plants have different effects on trophic structure of green and brown food webs in terrestrial ecosystems: a meta‐analysis 下载免费PDF全文
Although invasive plants are a major source of terrestrial ecosystem degradation worldwide, it remains unclear which trophic levels above the base of the food web are most vulnerable to plant invasions. We performed a meta‐analysis of 38 independent studies from 32 papers to examine how invasive plants alter major groupings of primary and secondary consumers in three globally distributed ecosystems: wetlands, woodlands and grasslands. Within each ecosystem we examined if green (grazing) food webs are more sensitive to plant invasions compared to brown (detrital) food webs. Invasive plants have strong negative effects on primary consumers (detritivores, bacterivores, fungivores, and/or herbivores) in woodlands and wetlands, which become less abundant in both green and brown food webs in woodlands and green webs in wetlands. Plant invasions increased abundances of secondary consumers (predators and/or parasitoids) only in woodland brown food webs and green webs in wetlands. Effects of invasive plants on grazing and detrital food webs clearly differed between ecosystems. Overall, invasive plants had the most pronounced effects on the trophic structure of wetlands and woodlands, but caused no detectable changes to grassland trophic structure. 相似文献
9.
Gustavo Q. Romero Thiago Gonçalves‐Souza Camila Vieira Julia Koricheva 《Biological reviews of the Cambridge Philosophical Society》2015,90(3):877-890
Ecosystem engineering is increasingly recognized as a relevant ecological driver of diversity and community composition. Although engineering impacts on the biota can vary from negative to positive, and from trivial to enormous, patterns and causes of variation in the magnitude of engineering effects across ecosystems and engineer types remain largely unknown. To elucidate the above patterns, we conducted a meta‐analysis of 122 studies which explored effects of animal ecosystem engineers on species richness of other organisms in the community. The analysis revealed that the overall effect of ecosystem engineers on diversity is positive and corresponds to a 25% increase in species richness, indicating that ecosystem engineering is a facilitative process globally. Engineering effects were stronger in the tropics than at higher latitudes, likely because new or modified habitats provided by engineers in the tropics may help minimize competition and predation pressures on resident species. Within aquatic environments, engineering impacts were stronger in marine ecosystems (rocky shores) than in streams. In terrestrial ecosystems, engineers displayed stronger positive effects in arid environments (e.g. deserts). Ecosystem engineers that create new habitats or microhabitats had stronger effects than those that modify habitats or cause bioturbation. Invertebrate engineers and those with lower engineering persistence (<1 year) affected species richness more than vertebrate engineers which persisted for >1 year. Invertebrate species richness was particularly responsive to engineering impacts. This study is the first attempt to build an integrative framework of engineering effects on species diversity; it highlights the importance of considering latitude, habitat, engineering functional group, taxon and persistence of their effects in future theoretical and empirical studies. 相似文献
10.
Much of the literature on the relationship between species richness or functional group richness and measures of ecosystem function focuses on a restricted set of ecosystem function measures and taxonomic groups. Few such studies have been carried out under realistic levels of diversity in the field, particularly in high diversity ecosystems such as tropical forests. We used exclusion experiments to study the effects of dung beetle functional group richness and composition on two interlinked and functionally important ecological processes, dung removal and secondary seed dispersal, in evergreen tropical forest in Sabah, Malaysian Borneo. Overall, both dung and seed removal increased with dung beetle functional group richness. However, levels of ecosystem functioning were idiosyncratic depending on the identity of the functional groups present, indicating an important role for functional group composition. There was no evidence for interference or competition among functional groups. We found strong evidence for overyielding and transgressive overyielding, suggesting complementarity or facilitation among functional groups. Not all mixtures showed transgressive overyielding, so that complementarity was restricted to particular functional group combinations. Beetles in a single functional group (large nocturnal tunnellers) had a disproportionate influence on measures of ecosystem function: in their absence dung removal is reduced by approximately 75%. However, a full complement of functional groups is required to maximize ecosystem functioning. This study highlights the importance of both functional group identity and species composition in determining the ecosystem consequences of extinctions or altered patterns in the relative abundance of species. 相似文献
11.
12.
13.
用Gessner等提出的树叶凋落物分解模式对横石水河的功能完整性和生态系统健康进行评价,对比了藜蒴和荷木2个树种的树叶凋落物在横石水河各污染样点和未受污染样点的分解速率.结果表明:藜蒴和荷木树叶凋落物在研究区污染样点的分解速率均显著低于清洁样点(P<0.05);根据Gessner模式,各污染样点的环境得分均为0,而各清洁样点的环境得分均为2,表明横石水河污染河段的健康状态已受到严重破坏.研究区生态系统健康的生物学评价与水质分析结果一致,表明树叶凋落物分解模式是一个合适的评价河流状态的指数. 相似文献
14.
Riede JO Brose U Ebenman B Jacob U Thompson R Townsend CR Jonsson T 《Ecology letters》2011,14(2):169-178
Despite growing awareness of the significance of body-size and predator-prey body-mass ratios for the stability of ecological networks, our understanding of their distribution within ecosystems is incomplete. Here, we study the relationships between predator and prey size, body-mass ratios and predator trophic levels using body-mass estimates of 1313 predators (invertebrates, ectotherm and endotherm vertebrates) from 35 food-webs (marine, stream, lake and terrestrial). Across all ecosystem and predator types, except for streams (which appear to have a different size structure in their predator-prey interactions), we find that (1) geometric mean prey mass increases with predator mass with a power-law exponent greater than unity and (2) predator size increases with trophic level. Consistent with our theoretical derivations, we show that the quantitative nature of these relationships implies systematic decreases in predator-prey body-mass ratios with the trophic level of the predator. Thus, predators are, on an average, more similar in size to their prey at the top of food-webs than that closer to the base. These findings contradict the traditional Eltonian paradigm and have implications for our understanding of body-mass constraints on food-web topology, community dynamics and stability. 相似文献
15.
Florian Schnabel Julia A. Schwarz Adrian Dnescu Andreas Fichtner Charles A. Nock Jürgen Bauhus Catherine Potvin 《Global Change Biology》2019,25(12):4257-4272
There is increasing evidence that mixed‐species forests can provide multiple ecosystem services at a higher level than their monospecific counterparts. However, most studies concerning tree diversity and ecosystem functioning relationships use data from forest inventories (under noncontrolled conditions) or from very young plantation experiments. Here, we investigated temporal dynamics of diversity–productivity relationships and diversity–stability relationships in the oldest tropical tree diversity experiment. Sardinilla was established in Panama in 2001, with 22 plots that form a gradient in native tree species richness of one‐, two‐, three‐ and five‐species communities. Using annual data describing tree diameters and heights, we calculated basal area increment as the proxy of tree productivity. We combined tree neighbourhood‐ and community‐level analyses and tested the effects of both species diversity and structural diversity on productivity and its temporal stability. General patterns were consistent across both scales indicating that tree–tree interactions in neighbourhoods drive observed diversity effects. From 2006 to 2016, mean overyielding (higher productivity in mixtures than in monocultures) was 25%–30% in two‐ and three‐species mixtures and 50% in five‐species stands. Tree neighbourhood diversity enhanced community productivity but the effect of species diversity was stronger and increased over time, whereas the effect of structural diversity declined. Temporal stability of community productivity increased with species diversity via two principle mechanisms: asynchronous responses of species to environmental variability and overyielding. Overyielding in mixtures was highest during a strong El Niño‐related drought. Overall, positive diversity–productivity and diversity–stability relationships predominated, with the highest productivity and stability at the highest levels of diversity. These results provide new insights into mixing effects in diverse, tropical plantations and highlight the importance of analyses of temporal dynamics for our understanding of the complex relationships between diversity, productivity and stability. Under climate change, mixed‐species forests may provide both high levels and high stability of production. 相似文献
16.
内陆干旱区人口数量急剧增加驱动了绿洲快速扩张, 扩张方式主要包括: 灌木地、林地和农地扩张, 尚缺乏绿洲扩张方式对土壤生物多样性和生态系统服务功能影响的研究。本文以河西走廊黑河中游张掖绿洲为研究区域, 选择绿洲边缘天然草地及其转变的人工梭梭(Haloxylon ammodendron)灌木地(无灌溉)、人工杨树(Populus gansuensis)林地(灌溉)、玉米(Zea mays)地(灌溉 + 施肥)为研究对象, 测定了4种生境土壤食物网中9种优势功能类群的密度以及反映土壤生态系统功能特征的有机碳储量、氮储量、磷储量与土壤过氧化氢酶、蔗糖酶、脲酶、碱性磷酸酶活性。主要结果如下: (1)灌木地扩张显著降低了甲螨、植食性昆虫密度, 增加了跳虫、捕食性螨密度和真菌的OTUs, 对其余类群无显著影响; 林地扩张增加了捕食性节肢动物、植食性昆虫、捕食性螨、跳虫、甲螨的密度及细菌和真菌OTUs, 对其余类群无显著影响; 农地扩张增加了蚓类、捕食性节肢动物、捕食性螨、跳虫、甲螨的密度及细菌和真菌的OTUs, 对其余类群无显著影响。(2)林地和灌木地扩张显著提高了土壤有机碳储量和氮储量, 而农地扩张显著提高了土壤有机碳储量、氮储量和磷储量。(3) 3种扩张方式显著提高了土壤过氧化氢酶、蔗糖酶、脲酶、碱性磷酸酶活性, 玉米地和杨树林地土壤酶活性的增幅高于灌木地。人工绿洲扩张方式显著和有差异地改变了土壤食物网结构及其生态功能水平, 该结果对建立基于土地利用结构优化调控的人工绿洲生物多样性保护管理新方法具有重要意义, 并为人工绿洲生态系统功能稳定性评价研究提供了基础资料。 相似文献
17.
The importance of rare species: a trait‐based assessment of rare species contributions to functional diversity and possible ecosystem function in tall‐grass prairies 下载免费PDF全文
Meha Jain Dan F.B. Flynn Case M. Prager Georgia M. Hart Caroline M. DeVan Farshid S. Ahrestani Matthew I. Palmer Daniel E. Bunker Johannes M.H. Knops Claire F. Jouseau Shahid Naeem 《Ecology and evolution》2014,4(1):104-112
The majority of species in ecosystems are rare, but the ecosystem consequences of losing rare species are poorly known. To understand how rare species may influence ecosystem functioning, this study quantifies the contribution of species based on their relative level of rarity to community functional diversity using a trait‐based approach. Given that rarity can be defined in several different ways, we use four different definitions of rarity: abundance (mean and maximum), geographic range, and habitat specificity. We find that rarer species contribute to functional diversity when rarity is defined by maximum abundance, geographic range, and habitat specificity. However, rarer species are functionally redundant when rarity is defined by mean abundance. Furthermore, when using abundance‐weighted analyses, we find that rare species typically contribute significantly less to functional diversity than common species due to their low abundances. These results suggest that rare species have the potential to play an important role in ecosystem functioning, either by offering novel contributions to functional diversity or via functional redundancy depending on how rare species are defined. Yet, these contributions are likely to be greatest if the abundance of rare species increases due to environmental change. We argue that given the paucity of data on rare species, understanding the contribution of rare species to community functional diversity is an important first step to understanding the potential role of rare species in ecosystem functioning. 相似文献
18.
A meta‐analysis of nestedness and turnover components of beta diversity across organisms and ecosystems 下载免费PDF全文
Aim
The number of studies investigating the nestedness and turnover components of beta diversity has increased substantially, but our general understanding of the drivers of turnover and nestedness remains elusive. Here, we examined the effects of species traits, spatial extent, latitude and ecosystem type on the nestedness and turnover components of beta diversity.Location
Global.Time period
1968–2017.Major taxa studied
From bacteria to mammals.Methods
From the 99 studies that partition total beta diversity into its turnover and nestedness components, we assembled 269 and 259 data points for the pairwise and multiple site beta‐diversity metrics, respectively. Our data covered a broad variation in species dispersal type, body size and trophic position. The data were from freshwater, marine and terrestrial realms, and encompassed geographical areas from the tropics to near polar regions. We used linear modelling as a meta‐regression tool to analyse the data.Results
Pairwise turnover, multiple site turnover and total beta diversity all decreased significantly with latitude. In contrast, multiple site nestedness showed a positive relationship with latitude. Beta‐diversity components did not generally differ among the realms. The turnover component and total beta diversity increased with spatial extent, whereas nestedness was scale invariant for pairwise metrics. Multiple site beta‐diversity components did not vary with spatial extent. Surprisingly, passively dispersed organisms had lower turnover and total beta diversity than flying organisms. Body size showed a relatively weak relationship with beta diversity but had important interactions with trophic position, thus also affecting beta diversity via interactive effects. Producers had significantly higher average pairwise turnover and total beta diversity than carnivores.Main conclusions
The present results provide evidence that species turnover, being consistently the larger component of total beta diversity, and nestedness are related to the latitude of the study area and intrinsic organismal features. We showed that two beta‐diversity components had generally opposing patterns with regard to latitude. We highlight that beta‐diversity partition may give additional insights into the underlying causes of spatial variability in biotic communities compared with total beta diversity alone. 相似文献19.
Biodiversity–ecosystem function experiments reveal the mechanisms underlying the consequences of biodiversity change in real world ecosystems 下载免费PDF全文
Nico Eisenhauer Andrew D. Barnes Simone Cesarz Dylan Craven Olga Ferlian Felix Gottschall Jes Hines Agnieszka Sendek Julia Siebert Madhav P. Thakur Manfred Türke 《植被学杂志》2016,27(5):1061-1070
In a recent Forum paper, Wardle (Journal of Vegetation Science, 2016) questions the value of biodiversity–ecosystem function (BEF) experiments with respect to their implications for biodiversity changes in real world communities. The main criticism is that the previous focus of BEF experiments on random species assemblages within each level of diversity has ‘limited the understanding of how natural communities respond to biodiversity loss.’ He concludes that a broader spectrum of approaches considering both non‐random gains and losses of diversity is essential to advance this field of research. Wardle's paper is timely because of recent observations of frequent local and regional biodiversity changes across ecosystems. While we appreciate that new and complementary experimental approaches are required for advancing the field, we question criticisms regarding the validity of BEF experiments. Therefore, we respond by briefly reiterating previous arguments emphasizing the reasoning behind random species composition in BEF experiments. We describe how BEF experiments have identified important mechanisms that play a role in real world ecosystems, advancing our understanding of ecosystem responses to species gains and losses. We discuss recent examples where theory derived from BEF experiments enriched our understanding of the consequences of biodiversity changes in real world ecosystems and where comprehensive analyses and integrative modelling approaches confirmed patterns found in BEF experiments. Finally, we provide some promising directions in BEF research. 相似文献
20.
Sofia Gripenberg Yves Basset Owen T. Lewis J. Christopher D. Terry S. Joseph Wright Indira Simn D. Catalina Fernndez Marjorie Cedeo‐Sanchez Marleny Rivera Hctor Barrios John W. Brown Osvaldo Caldern Anthony I. Cognato Jorma Kim Scott E. Miller Geoffrey E. Morse Sara Pinzn‐Navarro Donald L. J. Quicke Robert K. Robbins Juha‐Pekka Salminen Eero Vesterinen 《Ecology letters》2019,22(10):1638-1649
The top‐down and indirect effects of insects on plant communities depend on patterns of host use, which are often poorly documented, particularly in species‐rich tropical forests. At Barro Colorado Island, Panama, we compiled the first food web quantifying trophic interactions between the majority of co‐occurring woody plant species and their internally feeding insect seed predators. Our study is based on more than 200 000 fruits representing 478 plant species, associated with 369 insect species. Insect host‐specificity was remarkably high: only 20% of seed predator species were associated with more than one plant species, while each tree species experienced seed predation from a median of two insect species. Phylogeny, but not plant traits, explained patterns of seed predator attack. These data suggest that seed predators are unlikely to mediate indirect interactions such as apparent competition between plant species, but are consistent with their proposed contribution to maintaining plant diversity via the Janzen–Connell mechanism. 相似文献